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THE
time which has elapsed since the publication of the first edition of

this treatise has been a period of great activity in the development of the

Theory of Functions of a real variable. In particular, the introduction of the

Lebesgue Integral, which was new in 1907, has since produced its full effect,

in the generalization of the Theory of Integration, and upon the theory of the

representation of functions by means of Fourier s, and other, series and integrals.

In order to give an adequate account of the subject in its present condition,

a large amount of new matter has had to be introduced; and this has made it

necessary to divide the treatise into two volumes. The matter contained in

the first edition has been carefully revised, amplified, and in many cases re

written.

The parts of the subject which were dealt with in the first five chapters

of the first edition have been expanded into the eight chapters of the present

first volume of the new edition. With a view to greater unity of treatment of

the Theory of Integration, some theorems which appeared in Chapter vi, of

the first edition, have however been included in the present volume. A con

siderable part of the Theory of Integration, in relation to series and sequences,

still however remains for treatment in Volume II.

On controversial matters connected with the fundamentals of the Theory

of Aggregates, the considerable diversity of opinion which has arisen amongst

Mathematicians has been taken into account, but in general no attempt has

been made to give dogmatic decisions between opposed opinions. In view of the

delicate questions which arise as to the legitimacy and meaning of the axiom

known as the Multiplicative Axiom, or as the Principle of Zermelo, the policy

has been adopted of so framing the proofs of theorems as to avoid an appeal

to the axiom, whenever that course appeared to be possible; in other cases,

the necessity for the employment of the axiom has been pointed out.

Ample references to sources of information are given throughout, but such

references do not provide the means for compiling a complete list of writings

on the subject. No attempt has been made to settle questions of priority of

discovery.

My thanks are due to Dr H. F. Baker, F.R.S., Lowndean Professor of

Astronomy and Geometry, in the University of Cambridge, who has kindly

read nearly all the proofs as they passed through the Press.

E. W. HOBSON.
CHRIST S COLLEGE, CAMBRIDGE.

October 10, 1920.



PREFACE TO THE FIRST EDITION

E theory of functions of a real variable, as developed during the last fewL
decades, is a body of doctrine resting, first upon a definite conception of the

arithmetic continuum which forms the field of the variable, and which includes
a precise arithmetic theory of the nature of a limit, and secondly, upon a defi
nite conception of the nature of the functional relation. The procedure of the
theory consists largely in the development, based upon precise definitions, of
a classification of functions, according as they possess, or do not possess, certain
peculiarities, such as continuity, differentiability, &c., throughout the domain
of the variable, or at points forming a selected set contained in that domain.
The detailed consequences ofthe presence, or of the absence, of such peculiarities
are then traced out, and are applied for the purpose of obtaining conditions
for the validity of the processes of Mathematical Analysis. These processes,
which have been long employed in the so-called Infinitesimal Calculus, consist

essentially in the ascertainment of the existence, and in the evaluation, of limits,
and are subject, in every case, to restrictive assumptions which are necessary
conditions of their

validity. The object to be obtained by the theory of func
tions of a real variable consists then largely in the precise formulation of

necessary and sufficient conditions for the validity of the limiting processes of
Analysis. A necessary requisite in such formulation is a

lajQ^uage_descriptive
of particular aggregates of values of the variable, in relation to which functions
possess definite peculiarities. This language is provided by the Theory of Sets
of Points, also known, in its more general aspects, as the Theory of Aggregates,which contains an analysis of the peculiarities of structure and of distribution in
the field ofthe variable which such sets ofpoints may possess. This theory, which
had its origin in the exigencies of a critical theory of functions, and has since
received wide applications, not only in Pure Analysis, but also in Geometrymust be regarded as an integral part of the subject. A most important part
of the theory of functions is the theory of the representation of functions in a
prescribed manner, especially by means of series or sequences of functions of
prescribed types. Much progress has recently been made in this part of the sub
ject, results having been obtained which have led to a classification of functions
in accordance with the modes of representation of which they are capable. The
special case of the conditions of

representability of functions by means of
trigonometrical series was

historically the starting-point in which a great
part of the modern development of the theory of functions of a real variable
had its origin.
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The course of study, of which the present treatise is the outcome, followed

an order very similar to the historical order in which the subject was developed.

Commencing with the study of Fourier s series, in their application to the

problems of Mathematical Physics, and provided with a knowledge of the

Differential and Integral Calculus, of the traditional kind in which notions of

the nature of continuity and of limits founded on an uncritical use of intuitions

of space and time are the stock in trade, I was led, by the difficulties connected

with the theory of these series, and through an attempt to understand the

literature which deals with them, to a study of the theories of real number,

due to Cantor and Dedekind, and to that of the theory of sets of points. A
study of the foundations of the Integral Calculus, and of the general theory of

functions of a real variable formed the natural continuation of the course. The

present work has been written with the object of presenting in a connected form,

and of thus rendering more easily accessible than hitherto, the chief results

which are to be found scattered through a very large number of memoirs,

periodicals, and treatises. I have endeavoured, as far as possible, to fill up gaps
in the various theories which occur in different parts of the subject. The proofs

of theorems have in many cases been simplified, often in accordance with deve

lopments of the theory later in date than the original proofs; other theorems

have been given in a form more general than that in which they were first

discovered. In the literature of the subject, errors are not infrequent, largely

owing to the fact that spatial intuition affords an inadequate corrective of the

theories involved, and is indeed in some cases almost misleading. Although I

have made every endeavour to attain to accuracy both in form and in substance,

it is practically certain that the present work will form no exception to the rule of

fallibility. Where I have called attention to what I regard as inadequate state

ments or errors on the part of other writers, I have done so solely for the pur

pose of directing the attention of students to the points in questions, and with

full consciousness that, at least in some cases, close examination might shew

that what appeared to me to be erroneous was rather due to some misapprehen
sion on my part of the meaning of the writers to whom reference is made. On
some points connected with the theory of aggregates, which are at present

matters of controversy, I have expressed definite opinions, although I fully

recognize that, on such matters, a dogmatic attitude of mind is at the present

time wholly out of place, and not unlikely to be avenged when the points

concerned are finally settled to the general satisfaction of mathematicians.

Chapter I contains a discussion of Number, and includes a full account of

the theories of Real Number, due to Cantor and Dedekind. Whilst an indica

tion has been given of the fundamental notions upon which the conceptions of

cardinal and ordinal numbers rest, I have not attempted to reduce these fun

damental notions to a minimum of indefinables from which the whole theory

might be deduced by means of formal logic. A slight perusal of the extremely

extensive literature of the Philosophy of Arithmetic will shew that any such
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attempt could only have been made by entering upon a prolonged discussion

of a philosophical character, wholly unsuited to a treatise of professedly mathe
matical complexion, and that any views expressed would have but little pros

pect of giving general satisfaction to logicians and philosophers. The modern

theory of Real Numbers has been the object of much criticism by philosophers
and others. It has been represented that the modern extension of the notion

of number to the case of irrational numbers is a sophistical attempt to obliterate

the fundamental distinction between the discrete and the continuous. I venture

to think that such objections consist, in large part at least, of criticisms of the

current terminology of the mathematical theories, especially in respect of the

extensions of the use of the word &quot;number,&quot; and I think it probable that many
of these criticisms would not survive a fair examination of the theories them
selves apart from the language in which they are expressed. An appropriate

terminology, although a matter of convention, is no doubt a very important
matter in relation to such fundamental matters, as it is conducive to clearness

of thought; but the substance of the theories is of incomparably greater im

portance than the forms in which they are expressed, and those theories may
be found on examination to be essentially sound, even if their terminology be

regarded as in some respects defective.

Chapter II contains an exposition of the theory of sets of points, and in

cludes an account of transfinite cardinal and ordinal Arithmetic, of a somewhat

simpler and less general character than will be met with in the treatment of

the general theory of aggregates, in Chapter in. Students who do not care to

&amp;gt;

embark upon the discussions in Chapter in will find a study of Chapter II

amply sufficient to enable them to apply the ideas there developed in the

general theory of functions. A slight account only has been given of the pro

perties ofplane sets of points. An account ofthe important recent investigations
which had their origin in Jordan s theorem, that a closed curve divides plane

space into two regions, would have occupied more space than was at my
disposal. This omission will be less felt than might have been the case, were
not an excellent account of this subject to be found in Dr W. H. Young s

treatise on the theory of sets of points, which has appeared since this portion
of the present work was printed.

In Chapter iv, there will be found a discussion of the main properties of

functions, in relation to continuity, discontinuity, &c., and investigations of

the properties of important classes of functions. Although the treatise is

mainly one of functions of a single variable, a considerable amount of space
has been devoted to the consideration of functions of two variables, not only on

account of the intrinsic importance of that subject, but because no adequate
consideration of the properties of functions of a single variable is possible with

out the use of functions of two variables, as is seen, for example, from the con

sideration that a function defined by means of a sequence of functions of a

single variable is virtually defined as a limit of a function of two variables.
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The foundations of the Integral Calculus, as based upon Riemann s defini

tion of a definite integral, and its extensions, are discussed in Chapter V,

where an account of the development of the subject from the point of view of

Lebesgue s new definition of the definite Integral is also given. In later parts

of the book I have introduced extensions of Lebesgue s definition, to the cases

of improper integrals, taken over finite or infinite domains, regarded as the

limits of sequences of Lebesgue integrals.

Chapter vi is concerned with functions defined as the limits of sequences

of functions, and contains an account of the principal properties of functions

represented by series, and a discussion of important matters connected with

the modes of convergence of series through whole intervals, or in the neigh

bourhood of particular points. Various matters relating to the processes of

the Integral Calculus, which had not been considered in Chapter v, are here

dealt with, because their adequate treatment presupposes a knowledge of the

theorems relating to the convergence of sequences of functions. An account

of the very general results recently obtained by Baire, relating to the repre-

sentability of functions by means of series, will be found in this Chapter.

Chapter vn is devoted to the theory of Fourier s series. No apology is

needed for the selection of this particular mode of representation of functions

for full discussion in a treatise on the theory of functions of a real variable, in

view of the historical relation of Fourier s series to the development of the

general theory. The history of the theory of Fourier s series is exceedingly

instructive, not merely from the point of view of the mathematician, but also

from that of the epistemologist. I have therefore endeavoured, in my treat

ment of the subject, to preserve as much of the historical element as was

possible in an account which should contain, in a moderate compass, not only

indications of the various stages of development of the subject, but also the

most recent results that have been obtained. I have made full use of the

greater generality which can be introduced into many of the known results

by means of the employment of the theory of integration developed by

Lebesgue.
In the preparation of the work, the treatises from which I have most largely

drawn information are the German edition of Dini s treatise on the subject,

Stolz s Grundzuge der Differential- und Integral-Rechnung, Schoenflies Bericht

entitled &quot;Die Entwickelung der Lehre von den Punktmannigfaltigkeiten,&quot; and

the various treatises on different parts of the subject by Borel and Lebesgue.

I have consulted a very large number of memoirs, articles, notes, and books,

far too numerous to be here particularized.
In respect to the references

given throughout the book, I wish it to be understood that I have made no

attempt to settle questions of priority of discovery. The references given

are to be regarded solely as indicating sources of information from which

I have drawn, or where more detailed information on the various topics is

to be found.
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I owe a debt of gratitude to my friend Mr J. W. Sharpe, formerly Fellow

of Gonville and Caius College, who has read with the greatest care the proofs
of about two-thirds of the book. Many points of difficulty I have fully discussed

with him; many obscurities of expression have been removed, and many im

provements in substance have been made, owing to the care he has bestowed

in reading the proofs. I felt it as a great loss when, owing to a temporary
failure of health, he was unable to continue his laborious work. To Dr H. F.

Baker, F.R.S., Fellow of St John s College, and Cayley Lecturer in Mathe

matics, who has kindly read some of the earlier proofs, I owe several valuable

suggestions. On several points connected with the treatment of Number in

Chapter I, I have had the advantage of consulting Dr James Ward, F.B.A.,

Fellow of Trinity College, and Professor of Mental Philosophy and Logic in

the University.

My thanks are due to the officials of the University Press for the readiness

with which they have met my views, and for the care which they have bestowed

upon the work connected with the printing. I desire especially to express my
sense of the value of the excellent work done by the readers of the Press; to

their care is due the elimination of many typographical and other blemishes

which would otherwise have remained undetected.

E. W. HOBSON.

CHRIST S COLLEGE, CAMBRIDGE.

May 15, 1907.
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COEEIGENDA

Page 3. In line 9 from the foot of the page, for
&quot;

Every part of the aggregate
&quot; read &quot;

Every part
of the aggregate which contains more than one element.&quot;

In line 3 from the foot of the page, after
&quot; M

1
a part of it&quot; insert &quot;containing more

than one element.&quot;

Page 22. In the first note, for
&quot; Burmann &quot; read &quot;

Biermann.&quot;

Page 74. In the first note, for &quot;Bord&quot; read &quot;Borel.&quot;

Page 118. In example 2, line 7, for
&quot; Of each rational number, there is a double representation&quot;

read &quot; Of each rational number, not represented by a recurring radix-fraction, there

is a double representation.&quot;

Page 123. In the last line of the note, for
&quot; G. H.&quot; read &quot; W. H.&quot;

Page 125. Line 7 from the foot of the page
&quot;

It will be shewn... .&quot; This statement is incorrect,

see page 200.

Page 152. In line 20, for
&quot; W. N.&quot; read &quot; G. N.&quot;



CHAPTER I

1. THE operation of counting, in which the integral numbers are employed,
can be carried out by a mind to which discrete objects, which may be either

physical or ideal*, are presented, and which possesses certain fundamental

notions which we proceed to specify.

(1) The notion of unity, a form under which an object is conceived when
it is regarded as a single one. An object so regarded may be either of a material

or of a purely abstract or ideal nature, and may be recognized, for all other

purposes than that of counting, as possessing any degree of complexity. It is

sufficient, in order that the object may be regarded under the form of unity,
that it be so far distinct from other objects, as to be recognized at the time
when it is counted, as discrete and identifiable. What external marks are

necessary that an object may be so recognized as discrete, is a matter for the

judgment of the mind at the time when the object is counted. The unity
under which the object is apprehended is a formal or logical, rather than a

natural unity ;
it is more or less arbitrarily attributed to the object by the

mind.

(2) The notion of a collection or aggregate of objects, which is conceived
of as containing more or fewer objects, or as possessing a greater or less degree
of plurality. A group of objects regarded as an aggregate is conceived of, not

merely as a plurality of objects to each of which unity is ascribed as in (1),
but also as itself an object to which unity is ascribed when it is regarded as

a single whole. The single objects of which the aggregate is composed may
be spoken of as the elements of the aggregate ;

such elements need not possess-

any parity as regards size or any other special quality, but may be of the
most diverse characters : a certain logical parity is however ascribed to them
in the process of counting, in virtue of the fact that each of them is regarded
as a single object. A sensibly continuous presentation cannot be regarded as

an aggregate containing a plurality of elements, until the mind has recognized
in it sufficiently distinct lines of division to serve the purpose of marking off

It is held by some authors that the operation of counting is primarily applicable to physical
objects only. Thus, J. S. Mill writes:- &quot;The fact asserted in the definition of a number is a
physical fact. Each of the numbers, two, three, four, etc., denotes physical phenomena, and con
notes a physical property of these phenomena.&quot; See Logic, 9th edition, vol. n, p. 150. That
objects which are not physical, can be counted, was maintained by Leibnitz and by Locke. See
also Fre^e s Grundlagen der Arithmetik, Breslau, 1884, where an account is given of various views
as to the nature and origin of the idea of Number.

H.
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distinct objects within it, the totality of which makes up the whole presenta
tion

;
for instance, the history of a country could be regarded as an aggregate

of distinct periods, only when sufficiently salient features had been recognized
in that history to warrant a judgment that periods were to be found in it,

each of which had a sufficient degree of discreteness to be subsumed under the

form of unity. In actual counting, the aggregate is not necessarily determinate

before the counting is commenced, but becomes so when the process is com

pleted ;
the notion of an aggregate is thus still necessary to the process of

counting, if the process is ever to come to an end, or to be conceived of as

having come to an end.

It has been held* that, when an aggregate is counted, the elements must
remain distinct from one another, not disappearing or combining with each

other during the process. That this condition is unnecessary may be seen,

for example, by considering the case of counting breakers on the sea-shore,

or that of counting the vibrations of a pendulum ;
thus no physical perma

nence, but only an ideal one, is necessary.

A discussion of the characteristics which an aggregate (not necessarily

finite) must possess, in order that it may be an object of mathematical thought,
will be given in Chapter IV.

(3) The notion of order, in virtue of which relative rank is given to each

object in a collection, so that the collection becomes an ordered aggregate. In

actual counting, the order is assigned to the objects during the process itself,

as an order in time, and this may be done in an arbitrary manner
;
the order

of the elements in an aggregate may, however, be assigned in a manner

dependent upon their sizes, weights, or other qualities, or in accordance with

their positions in space. Order may, however, be regarded as an abstract

conception, independent of a particular mode of ordering ;
for an aggregate

to be an ordered one, it is necessary that in some manner or other, each

element be recognized as possessing a certain rank, in virtue of which it is

known as regards any two elements which may be chosen, which of them has

the lower, and which the higher rank. An element is said to precede any
other element of higher rank than itself.

(4) The notion of correspondence, which underlies the process of tallying.

The elements of one aggregate may be made to stand in some logical rela

tion with those of another one, so that a definite element of one aggregate is

regarded as correspondent to a definite element of another aggregate.

The correspondence may be complete, in the sense that, to every element

of either aggregate there corresponds one element, and one only, of the other

aggregate ;
or the correspondence may be incomplete, in which case one of

the aggregates has one or more elements to which no elements in the other

* See Helmholtz s Zahlen und Mesxen, Leipzig, 1887; Wissens. Abhandl. vol. ni, p. 372.
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aggregate correspond. In the latter case we say that the aggregate with the

superfluous element or elements contains more elements than the other aggre
gate, and that the latter contains fewer elements than the former.

A correspondence between two aggregates is defined when specifications
or rules are laid down which suffice to decide which element of one aggregate

corresponds to each element of the other
;
so that, in the case of complete

correspondence, no element of either aggregate is without a correspondent one
in the other.

Whether, or how far, these fundamental notions of unity, aggregate, order,
and correspondence should be regarded as derived empirically from experience,

by a process of abstraction, or whether it must be held that they are original
forms which the mind possesses prior to, and as the necessary conditions of

the possibility of such experience, are questions into which it is beyond our

province to enter. It is certain that civilized man possesses these funda
mental notions, and it is highly probable that primitive man possessed them

long before the notion of abstract number had appeared in an explicit
and developed form. The investigation of the origin of these notions,
and their further analysis, are matters for the Psychologist and for the

Philosopher. Mathematical Science, as any other special science, must take its

fundamental notions as data
;

it is concerned with the analysis of them, only
so far as suffices to establish that they possess the degree of definiteness

which such data must have, if they are to lie at the base of a logically ordered

system.

ORDINAL NUMBERS.

2. If from an ordered aggregate some of the elements are removed, the

aggregate which remains is said to be a part of the original aggregate. It

will be observed that the relative order of any two elements in the part is the
same as the relative order of those elements in the original aggregate.

An ordered aggregate is said to be finite when it satisfies the following
conditions :

(1) There is one element which has lower rank than any of the others.

(2) There is one element which has higher rank than any of the others.

(3) Every part of the aggregate has an element which has higher rank than

every other element in the part, and also it has an element which has lower
rank than any other element in the part.

These conditions are equivalent to the statement that a finite aggregate,
and also each part of it, has a first and a last element.

Every part of a finite ordered aggregate is also a finite ordered aggregate.

If M be the aggregate, and M
l
a part of it, then J/^has a highest and a

lowest element
;
also every part of Mlt being also a part of M, has a lowest and

a highest element
; therefore M^ is itself finite.

1 o
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3. Two finite ordered aggregates are said to be similar when they can be

made completely to correspond, so that to each element of either of them there

corresponds a single element of the other, and so that to any two elements

P, Q of the one there correspond two elements P , Q of the other, which have

the same relation as regards rank
;

viz. that if P is of lower rank than Q,

then P is of lower rank than Q ,
and ifP is of higher rank than Q, then P is

of higher rank than Q .

Two finite ordered aggregates which are similar are said to have the same

ordinal number.

If each of two ordered aggregates is similar to a third, they are similar to

one another. For if an element P of the first corresponds to an element R of

the third, and the element Q of the second corresponds to R, it is clear that

if we make P correspond to Q, the -first two aggregates are made to correspond

in such a way that the relative order is preserved.

It thus appears that an ordinal number is characteristic of a class ofsimilar-

ordered aggregates.

An aggregate which consists of a single element A is said to have the

ordinal number one, denoted by the symbol 1. The ordinal number 1 is

characteristic of every aggregate which consists of a single element.

If, to the aggregate which consists of an element A, we adjoin a new

element B, and assign to B a higher rank than A, we obtain an aggregate

(A, B) which has an ordinal number 2, characteristic of all aggregates which

are formed in this manner
;
A is said to be the first element, B the second.

If to an ordered aggregate (A, B), of which the ordinal number is 2, we adjoin

another element C, and regard this as having higher rank than A and B, we

obtain an ordered aggregate (A, B, C), of which the ordinal number is called

3, and is characteristic of all ordered aggregates formed in this manner.

Proceeding in this way, if we have formed an ordered aggregate (A, B, C, ... H),

of which the ordinal number is n, and adjoin to this aggregate a new element

K, we obtain a new aggregate (A,B, C, ... H, K), of which the ordinal number

n is different from n.

Any ordered aggregate which isformed in the manner described is finite.

This can be proved by induction. Let us assume that M is a finite ordered

aggregate : it will then be proved that (M, e}, the ordered aggregate obtained

by adjoining an element e of higher rank than the elements of M, is also

finite. Since M has a lowest element, (M, e) has the same lowest element,

also (M, e) has a highest element e. Again if MI is a part of (M, e) which

does not contain e, then M! is a part of M, and therefore has a highest and

a lowest element. If M1 is a part of (M, e) which contains e, let it be (M.2&amp;gt; e),

where Mz is a part of M, and therefore contains a lowest element which is

also the lowest element of (i)/ 2 , e) ,
also (3Y2 , e) contains a highest element e.
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It has thus been shewn that (M, e) satisfies the requisite conditions that

it should be finite, provided M does so. The aggregates A, (A, B) are clearly

finite : hence the method of induction proves that every ordered aggregate

which can be formed by continually adjoining new elements to an aggregate

which originally contained one element is a finite one.

Conversely, it can be shewn that every finite ordered aggregate can be

formed in the manner above described.

Let M be a finite ordered aggregate, and let e be its highest element, thus

M(Ml , e }. Now 3/i, being a part of M, has a highest element e&quot;
,
thus

Ml
= (M^, e&quot;},

or M = (M2 , e&quot;,
e

). Proceeding in this manner, if we do not

reach an aggregate Mr which contains a single element only, we shall have

found a part ( e
&quot;, e&quot;,

e
, e) of M which has no element of lowest rank.

But this is impossible, since M is by hypothesis finite, and therefore contains

no part without a lowest element. It has thus been shewn that M can be

reduced, in the manner indicated, to an aggregate with a single element : and

conversely, starting with this latter aggregate, M is obtained by adjoining to

it successively new elements.

A finite ordered aggregate is not similar to any part of itself.

This theorem may also be proved by induction. For if we assume that the

finite ordered aggregate M is not similar to any part of itself, it can be shewn

that the same holds for (M, e). If possible let Mt be a part of (M, e) which is

similar to (M, e); then if M^ contains e, it must be of the form (Mz , e), and if

(M,2 , e) is similar to (M, e), M2 must be similar to M, which is contrary to

the hypothesis that M contains no part similar to itself. If M
l does not

contain e, it must be of the form (M z ,f), where /is the element which corre

sponds to e in (M, e} : in this case again M is similar to M, and is a part of

it; thus we have again a contradiction. The theorem holds for (A, B), and

therefore generally.

It follows from this theorem that the ordinal numbers 1, 2, 3, ... which have

been defined as the ordinal numbers of aggregates (A), (A, B), (A, B, C), ...

are all different from one another, for each of these aggregates being a part

of each of those which follow it, cannot be similar to any of the aggregates

which follow it.

Each of the ordinal numbers is to be regarded as a unique ideal object

in that it is a permanent object for thought. The relation of an ordinal

number to an ordered aggregate of objects which is characterised by that

number, may be illustrated by the analogy of the relation between the colour

red; and a particular red object.

4. A simply infinite ascending aggregate, or simple sequence, is an ordered

aggregate which has no element of higher rank than all the others, and is

such that every part which has an element of higher rank than all the other

elements in that part is a finite ordered aggregate.
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The fundamental assumption must be made that such an aggregate may
be regarded as a definite object which possesses certain properties that can

be formulated. The justification for the assumption is to be found in the

fact that no contradiction arises in the theory based on it.

It follows from this definition that, in a simple sequence there is one

element of lower rank than all the others
;
and further, that every part of

the simple sequence has an element of lower rank than all the other elements

in that part.

A simply infinite ascending aggregate differs from a finite ordered aggre-

1 gate in having no element which is of higher rank than all the other elements.

The totality of ordinal numbers forms a simply infinite ascending aggre

gate ;
these objects may be represented by a set of signs

a, ft, 7, 8, ...

or 1, 2, 3, 4,...

where it is assumed that some adequate scheme of such signs has been

devised.

The order of the elements is assigned by the successive formation, as

above, of aggregates having the various elements for their ordinal numbers,
and it has been shewn that, if an aggregate has the ordinal number n, another

aggregate having a different ordinal number n, taken to be of next higher
rank than n, can be formed. There exists therefore no highest ordinal number.

Instead of using the expressions &quot;of higher rank
&quot;

and &quot; of lower rank,&quot; it

is usual to say that a number ra is less than a number n, when ra is of lower

rank than n in the ordered aggregate of ordinal numbers, and that n is greater

than m. The terms &quot;

greater
&quot;

and &quot;

less
&quot;

are borrowed from the language

primarily applicable to the description of magnitudes : but in pure arithmetic

and pure analysis generally, they are used onlj in the sense in which they
indicate higher or lower rank, and this rank has no necessary reference to

relations of magnitude or of measurable quantity.

The operation of counting a finite aggregate of objects of any kind may
be conceived of as the process of putting the objects into correspondence with

the elements of the aggregate of ordinal numbers, in such a way that, when

any ordinal number has an element of the aggregate which corresponds to it,

each of the preceding ordinal numbers also has an element which corresponds
to it. The finite aggregate is usually ordered by the process itself, the ranks

of the various elements being successively assigned to them as the counting-

proceeds. Those ordinal numbers which are employed in counting such an

aggregate may be regarded as forming an aggregate which is similar to the

given aggregate, as ordered by the process of counting. The last of the ordinal

numbers employed in counting a finite aggregate is the ordinal number, or

simply the number (Anzahl) of the ordered aggregate.
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The theorem that an ordered aggregate is not similar to any of its parts

holds only as regards finite aggregates. It will appear in the course of the

discussion in Chapter iv that every aggregate which is not finite has parts

which are similar to the whole
;
and this property is sometimes taken as the

basis of the definition of an infinite, or transfinite, aggregate. For example,

the aggregate of ordinal numbers 1, 2, 3, ... is similar to the part 2, 4, 6, ...

which contains the even numbers only.

MATHEMATICAL INDUCTION.

5. The proofs of theorems in 3 have been referred to as proofs by induc

tion. In its general form the principle of Mathematical Induction may be

stated as follows:

If, in respect of a given simply infinite ordered aggregate, it be known

(1) that, in case any element of the aggregate possesses a certain property P,

the element of next higher rank also possesses the property P, (2) that the

element of lowest rank possesses the property P; it then follows that every

element of the aggregate possesses the property P.

The truth of the principle follows as a consequence of the properties

assigned to the aggregate by means of the definition in 4.

For, let it be assumed, if possible, that there exists a part of the given

aggregate A, such that the elements belonging to that part do not possess

the property P. This part contains one or more elements ;
let M be such an

element. Let us consider the finite aggregate which consists of all those

elements of A which are of rank not higher than that of M. Of this finite

aggregate there exists a part B, such that no element of B possesses the

property P. The aggregate B contains the element M, and possibly other

elements. Since B, being part of a finite aggregate, is itself a finite aggregate,

it contains an element TO of lower rank than all the others. By hypothesis, m
cannot be the element of lowest rank in A, since the latter possesses the

property P. Therefore there is in A an element TO of next lower rank than

TO
;
and TO possesses the property P. But by hypothesis, if m possesses that

property, so also does m. The assumption that A contains a part such that

the elements of the part do not possess the property P has thus been shewn

to lead to a contradiction. The truth of the principle has therefore been

established.

It has been maintained by Poincare* that the principle of Mathematical

Induction is a special characteristic of mathematical reasoning as distinct

* See his work La science et V hypotlCese , p. 19 ; also an article in the Revue de Metaphysique,

vol. n, p. 371. For a criticism of Poincare s view, see an article by A. Padoa, Proc. of the fifth

annual Conyres* of Mathematicians, vol. n, p. 471.
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from that of general Logic, not being reducible to the principle of contradic

tion, as it essentially involves the employment of an unending chain of

syllogisms. That this is the case is suggested by the form in which the

principle is frequently applied in elementary mathematical treatises, viz. that

since the property P holds good for the first element, it therefore holds good
for the second, and therefore for the third, etc.; arid consequently, by the

employment of an unending set of such syllogisms, it is inferred that the

property P holds good for all the elements of the infinite aggregate. It has

however been shewn above that it is not necessary to state the principle in

this form, but that the truth of the principle follows by applying the ordinary

Logic to deduce the consequences of the possession by the infinite ordered

aggregate of certain definite properties, in accordance with the principle of

contradiction.

CARDINAL NUMBERS.

6. If any finite ordered aggregate be re-ordered in any manner, the new
ordered aggregate is finite, and has the same ordinal number as the original

one.

In order to prove this theorem, the following particular case will be first

established : If Q is a finite ordered aggregate, the aggregate (Q, e), obtained

by adjoining to Q a new element e of higher rank than all the elements of Q,

is similar to (e, Q), in which e has a lower rank than all the elements of Q.

For let Q = (Q1} /), and let us assume that the theorem holds for Q1} i.e. that

(Q1} e) is similar to (e, Qj); it follows, since a complete correspondence can be

established between the elements of (Q 1? e) and (e, Qi), that the same is true

of the two aggregates (Qlt e,f) and (e, Q} ,f). Now (Q1} e, /) is similar to

(Q\,f, e), since Ql can be made to correspond to itself, e tof, and /to e, there

fore ($!,/, e) is similar to (e, Qi,f), or (Q, e) to (e, Q), and thus the theorem

holds for Q=(Ql ,f), provided it holds for Q^ Now it clearly holds if Ql

consists of a single element; hence by induction it holds for any finite ordered

aggregate Q. To prove the theorem in the general case, let us assume that

it is true for an aggregate M ;
it will then be shewn to be true for (M, e). For

let an aggregate obtained by re-ordering (M, e) be (R, e, S), where either R
or S may be absent; (R, e, S) is similar to (R, S, e), for R corresponds with

itself, and it has been shewn above that (e, S) is similar to (S, e). Since (R, 8)
is by hypothesis similar to M, it follows that (R, S, e) is similar to (M, e), and
therefore (R, e, S) is similar to (M, e}. The theorem clearly holds for an ag
gregate (A, B) which contains two elements, hence by induction it holds for

every finite ordered aggregate.

It follows from the theorem which has been established above, that, for

any aggregate which can be ordered as a finite ordered aggregate, the ordinal

number is independent of the mode in which the aggregate is ordered.
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It will be found, when the generalization of ordinal numbers for non-finite

aggregates is considered in Chapter iv, that this property, that the ordinal

number of an aggregate is independent of the mode of ordering, is peculiar to

finite aggregates.

7. Two aggregates are said to be equivalent, when their elements can be

placed into correspondence so that to each element of either aggregate there

corresponds one and only one element of the other aggregate.

It will be observed that the relation of equivalence differs from that of

similarity, in that it contains no reference to order. It is clear that two

aggregates which are each equivalent to a third are equivalent to one an

other.

An unordered aggregate is said to be finite when it can be so ordered that

the ordered aggregate is finite in accordance with the definition given in 2.

Two (finite) aggregates which are equivalent are said to have the same i,

cardinal number.

It thus appears that a cardinal number is characteristic of a class of equi-
^

valent aggregates.

Each of the cardinal numbers is to be regarded as a unique ideal object ;

the relation of a cardinal number to a member of the class of equivalent

aggregates of objects, of which it is characteristic, may be illustrated in the

same manner as in 3, in the case of the ordinal numbers.

Since all similar aggregates are also equivalent, and since, in the case of a

finite aggregate, the ordinal number is independent of the mode in which the

aggregate is ordered, it follows that for every finite ordinal number there is a

corresponding cardinal number.

The cardinal numbers of finite aggregates are denoted by the same

symbols 1, 2, 3, ... as the corresponding ordinal numbers. The two kinds of

numbers are not symbolically distinguished from each other, although logically

they are not identical.

It will be seen in Chapter IV that this practical identity of ordinal and

cardinal numbers is confined to the case of the numbers corresponding to finite

aggregates, and therefore called finite numbers. The finite cardinal numbers

form a simple sequence 1, 2, 3, ... similar to the sequence of finite ordinal

numbers; the expressions &quot;greater&quot;
and &quot;

less&quot; are used in relation to two

cardinal numbers in the same purely ordinal sense, denoting higher and lower

rank, as in the case of ordinal numbers.

It is impossible, in a purely mathematical work, to enter into a full dis

cussion of the nature and proper definition of number from a philosophical

point of view. One view of number, which is widely held, is embodied in the



10 Number [CH. i

definition by abstraction, in which the cardinal number* is regarded as the

concept of an aggregate which remains when we make abstraction of the nature
of the objects forming the aggregate, and of the order in which they are given ;

the ordinal number is then regarded as the concept obtained by making ab
straction of the nature of the objects only, retaining the orderf in which they
are given in the aggregate. The view has also been maintained J that a cardinal

number is simply the class of all equivalent aggregates. A tendency has
been exhibited amongst mathematicians to regard numbers, at least for the

purposes of analysis, as identical with the symbols which represent them. In
accordance with this view, abstract arithmetic is cut entirely adrift from the
fundamental notions related to experience in which it had its origin, and it

is thus reduced to a species of mechanical game played in accordance with a
set of rules which, when divorced from their origin, have the appearance of

being perfectly arbitrary; though it may, of course, be said that it is possible
at the end of any arithmetical process to reconnect the symbols employed,
with the ideas which originally suggested them, and thus to interpret the
results of the purely symbolical processes. Whatever view|j be adopted as

* This view is that of G. Cantor; see Math. Annalen, vol. XLVI, p. 481, where the following
definition is given:

&quot;

Machtigkeit, oder &amp;lt; CardinalzahP von M nennen wir den Allgemeinbegriff
welcher mit Hiilfe unseres activen Denkvermogens aus der Menge M hervorgeht, dass von der Be-
schaffenheit ihrer verschiedenen Elemente m, und von der Ordnung ihres Gegebenseins abstrahirt
wird.&quot; See also Peano, Formulaires de Mathematiques, 1901, 32, -0 Note.

t Ordinal numbers are frequently regarded as logically prior to cardinal numbers, but this order
of procedure is not a necessary one. In Dedekind s tract &quot;Was sind und was sollen die Zahlen,
Brunswick, 1887 and 1893, which has been translated into English by Prof. W. W. Beman, under
the title &quot;

Essays on the Theory of Numbers,&quot; 1901, a detailed treatment of the subject is given,
in which the notion of order is regarded as fundamental.

t See B. Eussell, The Principles of Mathematics, vol. i, chap. xi.

For example see Heine, Crelle s Journal, vol. LXXIV (1872), p. 173, where the matter is stated
in the following plain form :

&quot; Ich nenne gewisse greifbare Zeichen Zahlen, sodass die Existenz
dieser Zahlen also nicht in Frage steht.&quot; Again, Helmholtz appears to hold a view closely
approaching the notion that Arithmetic is the art of manipulating certain signs according to
certain rules of operation ;

he writes in Ges. Abh. vol. in, p. 359, &quot;Ich betrachte die Arithmetik
oder die Lehre von den reinen Zahlen als eine auf rein psychologische Thatsachen aufgebaute
Methode, durch die die folgerichtige Anwendung eines Zeichensystems (namlich der Zahlen) von
unbegrenzter Ausdehnung und unbegrenzter Moglichkeit der Verfeinerung gelehrt wird.&quot; Befer-
ence may be made to an essay by A. Pringsheim in the Jahrcxberichte der d. math. Verrijw/un,/,
vol. vi, 1899,

&quot; Ueber den Zahl- und Grenzbegriff im Unterricht.&quot; In an article entitled &quot;Die

Du Bois Keymond sche Convergenz-Grenze,&quot; Sitzimgsberichtc d. baijer. Akad. vol. xxvn, 1897,
Pringsheim speaks of numbers as &quot;

Zeichen, denen lediglich eine bestimmte Succession zukommt.&quot;
See p. 326. This article contains various remarks on arithmetization, and especially a criticism
of the views of P. Du Bois Eeymond. A searching criticism of the tendency to reduce Arithmetic
to the formal manipulation of symbols is given in L. Couturat s work De I infini mathematique,
Paris, 1896, which contains a valuable account and discussion of theories of the philosophy of
arithmetic.

|| Eeferences to the literature relating to the Philosophy of Number will be found in the
Article i. A. 1,

&quot;

Grundlagen der Arithmetik,&quot; by H. Schubert, in the Encyclopfidie der matte-
matischen Wissenschaften, vol. i; also in E. G. Husserl s Philosophic der Arithmetik, vol. i, chaps.
5 and 6, Halle, 1891. Frege s treatises, the Grundlagen der Arithmetik, Breslau, 1884, and. the
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to the real nature of number and its place in a general scheme of

thought, the assumption of the right to hypostatize numbers would appear to

be an essential condition of the possibility of developing an abstract arithmetic,

and consequently of the establishment of mathematical analysis in general.

THE OPERATIONS ON INTEGRAL NUMBERS.

8. If two finite ordered aggregates A and B, of which the ordinal numbers

are a and 6 respectively, are combined into a single ordered aggregate in

which the elements of A have all lower rank than those of B, and in which

any two elements of A, and any two elements of B, have the same relative

orders as in the original aggregates, then the ordinal number of the combined

aggregate is said to be the sum of the ordinal numbers a and b, and is denoted

by a + b.

It can be shewn that the new aggregate is a finite one, and that its

ordinal number is unaltered if for A and B there be substituted aggregates

which are similar to them; it thus appears that the sum a + b is a finite

number which depends only upon a and b.

The aggregate (A, B) has as lowest element the lowest element of A, and

as highest element the highest element of B; moreover any part of (A, B) is

of the form (A ,
B \ where A is a part of A, and B is a part of B; or else it

has one of the forms A ,
B

,
and since A

,
B have each a lowest and a highest

element, any such part of (A, B) has a lowest and a highest element. Thus

(A, B) is finite.

Again, if A l} B! are aggregates which are similar to A and B respectively,

the elements of A may be placed in correspondence with those of A 1} and the

elements of B with those of B^\ we have then a (1, 1) correspondence between

the elements of (A, B) and those of (A lf BJ; thus the ordinal number of

(A, B) is the same as that of {A l , B^.

Since (A, B) has the same ordinal number as (B, A) it follows that

a + b = b + a, which is known as the commutative law of addition.

If a, b are the cardinal numbers of two finite aggregates A, B, then the

cardinal number of the aggregate formed by combining the two aggregates

into one is said to be the sum of a and 6, and is denoted by a + b. That a + b

is a definite finite number, dependent only on a and b, follows at once from

the corresponding theorem which has been proved for ordinal numbers.

Grundgesetze der Arithmetik, Jena, 1893 and 1903, also Whitehead and Russell s work, Principia

Mathematics., Cambridge, may be here specially referred to, in connection with the relation of the

foundations of Arithmetic to general Logic. The view that Number is fundamentally dependent

on the notion of Time was developed by Sir W. R. Hamilton ; see the Dublin Transactions, vol.

xvn (II), 1835, &quot;Theory of Conjugate Functions or Algebraic Couples with a Preliminary and

Elementary Essay on Algebra as the Science of Pure Time&quot;; see also Helmholtz s essay Ziihlen

mid A/men (1887), where the view is adopted that the axioms of Arithmetic have a relation to

the intuitional form of time, similar to that which the axioms of Geometry have to the intuitional

form of space.
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The operation of finding the sum of two numbers a and b is known as the

operation of addition, and it has been shewn that this operation is commuta
tive. It should be observed that the sum of two numbers a and b cannot be
determined merely by contemplating those numbers themselves as abstract

concepts, but can only be defined as above, by referring to aggregates of

which a and b are the numbers, and then combining those aggregates. The
number of the combined aggregate is then conceived of as the result of a

symbolical operation upon the numbers a and b. For example, the equation
5 + 3 = 8 does not imply that the concept 8 is obtainable by placing the

concepts 5, 3 as it were in juxtaposition, but can only be regarded as a

symbolical expression of the fact that an aggregate of 5 objects together with
one of 3 objects makes up an aggregate of 8 objects. Bearing this observation
in mind, the numbers 1, 2, 3, ... are represented symbolically as the results

of successive operations of addition, 1 + 1=2, 2 + 1 = 3, 3 + 1=4, etc.
;

but these equations do not express definitions of the numbers 2, 3, 4, ...,

since from the concept unity taken by itself, no other concept is directly
derivable.

The operation of addition can be extended by continued repetition. Thus
the sum of a, b, c, ... k is a finite number represented bya + b + c+...+k,
and, in particular, any number n is represented byn = l + l + l + ... + l. An
immediate induction shews that the result of the operation of addition

repeated any definite number of times is a finite number dependent only
on the constituents of the summation.

The associative law of addition, a + (b + c)
= (a + b) + c, follows from the

irrelevancy of the order in which the operations are performed. This is seen
from the contemplation of aggregates of which a, b, c are either the ordinal or
the cardinal numbers.

9. If iu a finite aggregate of which the number is b, each element^ be

replaced by a finite aggregate of which the number is a, the number~ofihe new
aggregate so formed is said to be the product of b by a, and is denoted by ab.

This operation is said to be that of multiplying b by a. By taking the

aggregates to be ordered, it is seen at once that the new aggregate satisfies

the conditions that it is finite, and that its number is unaltered by the
substitution of similar aggregates of other objects for those originally em
ployed. Thus ab is a definite number dependent only on a and b.

It is clear that ab may be regarded as the sum a + a + a+ ..., where a
occurs b times in the operation.

If the ordered aggregate of which the number is ab be re-ordered in the

following manner: take the first element of each of the aggregates of which
a is the number, then the second elements of these aggregates, and so on,
with lastly the ath elements of these aggregates, then we have as the result
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of the process an aggregate of which the number is a, and each element of

which consists of an aggregate of which the number is 6; the re-ordered

aggregate has the number ba. It has thus been shewn that ab = ba, which

is expressed by saying that the operation of multiplication of finite integers

is commutative.

The distributive law for multiplication, a (b + c)
= ab + ac, follows from

the definition of the operation, by considering the aggregates of which a, b, c

are the numbers.

An immediate induction shews that the repetition of the operation of

multiplication any definite number of times gives a finite number dependent

only on the numbers multiplied, and independent of the order in which the

operations are performed.

The result of the operation of multiplying the number a by itself is

denoted by an
,
where n is the number of times a occurs in the product

a. a. a... a. From this definition the law am .an = am+n is directly deducible.

10. If the sum of two numbers a, b be denoted by c, the number a is

uniquely determined when b, c are fixed; and it is then regarded as the result

of the operation of subtracting b from c. The operation of subtraction is

thus defined as inverse to that of addition. If c = a + b, a is obtained as the

result of the operation denoted by c b, which is such that (c 6) + 6 = c.

It is obvious that the operation of subtraction of b from c is only possible in

case c &amp;gt; b.

If the product of two numbers a, b be the number c, then the number a

is uniquely determined when b arid c are given; and a is regarded as the

result of the operation of division of c by 6. The operation of division so

defined is inverse to that of multiplication; it is clear that the operation is

only possible in case c is one of the class of numbers b, 26, 36,

FRACTIONAL NUMBERS.

11. The operation of multiplying two integers a, b together is one

which is always a possible operation, in accordance with the definition of the

operation of multiplication which has been given above; the inverse opera
tion of division is however, as we have seen, not always a possible one. This

restriction upon the possibility of the operation of division suggests the

introduction into Arithmetic of a new class of numbers, the rational fractions,

which, when defined, shall be such that the operation of division, within the

whole aggregate of integers and fractions, may be a possible one without

restriction. Stated in algebraical form, the demand arises for a scheme of

numbers such that the equation axb shall always have a solution in x,

where a, 6 are any two numbers which belong to the contemplated aggregate
of numbers.
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The actual use of fractional numbers arose historically from the necessities

of the process of measurement of extensive magnitude, and the conception of

a fraction which arises in this connection is the one which is used in ordinary

life, and is made the basis of the treatment of the theory of fractions, even in

recent scientific text-books. In accordance with this view, a unit of magnitude
of some kind is divided into b equal parts, and a of these parts are taken; the

resulting magnitude is then denoted by the fraction alb.

This notion of the essential nature of a fraction, dependent as it is upon
the notions of a unit, and of the divisibility of such unit into equal parts, is

incompatible with the modern view that Mathematical Analysis should be

developed upon the basis of a Pure Arithmetic, quite independently of all

notions connected with the measurement of extensive magnitude. The modern

tendency known as Arithmetization manifests itself in the construction of

theories of Number and of the operations involving numbers, which depend

entirely upon the conceptions connected with the process of counting; measure

ment being regarded as a process foreign to Pure Arithmetic. The process of

counting is an exact one: whereas measurement can in practice only be carried

out with a greater or less degree of approximation, and can only ideally be

V/&quot;
made an exact process. Pure Arithmetic is made the basis of Analysis, not

only in accordance with the general principle that the fundamental conceptions

of a branch of science should be irreducible to simpler conceptions, but also

because the theory of ideally exact measurement has peculiar difficulties of its

own. Our essentially inexact intuitions of spatial, temporal, or other magni
tudes, necessitate a process of idealization in which the objects of perception

are replaced by ideal objects subject to an exact scheme of definitions and

postulates, in order that an exact science of measurement may be possible.

The view is at present held by the majority of mathematicians that the nature

? of the abstract continuum, and that of a limit, are capable of exact formulation

only in the language of a Pure Arithmetic; and that this science must there

fore be developed upon an independent basis before it can be applied to the

elucidation of the conceptions requisite for an abstract theory of continuous

magnitude. The theory of measurement is, in accordance with this view,

regarded as an application, and not as part of the basis, of Mathematical

Analysis.

12. By those writers who are under the influence of the modern arithme-

tizing tendency, the traditional non-arithmetical definition of a fraction has

been abandoned, and in its place a formal definition has been substituted, in

which the fraction is regarded as an association of a pair of integers. The

associated integers are regarded as making a single object, and laws of combina

tion of these objects are then postulated.

If a, b are two integers, a new number (a, b), or in ordinary notation -y ,
is
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formed by the association of a and b, the new number being denned to be such

as to satisfy the following conditions:

(1) (a, 6) is regarded as ordinally greater, equal to, or less than (c, d),

according as ad is greater, equal to, or less than be. The expressions greater,

equal to, or less than, are here used, not in their primitive sense as referring

to magnitude, but in the sense in which we have used them in the case of

integers, as assigning relative order to the numbers.

(2) (a, 1) is denned as equal to a
,
thus if b = 1, the association is regarded

as equivalent to the integer a. Taking (1) in conjunction with this postulate,

the new numbers have their orders assigned, not only relatively to one another,

but relatively also to the integral numbers; so that the whole aggregate of

integers and fractions is ordered, in the sense that, of two given numbers, it

can always be said which has the higher rank.

(3) The addition of two fractional numbers is defined by

(a, b) + (c, d)
= (ad + be, bd).

(4) The multiplication of fractional numbers is defined by

(a, b) x (c, d) = (ac, bd).

(5) The use of a fraction as an index is denned by the postulate

y,(a, bi x (c, d) _ y.(a, b) + (c, d)

where x is any number, either integral or fractional. The symbol # (a&amp;gt; 6) is to

be interpreted subject to this postulate, in case such interpretation is possible.

It will be observed that, in the case 6 = 1, d=l, the above definitions are

consistent with those which have been adopted in the case of integral numbers ;

and thus the new numbers, together with the integers, form an aggregate with

uniform laws of operations. It is easily seen that the operations with new
numbers satisfy the commutative, associative, and distributive laws. The
inverse operation of division is now one which is always possible within the

domain of the numbers; thus (a, b) 4- (c, d) = (ad, be). The inverse operation
of subtraction, (a, b) (c, d) (ad be, bd), is only possible if (a, b) &amp;gt; (c, d).

The association of a pair of integers is a &quot;number&quot; in quite a different

sense from that in which the cardinal and ordinal numbers, hitherto discussed,

are numbers. The justification, of the extension of the term &quot;number&quot; to the

fractions lies in the fact that a consistent scheme of operations can be imposed

upon them, of which the laws are in agreement with those which hold for

operations which involve integers only.

13. The scheme which has been above indicated suffices for a formal

definition arid logical development of the properties of fractions, but it is

subject to the objection that it is of an arbitrary character; indeed it is not

easy to see why the particular laws of operations have been postulated, except
as suggested by the traditional non-arithmetical conception of a traction.



16 Number
[CH. i

To remedy this defect, a view of the nature of a fraction will be here given
which relates the fraction with the process of counting, in such a manner that
fractional and integral numbers have similar relations to that process. It will

appear that the laws of combination given above naturally follow from this

mode of regarding the fraction, with the exception of (5), which is however

immediately suggested by the rule for integral indices.

Consider an aggregate of b objects, and out of these b objects pick out any
a (g 6) of them. If we regard these a objects not only as single objects of
number a, but also as belonging to an aggregate whose number is b, we may
denote the a objects by (a, b), where their number a is associated with the
cardinal number b of the aggregate to which they belong. This process being
independent of the particular aggregate used, the abstract fraction (a, b) is

related to this process in an analogous manner to that in which the number b

is related to the process of counting an aggregate whose cardinal number is b.

Thus the fraction (a, b), or a/6, is characteristic of an aggregate of a objects
each of which belongs to an aggregate of b objects. The extension of the
definition to the case

a&amp;gt;b, is clear when we observe that it is unessential that
the a objects taken should all belong to one and the same aggregate of b

objects; it is sufficient that each of them be regarded as essentially belonging
to some aggregate of cardinal number b. In accordance with this view, a

fraction, say 3/5, is characteristic of any three things each of which belongs to
an aggregate of five things, i.e. 3/5 means 3 out of 5. That the three things
taken out of five should necessarily all be equal in respect of size, or some
other kind of magnitude, is as irrelevant to the true nature of a fraction as
the assumption of five things necessarily meaning five equal things is to the
true nature of the number five.

Since (a, 1) is characteristic of an aggregate of a things each of which is

also regarded as a single object, it is clear that (a, 1) is identical with a.

If we suppose each of the 6 elements in an aggregate, of which the cardinal

number is b, to be replaced by an aggregate of n elements, we have now an

aggregate with nb for its cardinal number; and instead of a elements chosen
out of this aggregate we now have na of the new elements, each of which is to

be regarded as associated with the cardinal number nb. We represent these
na elements by (na, nb), which is equivalent to (a, b), since the two forms

represent two different aspects of the same process. Therefore we have

(a, 6)
=

(na, nb), or in the ordinary notation a/6
=

na/nb. This relation is in

complete accordance with the law of logical (not arithmetical) addition, that
a mere repetition of a term yields only the term itself.

Since (a, 6)
=

(ad, bd), and (c, d) = (be, bd), we regard (a, 6) as greater,

equal to, or less than (c, d), in the purely ordinal sense of the terms, according
as ad is | be. For the two numbers (ad, bd), (be, bd) are characteristic of the

process of taking ad, be elements respectively from an aggregate of the same
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cardinal number bd; and thus the relative order of the two numbers (a, b),

(c, d) will naturally be fixed in accordance with the relative order of the two

numbers ad, be.

The addition of the two numbers (a, b) and (c, d) is equivalent to that of

(ad, bd) and (be, bd), and is consequently naturally defined as given by
(ad + be, bd) ;

which characterises the amalgamation of two aggregates of which

the numbers are ad, be, the elements of each of which all belong to an aggregate
of number bd, or to one of several such aggregates.

To interpret the operation of multiplication, let us consider an object

represented by (c, d); this consists of c things each belonging to an aggregate
of d things. To multiply it by (a, b), is to take a such objects each of which

belongs to an aggregate of b such objects; we have on the whole one or more

aggregates of bd elements, and out of these, ac elements are to be taken. Thus
the multiplication of the number (c, d) by the number (a, b) may be understood

to characterise the result of taking a objects, each of which is characterised

by (c, d), out of one or more collections of b objects, each of which objects is

characterised by (c, d). This is the same thing as the process of taking ac

objects out of one ^or more aggregates of bd objects, and is characterised by
the number (ac, bd); we are thus led to the law of multiplication

(a, 6) x (c, d) = (ac, bd), or y x
-^
=

o a

ac

NEGATIVE NUMBERS, AND THE NUMBER ZERO.

14. Although the operation of addition is always possible within the

agRregate f integral and fractional numbers, yet the inverse operation of

subtraction is not always possible; thus a number x cannot be found such that

x + (c, d) = (a, b), unless (a, 6)&amp;gt;(c, d). As the limitation of the possibility of

division suggests the introduction of fractional numbers, so this limitation of

the possibility of subtraction suggests the introduction of a further set of new
numbers, which shall be such that, within the so completed aggregate, sub
traction may always be a possible operation.

If a, & 7&amp;gt;

& denote integral or fractional numbers such that a &amp;gt; /?, 7 &amp;gt; 8 :

we may put a = /3 + x, y = 8 + y ;
then x = a-/3, y = y-8. We have

hence x + y = (a + 7)
-

(/3 + 8),

or (-) + (7- )
=

( + 7) -( + ) ..................... (1).

Again, if a - @ = y - B, i.e. x = y, we have a+8 = /3 + 8 + x = l3 + y;

a + 8 = /3 + y, ifa-/3 = 7 - & .....................(2)..

O
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7 = (@ + x) (8 + y) = & (8 + y) + x (8 + y)

= ft& + fty + xS + xy\

hence ay + ftS
=

ft (y + 8) + 8 (x + ft) + xy

=
fty + a8 + xy;

hence (a
-

ft) (7
-

5)
= (07 + ft8)

-
(oS + /3y) .................. (3).

The rules (1), (2), (3), with regard to the numbers a ft, 7 8, which so

far exist only when a&amp;gt; ft, 7 &amp;gt; 8, suggest the mode of the extension referred

to above.

15. Let or, be any two numbers integral or fractional, and conceive a

new number D (a, ft), formed by the association of a and j3, to be denned as

subject to the laws

(4) D (a, ft)
= D(y,8),ifct + 8 = ft + y,

(5) D(a,ft) + D(y, 8) = D(a + y, ft + 8),

(6) D (a, ft) x D (y, 8)
= D (ay + ft8, a8 + fty):

it will be observed that when a &amp;gt; /3, and 7 &amp;gt; S, D (a, j3) may denote a /3,

the three laws becoming (2), (1), (3). It will now be shewn that the symbol
D (a, ft) defines a number of an aggregate within which the operation of sub

traction is always possible. For, to find a number x, such that

x + D (a, ft)
= D (7, 8), we see that x= D (J3 + y, a+ B),

since D (a. + /8 + 7, a + /3 + 8)
= D (y, 8), in virtue of (4).

Since D (a, a)
= D (y, y), we see that D (a, a) is independent of a; and thus

D (a, a) defines a new number which is called the number zero, and is denoted

by the symbol 0.

The number zero is regarded as characteristic of the absence of all elements

from an aggregate of which the existence has been contemplated; it is the

number of such a hypothetical aggregate, in a sense similar to that in which

a positive integer is the number of an actual aggregate.

The number D (a. 4- k, k) depends only on a, and we shall postulate that it

is identical in meaning with a itself.

The numbers D (a, /9), or a /3, for which a &amp;gt; /9, are called positive numbers,
and form the aggregate of integral and fractional numbers we have previously
considered.

Those numbers, for which a &amp;lt; ft, are called negative numbers.

Since by (5), D (a, ft) + D (ft, a) = D (a + ft, a + ft)
=

0, the number D (ft : a)

may be denoted by D (a, ft), or in ordinary notation (a ft). Thus to every

positive number x there corresponds a single negative number x, which is

such that x + (x) = 0.
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We may now use the notation a ft in every case for D(, /3), and thus

a - = -
(/3
-

a).

From (6), it is seen that the operation of division is always possible for

two members of the complete aggregate of positive and negative numbers and

zero, except when the divisor is the number zero, in which case the operation
is meaningless.

From (6), we see by putting 7 = 8, N = D (a, 0), that ,.0=0. From (5),
we have N+ Q = N.

Any number D (a, 0) is said to be greater in the ordinal sense than D (7, 8),

when D(a,j3) D(y*$) is positive; thus the complete aggregate of positive
and negative integral and fractional numbers together with the number zero

is one in which all the numbers are arranged in a definite order. This aggre
gate is known as the aggregate of rational numbers.

In the aggregate of rational numbers so ordered, the number zero has
lower rank than any of the positive numbers, and higher rank than any of the

negative numbers. Further, if x, y are two positive numbers of which x has

higher rank than y, the negative number - x has lower rank than y.

If x, y are any two rational numbers, such that x &amp;lt; y, there exist an un- ( I

limited number of rational numbers each of which is &amp;gt; x, and &amp;lt; y.

Such numbers are said to be between x and y. For it can be seen at once,
from the definition of order given above, that |-(#+ y) is one such number;
between %(x + y} and either x or y another rational number can, in a similar

manner, be found. This process can be carried on without end; and it -is clear

that, in accordance with the mode of ordering of the aggregate, defined above,
all the numbers thus determined are between x and y.

If x, y are any two positive rational numbers such that
x&amp;lt;y,

an integer n

can be found which is such that nx &amp;gt; y.

^j

For - is a rational number such that - .x = x; again if ^ be any positive^ SC (J

rational number, there exist integers which are &amp;gt;

-
;
for p + 1 is itself such

an integer. If n is an integer which is &amp;gt; -, we have nx &amp;gt;

-
. x &amp;gt; y ; thus the

x x
theorem is established.

IRRATIONAL NUMBERS.

16. The only numbers of which the existence was recognized by the Greek

geometers were the rational numbers, although the fact that the ratio of two

geometrical magnitudes is not necessarily exactly representable by such num
bers appears to have been discovered at a very early period. Euclid gave, in

o 2
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the fifth book of his treatise, a discussion of the theory of ratios, and in the

tenth book a theory of those incommensurable magnitudes which are ideally

constructible by means of straight lines and circles. In later times*, the idea

was current that, to the ratio of any two magnitudes of the same kind, there

corresponds a definite number; and in fact Newton in his Arithmetical Univer-

salis expressly defines a number as the ratio of any two quantities. Before the

recent development of the arithmetical theories of irrational number, and to

a considerable extent even later, a number has been regarded as the ratio of

a segment of a straight line to a unit segment, and the conception of irrational

number as the ratio of incommensurable segments has been accepted as a

sufficient basis for the use of such numbers in Analysis.

In accordance with the doctrine that Mathematical Analysis must rest

upon a purely arithmetical basis, the introduction of irrational numbers into

Analysis must be made without an appeal to our intuition of extensive magni
tude, but rather by an extension of the conception of Number, resting on a

further development of the ideas which have been here discussed in connection

with the theory of rational numbers. The necessity for this extension of the

domain of Number arises not only on account of the inadequacy of rational

numbers for application to ideally exact measurement, but also, as will be ex

plained later in detail, because the theory of limits, which is an essential

element in Analysis, is incapable of any rigorous formulation apart from a

complete arithmetical theory of irrational numbers.

Before the recent establishment of the theory of irrational numbers, no

completely adequate theory of Magnitude was in existence. This is not sur

prising, if we recognize the fact that the language requisite for a complete

description of relations of magnitudes must be provided by a developed
Arithmetic.

17. The successive extensions of the domain of Number, by the introduc

tion of fractional and of negative numbers, were suggested by the desirability

of so completing the domain that the operations of division and subtraction,

which are not always possible in the more limited domain, might always be

so in the more extended one. In the aggregate of rational numbers, the

operations of addition, subtraction, multiplication, and division are always

possible operations; but it can be readily shewn that the inverse operation
involved in determining a fractional power of a rational number is not, in

general, a possible one.

As the simplest case of this impossibility of such operation, we may take

the problem of finding the square root of a positive integer m which is not

* A good short account of the history of this subject will be found in the Article I. A 3,
&quot; Irra-

tionalzahlen und Konvergenz unendlicher Prozesse,
&quot;

by A. Pringsheim, in the Encyclopadie der

Math. Wissenschaften, vol. i. See also M. Cantor, Geschichte der Math., vol. i.
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a square number. It can be shewn that such a number has no square root

within the aggregate of rational numbers.

If possible* let m be the square of a rational fraction p/q in its lowest

terms; thus p
2

m(f = 0. There always exists a positive integer X such that

X2
&amp;lt; m &amp;lt; (X + I)

2
;
we then have \q &amp;lt; p &amp;lt; (X + 1) q.

Now let us consider the identity

(mq - \p)
2 - m (p

- \qV = (X
2 - m) (j9

2 - mq2
)
= 0.

From this identity it follows that m is the square of the rational number

(mq \p)/(p Xg), of which the denominator is less than q, and this is con

trary to the hypothesis that m is the square of the fraction p/q which is in its

lowest terms. It thus appears that there exists no rational number of which

the square is m.

On the formal side of Arithmetic, a demand for the extension of the domain

of number arises from the impossibility of carrying out, with the requisite

generality, certain operations, as in the example given above. Such extensions

of the domain of number as are made when fractional, negative, irrational, and

complex numbers are successively adjoined to the original integral numbers,

are made in accordance with a principle known as that of the permanence of

forms, which was first indicated by Peacock-f-, and further developed by Hankel J-

This principle may be stated in the form that, in order to generalize the con

ception of number, the following four requisites must be satisfied:

(1) Every operation which is represented by a formal expression involving

the unextended class of numbers, and which does not result in the representa

tion of a number of the unextended class, must have a meaning assigned to it

of such a character that the formal expression may be dealt with according to

the same rules as would be applicable if the expression represented one of the

unextended class of numbers.

(2) An extended definition of number must be given, such that a formal

expression, as in (1), may represent a number in the extended sense of the

term.

(3) A proof must be given that for numbers of the extended class the

same formal laws of operation hold as for the unextended class.

(4) Definitions must be given of the meaning of greater, equal, and less,

in the extended domain of number, these terms being taken in the ordinal

sense.

* This proof is given by Dedekind in his tract Stetigkeit und irrationale Zahlen. An extension

of Dedekind s method to the case of nth roots has been given by S. M. Jacob. See Proc. Land.

Math. Soc. Ser. 2, vol. i, p. 166.

t British Association Report for 1834; also Symlwlical Algebra, Cambridge, 1845.

i See his Theorie der komplexen Zahlsysteme, Leipzig, 1867.



22 Number [CH. i

The arithmetical theory of irrational numbers has been developed in

three main forms, of which the first* was given by Weierstrass in his lectures

on Analytical Functions; the second f is that of G. Cantor, which was de

veloped in further detail by Heine
J,

and was also developed independently

by Ch. Meray; the third, that of R. Dedekindj, appeared about the same

time as that of Cantor. We shall give an account of the theories of Dedekind

and of Cantor, and shall shew that they are fundamentally identical.

KRONECKER S SCHEME OF ARITHMETIZATION.

18. As it is now generally understood, the term &quot;arithmetization&quot; is used

to denote the movement which has resulted in placing analysis on a basis free

from all notions derived from the idea of measurable quantity, the fractional,

negative, and irrational numbers being so defined that they depend ultimately

upon the conception of integral number. An extreme theory of arithmetization

has however been advocated by Kroneckerll, who proposed the abolition of

all modifications and extensions of the conception of number, the integral
numbers being alone retained. His ideal** is that every theorem in analysis
shall be stated as a relation between integral numbers only, the terminology
involved in the use of negative, fractional, and irrational numbers, being

entirely removed. This ideal, if it were possible to attain it, would amount
to a reversal of the actual historical course which the science has pursued ;

for all actual progress has depended upon successive generalizations of the

notion of number, although these generalizations are nowregarded as ultimately

dependent on the whole number for their foundation. The abandonment of

the inestimable advantages of the formal use in Analysis of the extensions of

the notion of number could only be characterised as a species of Mathematical

Nihilism.

* For an account of this Theory see S. Pincherle, Giorn. di mat., vol. xvin (1880), p. 185; also

0. Burmann, Theorie der analytischen Funktionen, Leipzig, 1887, p. 19.

t Math. Annalen, vol. v (1872); see also Math. Amialen, vol. xxi, where Cantor discusses all

the three theories.

J Crelle s Journal, vol. LXXIV (1872).

Nouveau Precis d Analyse infiniteximale, Paris, 1872.

|| Stetigkeit und irrationals Zahlen, Brunswick, 1872.

IT See Crelle s Journal, vol. ci,
&quot; Ueber den Zahlbegriif.&quot;

** He writes (loc. cit. p. 338) : &quot;Und ich glaube auch, dass es dereinst gelingen wird, den

gesarnmten Inhalt aller dieser mathematischen Disciplinen zu arithmetisiren, d. h. einzig und
allein auf den im engsten Sinne genommenen Zahlbegriff zu griinden, also die Modincationen und

Erweiterungen dieses Begriffs (ich meine hier namentlich die Hinzunahme der irrationalen sowie

der continuirlichen Grossen) wieder abzustreifen, welche zumeist durch die Anwendungen auf die

Geometric und Mechanik veranlasst worden sind.&quot; He proceeds to shew in detail, how the notions

of negative, fractional, and algebraical numbers can be avoided by substituting for equalities in

which these numbers occur, congruences relative to certain moduli or systems of moduli. A similar

suggestion has been made by Cauchy with reference to imaginary numbers.
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THE DEDEKIND THEORY OF IRRATIONAL NUMBERS.

19. Let us consider the aggregate of all the rational numbers ordered in

the manner which has been previously discussed, and let us take any one

such number N. We may conceive all the rational numbers to be divided

into two classes R
t ,
and R2 ,

such that every number of R l is, in the ordinal

sense of the term, less than every number belonging to the second class R.
2&amp;gt;

the two classes being separated by the number N, which may itself be

assigned at choice either to the first or to the second class. If N belongs to

the first class, it is the greatest number in that class, and the numbers of the

second class have no number which is less than all the others of that class
;

if N be taken to belong to the second class, it is the least number in that

class, and there exists no number in the first class which is greater than all

the others; for if any rational number less than N be taken, it is always

possible to find another greater one which is less than N. Such a division of

the rational numbers into two classes is called a section (Schnitt), and we

therefore say that corresponding to any given rational number there exists a

section which divides the aggregate of rational numbers into two classes, such

that all the numbers of the first class are less than all those of the second class;

and such that either in the first class there is no greatest number, or else in the

second class there is no least number.

It can be shewn by means of examples, that sections of the aggregate

of rational numbers exist which are different in character from those just

described. If in is a positive integer which is not a square number, we may
conceive the rational numbers to be divided into two classes, the first of

which contains all the negative numbers and also those positive numbers of

which the square is less than m, including zero; the second class contains all

the positive numbers of which the square is greater than m. The first class

contains no greatest number, and the second class contains no least number
;

this section is said to be related to an irrational number \//n, in the same

way as a section such as has been considered above is related to a rational

number. This example shews that sections of the rational numbers R exist,

such that R is divided into two classes R1} R2 ,
where every number of Rl is

less than every number of R2 ,
and such that R

}
contains no number greater

than all the others, and also R2 contains no number less than all the others.

A new aggregate of objects, the real members, may now be defined as

follows :

To every section (R l} R2} of the aggregate R of rational numbers, such that

every number of R belongs to one or other of the two classes Rit R.2 ,
and every

number in R
l
is ordinally less than every number in R2 ,

there corresponds a

real number. .-
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In case neither Rl contains a number which is ordinally greater than all

the otliers in Rl} nor R2 contains a number which is ordinally less than all the

others in R2 , the real number corresponding to the section is said to be an
irrational number.

In case either R^ has a greatest number x, or R2 has a least number x, the

section is said to define a real number corresponding to the rational number x.

The real number which corresponds to a rational number x, though
conceptually distinct from x, has no properties distinct from those of x, and
is usually denoted by the same symbol.

The definition of a real number can be put into a different and somewhat
less abstract form, by employing the notion of a lower segment of the

aggregate of rational numbers. A lower segment of the aggregate R of
rational numbers is any class of rational numbers which contains no number

greater than all the others, and such that if any number whatever of the class

be taken, the class contains all those numbers of R which are less than that

number. A lower segment of R is identical with one of Dedekind s classes Rly

in case Rl contains no greatest number.

A real number may be defined* to be a lower segment of the aggregate R of
rational numbers; and thus every real number, whether irrational or not, is a

definite class of rational numbers.

In accordance with this definition, the real number 3, for example, is

defined to be the aggregate of all rational numbers which are less than the
rational number 3

;
the irrational number \/3 is defined as the aggregate of

all rational numbers which are either negative, or if positive have their squares
less than 3, the number zero being also included in the aggregate.

The use, here adopted, of the term real number, is sanctioned by general
usage. The employment of the term real has originated from the contrasting
of these numbers, not with rational numbers, but with complex numbers. The
extension of the term Number to the real numbers is justified by the fact

that is is possible to define the operations of addition, multiplication, &c., for

real numbers, so that the formal laws of these operations are in agreement
with those which hold for operations within the domain of the rational

numbers.

20. It will now be shewn that the aggregate of real numbers, defined in

Dedekind s manner, can be so ordered that every real number has a definite

rank in the aggregate, i.e. of any two real numbers it is determinate which
has the higher and which the lower rank.

* This form of the definition is that given by B. Russell, see The Principles of Mathematics,
vol. i, chaps, xxni and xxiv; it was suggested by Peano, see Eivista di Matematica, vol. vi,

pp. 126140.
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The basis of the scheme of order being taken to be the ordered aggregate
of rational numbers, let us denote by n, n any two real numbers, and let

the sections by which they are defined be denoted by (Rl} R2), (R^, R2 )

respectively.

The following cases may arise :

(1) If (jRj, .R2) and (R^, R2 ) are identical, that is, if every number in R^

is also in R^, and every number in R2 is also in R2 ,
the two numbers n, n

are identical
;
thus n = n.

(2) Let us next suppose that there is one rational number r
l
= r2 ,

which

is contained in R1} but not in RJ\ it is consequently contained in R2 . All

the numbers in R^ are less than r.2 ,
and hence all the numbers in jR/ are

in J?j. Since rx is the only number in Rl which is contained in R2 , it

follows that r
l

is greater than all the other numbers in R^ ;
and thus the

number n defined by (R1} R2) is a number corresponding to the rational number

rl or r.2. All the elements in R^ are contained in Rlt and are less than r/;

all the numbers in R2 except r2 ,
are greater than r2 ,

for if not they would

be contained in R^. hence the section (Ri, R2 ) defines the real number
n =

n, corresponding to the rational number r2 = r
l

. The two sections are

essentially identical, the only difference being that the rational number
r

l
= r.2 , is regarded as belonging to the first class in one section and to the

second class in the other section.

(3) If there are two different numbers belonging to Rl which also belong
to R.2 , there are an indefinite number of other numbers which have the same

property, since an unlimited number of rational numbers can be found which

lie between two given rational numbers. In this case we define the number
n or (R1} R2 ), to be greater, in the ordinal sense of the term, than n or (R^, R2 ),

agreeably with the definition already given for the rational numbers.

The cases in which one, or more than one, number which belongs to R^
also belongs to R2 , may be treated in a similar manner; thus we define the

meaning of the relation n &amp;lt; n. It is easily seen that if n &amp;gt; n, and n &amp;gt;
n&quot;,

then the relation n &amp;gt; n&quot; is also satisfied. Thus the system of real numbers

is arranged in a regular order, such that those of them which correspond to

rational numbers have the same relative rank as the corresponding rational

numbers have in the aggregate of rational numbers.

21. The aggregate of real numbers has the following properties :

(1) If a &amp;gt; /3, and ft &amp;gt; 7, then a &amp;gt; 7.

(2) Between any two real numbers a, 7 there are an unlimited number
of real numbers. This is easily proved from the corresponding property of

rational numbers, by considering the sections which define the numbers.
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(3) If a is a
Jixed

real number, then all real numbers may be divided into

two classes
R^,

R.2 ,
such that R 1 contains all the real numbers which are less

than a, and R.2 contains all the real numbers which are greater than a. The
number a may be regarded either as belonging to R1} in which case it is the

greatest number in R^, or else as belonging to R2 ,
in which case it is the least

number in R2 . This also follows from the definition above.

(4) If the aggregate of real numbers falls into two classes R1} R2 ,
such

that every number of R^ is less than every number of R2 , then there exists

one, and only one, number by which this section is produced.

To prove this, we observe that the section (R^, R.J of the aggregate of

real numbers also defines a section (T^ ,
J?2 ) of the aggregate of rational numbers,

such that all rational numbers belonging to R
1 correspond to real numbers

which belong to R l ,
and all numbers belonging to Rz correspond to real

numbers which belong to R?.

Let N be the real number defined by the section (Rlt R.^), and let N be

any real number different from N, defined by the section (R^, R.2 ).
There

are an indefinite number of rational numbers n which belong to only one of

the aggregates R1} R^ ;
let n be the real number corresponding to n. If

N &amp;lt; N, then n belongs to R1} and therefore n belongs to R^, and since N &amp;lt; Ti,

it follows that N belongs to #,. Similarly, if N &amp;gt; N, we can shew that N
belongs to R2 . It has thus been shewn that every number different from N
belongs to Rl or to R2 , according as it is less or greater than N. Thus N is

either the greatest number in Rt
or the least in R.2 , and therefore N is the

only number by which the section (#,, ,R2) can be made.

22. The operations between two real numbers may, in accordance with

the above definition of real numbers by means of sections, be so defined that

the result of each operation corresponds to a section of the rational numbers
;

thus the arithmetical operations are reduced to operations with rational

numbers.

A complete theory of the operations involving real numbers can be

established
;
and the formal laws of the operations can be shewn to be the

same as in the case of the rational numbers, the range of possibility of

operations being greater in the case of real than in that of rational numbers.

This theory has been worked out to some extent by Dedekind : but as the

Cantor theory of real numbers lends itself to a simpler detailed treatment of

the operations than that of Dedekind, and as it will appear that the two

theories are fundamentally equivalent to one another, it will be sufficient,

as an example of the general method of treating operations in accordance

with Dedekind s theory, to take only the case of the addition of two real

numbers.
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Let a, b be two real numbers defined by means of the sections (R l ,
R2 ),

(Ri ,
R2 ) respectively ;

then the sum a + 6, of a and b, is defined by means

of a section (// ,
R2 &quot;)

which satisfies the following conditions : If c l
is any

rational number, it is put into the class -R/ , provided there are two rational

numbers a
l
in R1} and 6 X

in R^, such that a
l + b

l
^ c1 ; all rational numbers c.,

for which this is not the case fall into the class R.&quot;. It is clear that every

number cl
is less than every number c2 ,

hence the section
(Ri&quot;,

R2&quot;)
is defined

by means of this condition.

It can be shewn that, when a, b both correspond to rational numbers, this

definition is in agreement with the ordinary definition of the sum of two

rational numbers, so that the sum of the numbers corresponds to the sum of

the corresponding rational numbers. Every number d in
R^&quot;,

is Sa + 6,

because a
l
^ a, b^ b, and therefore al + b

l ^a-{-b. Further, if there were

contained in R.2
&quot;

a number &&amp;gt; &amp;lt; a + b, so that a + b = c2 + p, where p is a positive

rational number, we should have c2 = (a ^p) -f (b \p], and this is contrary

to the definition of c2 ,
because a \p belongs to R1} and b \p to R

;
thus

every number c2 in
R.&quot;, is = a + b, and it has consequently been shewn that

(Ri t
R.2 &quot;)

defines the number a + b. As is usual, we have denoted the rational

numbers a, b and the conceptually distinct real numbers a, b by the same

symbols.

THE CANTOR THEORY OF IRRATIONAL NUMBERS.

23. The Cantor theory of irrational numbers essentially depends upon
the use of convergent simply infinite ascending aggregates, or convergent

sequences (Fundamentalreihen) in which the elements are rational numbers
;

we therefore proceed to define and discuss these aggregates.

A simply infinite ascending aggregate (a lt a2 ,
a

:i ,
... an , ...), in which each

element is a rational number, is said to be convergent, if it is such that

corresponding to any fixed arbitrarily chosen positive rational number e, as

small, in the ordinal sense, as we please, a number n can be found such that

i

- an+m
\

&amp;lt; e, for m = l, 2, 3, ....

The symbol j

x is here used to denote that one of the two numbers x, x

which is positive; \x is said to be the absolute value of #.

This definition is equivalent to the statement that, in a simply infinite

convergent aggregate, an element can always be found wliose absolute

difference from any element whatever which comes after it is as small as we

please.

It should be observed that the terms &quot;as small as we
please,&quot;

or &quot;arbitrarily

small,&quot; as applied to a positive number which is at choice, have reference to

the conception of order only, and not to the non-arithmetical notion of

magnitude. These expressions denote only that the number can be so chosen

as to be of lower rank than any other arbitrarily chosen positive number.
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To each value of e there corresponds a value of n, which will in general
have to be increased when e is made smaller.

We may denote the aggregate by the symbol {], and shall speak of it

shortly as a convergent sequence ;
that it is simply infinite will in future be

understood.

For a convergent sequence, corresponding to any arbitrarily chosen positive

number e, an integer n can be found such that from and after that value of n

the absolute difference of any two elements is less than e.

For choose n so that
|

an an+m &amp;lt; % e. for all positive integral values of m
;

then
|

an+m an+m &amp;lt;

\ \

an an+m + \an an+m &amp;gt;

&amp;lt; e.

For the convergent sequence {an},
if we choose n such that an an+m &amp;lt; e,

then for m =
1, 2, 3, . . ., the value of an+m for all values of m, lies between an + e,

and an e; that is to say, from and after some value of n, all the elements lie

between two rational numbers whose difference is arbitrarily small. There

exist therefore two positive numbers or, ct , ofwhich the smaller a maybe zero,

such that, from and after some fixed value of n, all the elements lie in absolute

value between a and a .

24. If the aggregate (al} a2 ,
... an , ...) is such that, from and after some

fixed element, each element is not greater than the following one, and if all the

elements are less than some fixed number N, then the aggregate is a convergent

sequence.

For if the aggregate is not convergent, there must exist some positive
number 8, such that an indefinite number of increasing values &amp;lt;n

, n^, w2 ,
... of

n can be found, for which a
ni
- a

1

, a,l2

- a
Ml , a

ns
a
nz \

. . . are all ^ 8.

Since a
ni

a
no ,

a
nz

a
ni , . . . are all positive, we have a

nf
^ a

no + rS, where r can

always be taken so large that a
n&amp;lt;)

+ rS &amp;gt; N, or a
nr &amp;gt; N, which is contrary to the

hypothesis. Hence the aggregate is convergent.

It may in a similar manner be shewn that the aggregate is convergent if,oo o o
from and after some fixed element, each element is not less than the following

one, and if all the elements are greater than some fixed number.

An aggregate (a^, a
2&amp;gt;

... an , ...) such that a
l , a2 g a 3 ^ ... is said to be a

monotone non-diminishing sequence. If all the elements are less than some
fixed number N, the sequence is convergent. Similarly if oa ^ a2 ^ a3 ^ ... the

aggregate is said to be a monotone non-increasing sequence. It is convergent
if all the numbers an are greater than some fixed number.

// [an ], {bn }
are two convergent sequences of rational numbers, a value of n

can be found corresponding to any arbitrarily assigned number e, such that both

I Un+m an+m \

and
\

bn+m bn+m &amp;gt; are less than e, m and m having all positive

values.

For we have only to choose for n the greater of the two values correspond

ing to e, for each aggregate separately.
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25. It will now be shewn that the aggregates

29

in w/McA, the elements are the sum, difference, product, and quotient, respectively

of the corresponding elements of the two convergent sequences [an ], {bn },
are also

convergent sequences, with a certain restriction in the last case.

We have
| (an bn)

-
(an+m bn+m )

\

an - an+m + \
bn
- bn+m ,

now n can

be so chosen for a given e, that for all values of m, an an+m \&amp;lt;^e,
and

bn bn+m \ &amp;lt; | e, hence so that
| (an bn) (an+m bn+m) &amp;lt; e; therefore the

aggregates {an + bn }, {a n -bn }
are convergent.

Again,

n+m

bn
- bn+m

+ On+m (an ~ an+m) \

/3
1

an - an+m

where a, (3 are the two positive numbers which are such that \an &amp;lt;a,

[

bn+m \

&amp;lt;
@&amp;gt;

f r aU values of n and ?n.

We can take n so large that
|

bn bn+m &amp;lt; 8, an an+m &amp;lt; 8, where 8 is

at our choice, and may be taken to be
-&&amp;gt; Hence, for this value of n,

an bn -an+mbn+m\ &amp;lt;e,
for every value of m; and thus {an bn }

has been shewn

to be a convergent sequence.

Lastly, in the case of M
[

,
we shall suppose that all the elements of {&}

(on )

are numerically greater than some fixed positive number ft .

We have then

an an+m _ an (bn+m on) + on \an
~
Qn+m)

bnbn+m
hence

&amp;gt;n+m

n+m

*\bn
~

6nH an - a

If now n be chosen so that I 6n bT an a. are both less than

e, for every value of m, then, for such a value of n,
ffln+m

bn+m

therefore
\-j^l

is a convergent sequence, provided j

bn is, for all values of n,

greater than some fixed positive number ft ,
which may be as small as we

please, but must not be zero.

26. The essence of Cantor s theory consists in the postulating of the

existence of an aggregate ofobjects for thought, the real numbers, ordered in

a definite manner, which manner is assigned by means of certain prescribed
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rules. Any element of the aggregate of real numbers is regarded as capable
of symbolical representation by means of a convergent sequence of which the

elements are rational numbers
;
and the mode in which the aggregate of real

numbers is ordered is specified by means of formal rules relating to these

convergent sequences. The aggregate of real numbers contains within itself

an aggregate of objects which is similar to the ordered aggregate of rational

numbers which has already been considered, in the sense that to each rational

-\ number there corresponds a certain real number; and the relative order of any
two rational numbers, in the ordered aggregate of rational numbers, is the

same as the relative order of the two corresponding real numbers in the new

aggregate of real numbers. The rational numbers are frequently regarded as

identical with the real numbers to which they correspond, and are denoted

by the same symbols. In the development of Analysis, this identity leads to

no difficulties
; but, in the fundamental theory of the aggregate of real numbers,

a conceptual distinction between rational numbers and the real numbers to

which they correspond must be made, in order to obviate logical difficulties,

and especially with a view to coordinating Cantor s theory with that of

Dedekirid. Those real numbers which do not correspond to rational numbers
are called irrational numbers

;
and those real numbers which correspond to

rational numbers are usually spoken of as themselves rational numbers.

The rules by which the order of the real numbers in their aggregate is

assigned are the following:

(1) Any convergent sequence [an ],
of which the elements are rational

numbers, is taken to represent a real number, which we may denote by a.

Two such aggregates {an }, {bn }
are taken to represent the same real number

provided they satisfy the condition that, for any arbitrarily chosen positive
rational number e, a value of n can be found such that

j

an+m bn+m &amp;lt; e, for

this value of n, and for all values 0, 1, 2, 3,... of in. Symbolically*, we have

{an }

=
{bn }

under the condition stated.

(2) The real number represented by {an }
is regarded as of higher rank, or

in the ordinal sense greater, than the real number represented by {&}, if a

value of n can be found such that an+m bn+m is, for this value of n, and for

all values 0, 1, 2, 3,... of in, greater than some fixed positive rational number
8. If n can be so determined that an+m bn+m is negative and numerically

greater than some fixed positive rational number 8, for every value of m, the

number represented by {an }
is taken to be less than that represented by {&}.

The aggregate {x, x, #,...) or [x\, in which all the elements are identical

with one rational number x, represents, since it is a convergent sequence, a

* Those who hold the view, advocated by Heine and others (see 7, note), that a real number
is identical with the set of symbols by which it is represented, can attach no direct meaning to this

equality. It can only be taken to indicate that the two expressions may be used indifferently in

any operation which involves the number.
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real number which corresponds to the rational number x. It is clear, from the

definition of order in (2), that the relative order of any two rational numbers,
in the aggregate of rational numbers, is the same as that of the real numbers
which correspond to them, in the aggregate of real numbers. The aggregate
of rational numbers, and that of the real numbers which correspond to them,
are similar aggregates.

Cantor s theory of irrational numbers, in the form in which it was presented

by himself and by Heine, has been criticized * on the ground that an assump
tion is made that the sequence [x\, in which all the elements are the same
rational number x, -represents the rational number x itself, and that this

amounts to an assumption that x is the limit of the sequence \x\ ;
whereas the

theory of arithmetical limits is represented by Cantorf as deducible from his

theory of irrational numbers, and as not assumed in the construction of the

theory itself. The theory in the form presented above is not open to this

objection.

It can be shewn that any two convergent sequences {an }, {bn } satisfy one

or other of the conditions laid down in the above definitions of equality and

inequality, i.e. symbolically [an ]
=

{bn }.

For, as has been shewn in 23, corresponding to any arbitrarily chosen

positive rational number 8, a value of n can be found such that an+m lies

between an + 8, and an 8, and such that, for the same value of n, bn+m lies

between bn + 8, and bn -8; from this it follows that, for such value of n,

an+m bn+m lies between an - bn + 28 and an bn 28; or an+m bn+m differs

from an - bn by not more than 28. If corresponding values of 8 and n can be

found, for which an - bn + 28, an - bn - 28 have the same sign, then un+m - bn+m
has the same sign as an bn , and is numerically greater than a fixed number;
the condition of inequality of {an }, {bn }

is then satisfied. If no such values of

8 and n can be found, then an+m bn+m is numerically less than 4S ; and since

8 is arbitrarily small, the condition of equality of {an }, {bn }
is then satisfied.

Although Cantor s form of the theory of irrational numbers, or rather of

real numbers, is more convenient for detailed development than is Dedekind s

form, yet it lies under the disadvantage that the nature of any single real

number is veiled by the fact that, although it is a unique object, it is capable
of representation by an unlimited number of convergent sequences, and there

fore that the formal character of the theory does not make it clear what such

a number really is. The comparison between the two theories which J will be

given laterjpn will throw light upon this point: for it will be shewn that a

convergent sequence of the rational numbers is sufficient to define a section,

* See B. Russell, The Principles of Mathematics, vol. i, p. 285.

t See Math. Annalen, vol. xxi, p. 568.

J In Tannery s work Introduction a la thdorie dot fonction* d une variable, chap, i, the theory
of irrationals is treated by a combination of the two methods of Cantor and Dedekind.
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of the kind fundamental in Dedekind s theory; and this, as we have seen, is

equivalent to the definition of a lower segment, which is itself a certain definite

class of rational numbers.

27. The sum a + b, of two real numbers represented by the sequences {an },

{bn},
is defined to be the real number represented by the sequence {an + bn}; and

the difference a-b is defined as a number represented by {an
- bn \.

It has been shewn in 25 that the two sequences {an + bn }, {an -bn }
are

convergent.

If {an |, {bn } represent the same number, the sequence {an -bn }
defines the

real number zero; for the condition that
|

an+m - bn+m
\

&amp;lt; e, where e is arbi

trarily small, for a sufficiently great value of n, and for TO = 0, 1, 2, 3, . .., is in
this case satisfied.

The product ab, of two real numbers, is defined to be the number represented

by the sequence {an6n },
which has been shewn in 25 to be convergent.

The quotient a/b is defined to be the number represented by the convergent

fffl

sequence i-r-

The only restriction on this last definition is that 6 is not to be zero
; for,

when this condition is satisfied, the elements of the sequence {&}, which repre
sents b, can be so chosen as to satisfy the restrictive condition given in 25,

that-!-,-^ may be convergent.
(on )

It is necessary to shew that the sum a + b, the difference a - b, the product

ab, and the quotient r , of two numbers a, b, as they have been defined above,

are definite numbers independent of the particular convergent sequences used
to represent the numbers a and 6. Thus it must be shewn that if {an }

=
{a,/},

{bn }
=

{bn },
then

{an + bn }
=

{an + bn }, {an -bn }
=

{an -bn }, [anbn }
=

{an bn },

and W IV
We have

I (On+m bn+m)
~

(fl n+m b n+m) \

^ I
dn+m ~ d n+m + \bn+m b n+m

Now n can be so chosen, corresponding to a fixed number e, that

an+m bn+m b n+m &amp;lt;e, for m = 0, 1, 2, 3, ...;

with this value of n, we now have the condition

I (n+m bn+m ) (a n+m b n+m )
|

&amp;lt; e,

satisfied; and this is the condition that [an bn ] represents the same number
as {an bn \.
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Again,

!

an+mOn+m a n+mb n+tn =
] CLn+m (bn+m ~ b n+m ) b n+m (an+m a n+m) |

&amp;lt; &quot;-

I

bn+m b n+m + B
where A, B are fixed positive numbers. It is now clear that n may be so
chosen that

j

an+mbn+m - a n+m b n+m j

&amp;lt; r/, where
77 is an arbitrarily chosen

positive number; thus {an bn }, {an bn } represent the same number.

Again,

an+m ^n+m
On+m n+m b .V n n+m

whence it can easily be seen that the condition is satisfied that

\^\ and j^i
(On+m\ (b n+m)

represent the same number.

It is readily seen that the same commutative, associative, and distributive
laws hold for the operations between real numbers as for those involving
rational numbers.

28 - If, from and after some fixed element an ,
all the elements of \an }

are
greater than some fixed positive rational number 8, then the real number repre
sented by [an ]

is positive, i.e. it is ordinally greater than zero.

For, if we take any convergent sequence {bn }
which defines the number

zero, we have {an }
&amp;gt; {bn } ; because, for some fixed value of n, an+m -bn+m is

certainly positive for all values of m, and is greater than a fixed positive
number; since n can be taken so large that an+m &amp;gt;8, and bn+m &amp;lt; 8 , where 8
is a positive rational number chosen less than 8.

Similarly, it may be shewn that the number defined by {an }
is negative, if,

from and after some fixed value of n, all the an are negative and numerically
greater than some fixed positive rational number 8.

The term
&quot;numerically greater&quot; denotes that

\

an \

&amp;gt; 8 and thus refers to
the absolute values of the numbers concerned.

It is easily seen that, unless \an ]
is such that, from and after some fixed

value of n, all the elements have the same sign, then {an }
must represent the

number zero.

If KJ, {bn} define two different real numbers a, b, then there lie between
a, b an unlimited number of those real numbers which correspond to rational
numbers.

Suppose a &amp;gt; b, then there exist a definite rational positive number 8 and a
; integer n, such that, for all positive integral values of m including zero,

an+m - bn+m
&amp;gt;

8, I
an - an+m \&amp;lt; j \bn

- bn+m &amp;lt;
e&amp;gt;
where e is a rational number

osen to be
&amp;lt; 8. If we take any rational number x, which is &amp;lt; 8 and &amp;gt; e

3
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the number [an
-

x}, in which all the elements are identical, lies between

{] and \bn ], since, for every value of m, we have an+m (an x) &amp;gt; x e:

therefore a is greater than the real number which corresponds to an x.

Again, (an
-

x)
- bn+m = (an

- bn ) + (bn
- bn+m) -x&amp;gt;S-e-x, therefore, pro

vided x is chosen to be &amp;lt; S e, the real number which corresponds to an -xis

greater than b, and thus lies between a and b. The rational number an x

may be chosen in an unlimited number of ways, since x is any rational number

whatever which lies between 8 - e and e. To obtain one such number we may
take e = %8, x = ^8.

CONVERGENT SEQUENCES OF REAL NUMBERS.

29. Convergent sequences will now be considered, of which the elements

are real numbers. It might at first sight be imagined that we should be led,

by the employment of such sequences, to a further extension of the domain of

number; it will however be seen that this is not the case.

The definition of a convergent sequence of real numbers is precisely similar

to the definition which has been given in the case of sequences of rational

numbers; thus (alt cr2 ,
...

, ...) is a convergent sequence of real numbers,

provided that, corresponding to each arbitrarily chosen positive real number 77,

a value of n can be found such that
j

an an+m &amp;lt; y, for m = 1, 2, 3, . . . . If we

conceive that each such convergent sequence of real numbers represents a

single ideal object, and if we give definitions of equality and inequality, and

of the fundamental operations, precisely analogous to those given in 26 and

27, and assume as before that a convergent sequence in which all the elements

are identical with the real number a. is taken to represent that one of the new

aggregate of objects which corresponds to or, it will be shewn that the new

aggregate of objects is similar to the aggregate of real numbers, i.e. to each of

the new objects there corresponds one of the real numbers, and also that the

relation of order between corresponding pairs of elements in the two aggregates

is the same. It thus appears that the aggregate of new objects is practically

identical with the aggregate of real numbers, since the two are ordinally

similar. No such relation has been shewn to exist between the aggregate of

real numbers and that of rational numbers ;
and it will be shewn later, in con

nection with the general theory of order-types, that no such relation of simi

larity can exist. Therefore the passage from rational numbers to real numbers

involves a real extension of the domain of number ;
but the passage from real

numbers to an aggregate of objects represented, in accordance with the rules
x

referred to above, by convergent sequences of real numbers, does not lead to

any essential extension of the domain of number.

Let {an }
be any convergent sequence of rational numbers, and let {}

1

denote the sequence of those real numbers which correspond to the rational

numbers which form the elements of {an }.
It can easily be shewn that [an ]
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is a convergent sequence: for, if e is an arbitrarily chosen positive rational

number, and e the corresponding real number, the condition of convergence
of

{ttn }
is that, for every e, a value of n can be found such that an+m lies

between an + e, an - e, for m = 1, 2, 3, .... It follows from this that an+rn lies

between an + e, a-e; and this ensures the convergence of the sequence {an }.

Conversely, we see that if [an ]
is convergent, so also is {an }.

Next, let
{otn }

be a convergent sequence of real numbers
; then, between

aH and an+1 , a real number an can be found which corresponds to a rational
number o, determined as at the end of 28. Conceive this to be done for every
pair of consecutive elements in {on },

and let us consider the sequences {an }, {an }.

Since an - a,t+m = (an
-

) + (an
- on+m) 4- (an+m - an+m), we have

\&amp;lt;in-an+m = !a7i-ttn| + jan OCn+m +
\ Oji+m

~ n+m i-

Now, corresponding to any real positive number 8, n may be so chosen that
for every value of m, \an -an , an -an+m \, \an+m -an+m i are each less
than 8

; hence, for such a value of n,

an ^n+m &amp;lt; 8, for w =
1, 2, 3,...,

thus the sequence {dn }
is convergent.

Again, {} -
{ n }

=
{ n _ },

and
(
an - an

|

&amp;lt;

and, since {} is convergent, n may be chosen so great that, for that and all

higher values of n, all the differences an -an+1 are less than an
arbitrarily

fixed number, hence ctn
- an

\

satisfies the same condition
;
and therefore the

two convergent sequences {an }, [an ] satisfy the condition of equality; or they
represent the same one of the new objects. It has been shewn above that
since [an \

is convergent, so also is {an }.
Now [an ] corresponds to a single real

number a; therefore, to any convergent sequence {}, of which the elements
are real numbers, there corresponds a real number a.

We have further to shew that, if {}, {$n }
are two convergent sequences

of real numbers, and a, b the corresponding real numbers as just determined,
then a | 6, according as {an \ | {/3n \.

We know that a | 6, according as {an } | {&}, where {&} denotes the se

quence of rational numbers which defines 6, in the same way as [an \
defines a.

Now K{ -
{$n }

=
[an

_
n } f and ttn

_ n = (Qn
_

an) + (^ _M + (

-
n _

-

bn)
. and

we can choose n so large that n - an
\

and
|

bn
-

/3n
|

are each less than
77,

where 77 is an
arbitrarily chosen real positive number : therefore we see that

n
-

/3n lies between an-bn+rj and att-6n 17. It follows easily that {} | \0n } t

according as [an ] | {bn },
or according as

{&amp;lt; | {6n },
and hence, as shewn above,

according as a | b. It has now been shewn that the objects which are re

presented by convergent sequences of real numbers have the same ordinal
relation to one another as the real numbers to which those sequences have
been shewn to correspond.

32
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It appears, from what has now been proved, that, to every convergent se

quence of real numbers there corresponds a real number which may be taken to

be defined by means of that sequence.

There does not necessarily exist any rational number which corresponds in

the same sense to a convergent sequence of rational numbers. The property

of the aggregate of real numbers here stated embodies the characteristic

difference between that aggregate and the aggregate of rational numbers
;
for

the latter does not possess the corresponding property. It is this property of

the aggregate of real numbers which makes it suitable to be the field of the

real variable in the Theory of Functions.

THE ARITHMETICAL THEORY OF LIMITS.

30. If x1} x2 ,
x3 ,

. . . xn ,
... is a sequence of real numbers such that a number

x exists which has the property that, corresponding to any arbitrarily chosen

positive number e, a value of n can be found such that \x xn \,
x xn+i\,

j

x Xn+z ?
... are a ll less than e, then the number x is said to be the limit of the

sequence xlt x2 ,
... xn ,

.... This fact may be denoted by the equation x = \imxn .

This definition is known as the arithmetical definition of a limit, and was

first given*, in a form substantially identical with the above, by John Wallis.

It will be observed that the above definition contains no assertion as to

the necessary existence ofjajimit of a sequence of numbers, but contains only

a statement as to the relation of the limit to the numbers of the sequence, in

case that limit exists.

There cannot be two numbers which both satisfy the condition of being

a limit of the same sequence. For, if possible, let x, x be two such numbers

and let
j

x x = 8. Choose a value of e, less than 8; then numbers n, n can

be found such that \x-xn+m \, \

x - xn &amp;gt;+m \
,

for all values 0, 1, 2, 3, ... of m,

are less than e. Suppose n &amp;gt; n
,
then \x-xn

\

and
j

x - xn
\

are both less than

e
;
hence

j

x x
\

&amp;lt; 2e &amp;lt; 8, which is contrary to the condition x x
j

= 8.

It will now be shewn that, if the numbers of the sequence [xn ]
are real

numbers, and if the sequence is a convergent one, then the real number x

defined in the manner explained in 2!), by the sequence [xn ],
is the limit of

the sequence.

For the two sequences {xn}, {x} both define the same number x, and

therefore satisfy the condition of equality, which is that
j

x xn+m &amp;lt; e, for any

arbitrarily chosen e, provided n be sufficiently great ;
and this is the condition

that x should be the limit of the sequence \xn }.
A sequence of real numbers

which has a limit must be convergent. For, if x is the limit of [xn \,
then for a

* Arithmetica Infinitorum (1655), Prop. 43, Lemma. See M. Cantor s Geschichte der Mathe-

matik, vol. n, p. 823.
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sufficiently large value of n, x xn \,
x xn+1 \,

... \x xn+m \,
... are all less

than e, where e is arbitrarily chosen ;
now xn xn+m ^\x xn +\x xnlrm \ ;

hence
j

xn xn+m
\

&amp;lt; e, which is the condition of convergence of {xn }.

As the complete result we have now the theorem known as the General

Principle of Convergence
*

:

The necessary and sufficient condition that a sequence x^,xz ,
... xn , ... of real

numbers may have a limit, is that, corresponding to every arbitrarily chosen

positive number e, a value of n can be found such that xn xn+1 ,
xn x1l+2 ,

n %n+3, shall be all numerically less than e.

This theorem, which contains the criterion for the existence of a limit, as

defined in accordance with the arithmetical definition of a limit, is a deduction

from Cantor s theory of real numbers.

31. If the numbers of a sequence {xn }
are rational numbers, instead of real

numbers, the definition of the limit is applicable, and it is a necessary, but not

a sufficient, condition for the existence of the limit, that the sequence should

be cofti^ent. Strictly speaking, if a convergent sequence of rational numbers
has a limit, that limit is also a rational number

;
but from the existence of

convergent sequences of rational numbers which have no limit there arises the

necessity for the extension of the domain of number, so that in the extended

domain every convergent sequence may have a limit
;
this extension has been

carried out by substituting Real Number for Rational Number. However,

although a convergent sequence of rational numbers which has no rational

limitrjtias in this strict sense no limit at all, by reason of the convergent sequence
of those real numbers which correspond to the rational numbers having an

irrational number as limit, and since, as has been seen above, these real numbers

are for practical purposes not distinguished from the rational numbers to which

they correspond, it is usual to consider this irrational number to be the limit

of the sequence of rational numbers. We may thus assert that any convergent

sequence of rational numbers which has not a rational number as limit has an

irrational number as its limit. This assertion is a correct one for the practical

purposes of Mathematical Analysis.

32. The method of limits, which is essential both to pure Analysis and to

the applications of Analysis in Geometry and in Kinetics, had a geometrical

origin in the Method of Exhaustions, which was applied by the Greek geometers
to determine lengths, areas, and volumes, in simple cases. This method, sup

plemented by the notion of the numerically infinite, was developed in later

times, in various forms, into a general method which formed the basis of the

Infinitesimal Calculus. The traditional geometrical conception of a limit may
be exemplified by the case of the determination of the length of a curve as the

* This term &quot;das allgemeine Convergenzprinzip
&quot;

is due to P. Du Bois-Reymond ; see his

Allgemeine Functional theorie.

!
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limit of a sequence of properly chosen inscribed polygons. The lengths of the

perimeters of the polygons are regarded as continually approaching the re

quired length of the curve, whilst the number of sides of the polygons is con

tinually increased. The limit, the length of the curve, is then regarded as

actually reached at the end of a process described as making the number of

sides of the polygon infinite
;
this mode of attainment of the limit being however

inaccessible to the sensuous imagination, and disguising an actual qualitative

change of a geometrical figure, which possesses corners and is bounded by

segments of straight lines, into one which has no corners and has a curvilinear

boundary. No doubt was felt as to the existence of the limit, which was re

garded as obvious from geometrical intuition. That a curve possesses a length,

or an area, was considered to require no proof. The first mathematician who

recognized the necessity for a proof of the existence of a limit was Cauchy,
who gave a proof of the existence of the integral of a continuous function.

That the logical basis of the traditional method of limits is defective has in

recent times received a posteriori confirmation by the exhibition of continuous

functions which possess no differential coefficient, and by many other cases of

exception to what were regarded as ordinary results of analysis resting on the

method of limits, which have been brought to light by those mathematicians

who have been engaged in examining the foundations of analysis.

The arithmetical theory of limits, which is summed up in the general

principle of Convergence, provides a definite criterion for the existence of the

limit of a sequence of numbers
;
and a considerable part of modern analysis

is concerned with obtaining special forms of the general criterion adapted for

use in special classes of cases. The theory is essentially dependent upon the

, theory of irrational numbers
; for, in default of an arithmetical theory of ir-

\ rational numbers, all attempts to prove* the existence of a limit of a convergent

\\ sequence are doomed to inevitable failure; and this for the simple reason that

a convergent sequence of rational numbers does not necessarily possess a limit

which is within the domain of such numbers. The definition of real numbers

by means of convergent sequences of rational numbers is not a mere postulation
of the existence of limits to such sequences; it involves rather the introduction

of an enlarged conception of number, of such a character that the scheme of

ordered real numbers should form a consistent whole, and such that every

convergent sequence of numbers in the domain of real number necessarily has

a limit within that domain. The postulation of the existence of the aggregate
of real numbers is justified by shewing that a complete scheme of definitions

and postulates can be set up for the elements of this aggregate, and that such

a scheme does not lead to contradiction^. As regards the existence of limits
* An interesting discussion of various methods which have been suggested of proving the

existence of a limit will be found in Du Bois-Reymond s Allgemeine Functionentheorie.

t On this mode of regal-ding the aggregate of real numbers as dependent upon a complete
consistent scheme of definitions and axioms, see Hilbert,

&quot; Ueber den Zahlbegriff,&quot; Jahrexber. d.

deutsch. math. Vereinigung, vol. viu (1900).
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in the case of lengths, areas, volumes, &c., referred to above, the order of pro
cedure is a reversal of the traditional one, the existence of the limit being no

longer inferred from geometrical intuition. For example, in the case of the

determination of the length of a curve, that length is not assumed to be

independently known to exist, but is defined as the arithmetical limit of the

sequence of numbers which represent the perimeters of a suitable sequence
of inscribed polygons. When this sequence is convergent, and its limit is

independent of the particular choice of the polygons, subject to suitable re

strictions, then the limit so obtained determines the length of the curve. In

case no such limit exists, the curve is regarded as not having a length.

EQUIVALENCE OF THE DEFINITIONS OF DEDEKIND AND CANTOR.

33. In order to establish the equivalence of the definitions of irrational

numbers, as given by Dedekind and by Cantor, it must be shewn that every

convergent sequence of rational numbers defines uniquely a section of all

the rational numbers, and that this section is the same for all convergent

sequences which represent the same real number in accordance with rule (1)

in 26. Conversely, it must be shewn that any number defined by a section

can also be represented by a convergent sequence of rational numbers.

To shew that, corresponding to the convergent sequence [xn ] which, in

accordance with the Cantor theory, defines the real number x, a section can

be found : Let r be any rational number, and let r be the corresponding real

number represented by {r}.
The number xr is represented by [xn r}\

and if this number is not zero, then (see 28), from and after some fixed value

of n, xn r has a fixed sign, positive or negative according to the value of r.

A section of the rational numbers may now be defined as follows : Let every
number r such that xn r is negative, from and after some fixed value of n,

be placed in the class R2 ;
and let every number for which xn r is positive,

from and after some fixed value of n, be placed in the class R
1 . If there exists

a rational number r, such that neither of these cases arises, then x = r, and

r may be put into either of the classes Rlt R2 . It has thus been shewn that

a section of the rational numbers can be determined, corresponding to the

convergent sequence {xn }.

Next, let [xn] be any other convergent sequence which represents the

same real number x, as [xn \
does. We have to shew that the section of the

rational numbers which corresponds to
\acn }

is identical with that which

corresponds to {xn }. If, as before, r denote any rational number, we have

[xn r\
=

{x^ r}. Now a value of n can be found, from and after which,

xn r and xn r both have fixed signs independent of n, and they must have

the same sign. It follows that a number r which belongs to the class Rlt

must also belong to the class RI, by which the section corresponding to
{#,, }

is defined
;
and also a number r which belongs to the class R.2 , necessarily
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belongs to Rz , except in the case {xn }
=

{.Xn} =r. It has thus been shewn

that the section (Rlf
_R2) which corresponds to {xn }

is identical with the

section (Ri, R2 ) which corresponds to {# }.

34. To shew that a convergent sequence can always be found such as to

define the number corresponding to a given section (R1} R2), we observe that

two rational numbers can always be found, one of which is in Rl} and the

other in R2 , and such that their difference is numerically less than a given

arbitrarily small rational number e. Let A be any rational number in R1} and

let e be a rational number &amp;lt;e. Then of the numbers^. + e ,
A + 2e ,...A+re ,...

there must be a last one A + re which falls in Rl} for A + ne may be made as

large as we please by taking n large enough ;
the next number A + (r + l)e is

then in R2 ;
and these numbers A + re

,
A +(r + I)e ,

whose difference is e &amp;lt; e,

are the two numbers required. Moreover, if B is a rational number in R2 ,

the two numbers may be so determined that both lie between A and B; for we

need only take e to be of the form -(B A), where s is a positive integer so
s

chosen that - (B A) &amp;lt; e.

s

Now let [en \
be any convergent aggregate of rational numbers, which has

zero for its limit. Determine a\ in R
l ,
and x2 in R.2 ,

so that x2 xl &amp;lt; e^ next take

xs in Rl} and x4 in R.2 ,
so that x3 Xi &amp;lt; e2 ;

and that x3 ,
#4 both lie between

#! and x2 . Proceeding in this way, we can determine xm_lt xm rational numbers

of different classes
;
so that

|

xzn^ xzn
\&amp;lt;

en ;
then either of the sequences

{#!,
#3 ,

xs ,...}, {&amp;lt;Cf, 4,...) defines the number which is represented by the

section (Rl} R2 ).

To prove this, we observe that {#2Jl_i) is a convergent sequence, since all

the elements are &amp;lt; x2 . and x
l &amp;lt;x.A &amp;lt;x6 ....

Again, suppose a is a rational number belonging to R2 ,
wre can shew that,

provided a rational number b exists in R2 which is less than a, then a is

greater than all the numbers #j, #3 , ... by more than a b. For

a xm_-i
= (a b) + (b &amp;lt;r2n-i) &amp;gt;a b,

however small b #2n-i may become. Hence, unless a is the smallest rational

number in R2 ,
the real number {a} which corresponds to a is greater than

the number (xly xs , ...).

Again, the sequences {a?2n-i
)

( {
X2n} represent the same number, since their

difference is the aggregate \en \
which defines zero. It now appears, by

reasoning similar to the above, that any number a in Rl is such that the real

number {a} is less than the number [x^], unless a is the greatest rational

number in Rl .

If either R l
has a greatest rational number, or R2 has a least one, the

real number {a} which corresponds to this rational number a, is itself defined
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by (Rl} Rz), and is the number represented by either of the sequences {#s&amp;gt;n-i].

{a&amp;lt;2n}.
In any case, either of these two sequences defines the number given

by the section (JR1} R2 ).

The complete equivalence of the two theories of Dedekind and of Cantor

has now been established. The first theory operates with the whole aggregate
of rational numbers, the second with sequences selected out of that aggregate.

THE NON-EXISTENCE OF INFINITESIMALS.
,

35. It should be remarked that, in assuming that every section of the

aggregate of real numbers defines a single real number, it has been implicitly
assumed that if a, b are any two positive real numbers, such that a&amp;lt;b, then

a positive integer n can be found such that na &amp;gt; b.

This is the arithmetical analogue of the so-called principle of Archimedes.

If any real numbers existed which are ordinally greater than all the numbers

a, 2a, 3a, ..., then a section of the aggregate of real numbers would be defined

by considering all numbers greater than all the numbers a, 2a, 3a, ... to be in

one class, and all the remaining real numbers to be in the other class
;
and

this section would define a real number N. If now e be an arbitrarily chosen

positive number less than a, then N e is a number which is less than some
of the numbers a, 2a, 3a, ...

;
and there must be a first of this set of numbers

such that N is less than it. Let this be pa ;
thus N e &amp;lt; pa, hence

N&amp;lt;pa + e&amp;lt; (p+l)a; which is contrary to the hypothesis that no number
na is in the class of numbers which are &amp;gt; N.

The property of the aggregate of real numbers which has been established

may be denoted by the statement that the aggregate of real numbers forms
an Archimedean system; and this property of the aggregate is essentially

equivalent to the property that every section of the aggregate defines a single
number of the aggregate.

A consequence of the fact that the aggregate of real numbers forms an

Archimedean system is that so-called infinitesimal numbers do not exist within

the aggregate. Every positive number e, being such that an integer n can be

found such that ne&amp;gt;l, is a finite number, in the sense in which finite numbers

were distinguished from infinitesimals in the older forms of the Infinitesimal

Calculus. In Arithmetical Analysis the conception of the actually infinitesimal

has no place. When the expression &quot;infinitesimal&quot; is used at all, it is to describe

the process by which a variable to which the numbers of a sequence converging
to zero are successively ascribed, as values, approaches the limit zero

;
thus an

infinitesimal is a variable in a state of flux, never a number. Such a form of

expression, appealing as it does to a mode of thinking which is essentially

non-arithmetical, is better avoided.
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THE THEORY OF INDICES.

36. When m is a positive integer, and x a rational number, xm was defined

to denote x x x x x . . . x x (m factors) ;
and this definition may be extended

to the case in which x is any number defined by a convergent sequence ;
so

that if x is defined by [xn ],
xm is defined by {xn

m
}.

It thus appears that

for any real numbers x, we have, provided m and n are positive integers,

Xm X Xn = XmJrn

If we assume x and x~m to be defined as having such a meaning that this

law of indices holds when m or n is zero, or a negative integer, we can at

once interpret a? and arm
;
for

x x xn = xn+0 = xn
,
thus x =

1,

and ar x xn = x =
1, thus x~n = .

xn

p
When p/q is a rational fraction, we shall define x* to have such a meaning

that the above law of indices holds when either or both of m, n may be

rational fractions. With this assumption

p p p p

x q x # 9 x x q ... x x q
(q factors) = xp

\

p P

hence (xi)v = xp
;
or xi is, if it exists, a number whose qih power is xp . The

problem of determining, if possible, a number x?, is that of finding a number
whose qih. power is a given number

;
and it has been already shewn that this

is not always a possible operation within the domain of rational number.

It will now be shewn that, in the domain of real numbers, the operation

offinding x? is always a possible one when x is positive; and also when x is

negative, provided however that, in this latter case, q is an odd number, or if it

is even, p is not odd.

The following lemma will be required : If a. is any real positive number
less than unity, a positive integer m can be found such that am &amp;lt; e, where e is an

arbitrarily prescribed positive number, or in other words, lim an = 0.

Since an &amp;gt; an+1
, the sequence (a, a2

, ... an
, ...) is convergent.

Suppose, if possible, that the sequence represents a positive number k

different from zero ; then m may be so chosen that am
,

d&quot;

1^1
,
... all differ from k by

less than the arbitrarily prescribed number 8, say am = k + 77, where 77 &amp;lt; 8. We
have therefore am+1 = (k + 77) a &amp;lt; (k + 8) a; now 8 can be chosen to be equal to

~~ -
,
then am+1 &amp;lt; k 8

;
and this is contrary to the condition imposed in

the choice of m.
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It follows that k cannot be different from zero
;
and thus the lemma is

established.

Suppose now that a is any positive number, rational or not, which lies

between NI and (N + 1), where N is a, positive integer; we shall first shew
that a number N +h, where h &amp;lt; 1, can always be found such that a (N + h)3
is positive, and less than a N**. We find by division

(N+h)*-N*= {(N + h)-N\ {(N + W- 1 + (N+h)9~*N+ ... + N*- 1

};

hence, if h is positive and less than unity, (N + h)i NI lies between

qhN*-
1 and ql^N+l)*-

1
.

Since a-(N+ h)&amp;lt;*

= (a
-

N?) - {(N + A)
9 -

N*},

a _ yq
we must take h not greater than

r-^
,
in order that a (N + h)v may

certainly be positive ;
and the difference a - (N + h)i is then less than

, a-
Let A =^-
then a -(N+h)i&amp;lt;(a- N*)

*

Let N1
= N + h, then Nj. is such that

and N! &amp;gt; N.

In a similar manner, we can shew that a number N2 exists which is &amp;gt; Nlt

and such that

Proceeding in this manner, we obtain a series of numbers N, Nlt Nz ,
...

Nr ,
... such that Nr &amp;gt; -A

r
r _i&amp;gt;

and that a N^ is positive, and less than

We shall now shew that (N, Nl} Nz ,
... Nr , ...) is a convergent sequence

which defines a number whose g-th power is a.

The sequence {Nr }
is convergent, since Nr &amp;gt;Nr_l ,

and every Nr is less than

^+1. The ^th power of the number defined by this convergent sequence is

{Nr
q
},
and we shall shew that this defines the number a or {a}.

We have

-*&amp;gt;&amp;lt;

&amp;lt;--&amp;gt;[

-(fan I
1 - GfefH-t1 -
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for

and hence l-( T
&amp;gt; 1 -

/ ^/y xg-i.Now 1 - f ^
~

J
is a proper fraction, hence from the lemma proved above

we infer that a power r of the expression can be found which is less than an

arbitrarily chosen positive number ; which number we may take to be --^- .

Hence, corresponding to every e, a number r can be found such that

a Nq
r+a &amp;lt;

&amp;lt;r,

for s= 0, 1, 2, ..., and therefore the sequence [Nr*\ defines the

number {a} or a.

If a is a positive proper fraction, we have (a
2

)?&amp;lt; a; hence we may take N
to be equal to a2

, instead of to a positive integer. Then a &amp;lt; (N+l)i ;
thus this

value of N will play the same part as the integral value in the above proof,
and the reasoning is the same as before.

37. It has now been shewn that in every case a real number can be found

P
of which the qth power is a given positive number a, It thus appears that x*
has an interpretation within the domain of real numbers, when x is any positive

fj\

number, and - is a positive rational fraction.

_p
We interpret x 9 to be such that

X X? = X =

JP P
or

If a; is a negative number - x
, we have (- x )i, defined as a number whose

qth power is (- x Y ;
and (- x y is ar P or -X P, according as p is even

or odd.

p p
If p is even, (-x Y can be interpreted as the value of # . If p is odd,

P P
and q is odd, (- x )i may be interpreted as # . When p is odd, and q is

P

even, we have obtained no interpretation of ( x )i.

2r+l
To complete the theory of indices in such a way that ( x) *s

may have
an interpretation, we should require a further extension of the conception of

number. This further extension takes place by the introduction of complex
number, which is however outside the limits imposed upon this work as a
treatise dealing only with real number.
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38. The only case in which xn
, for a positive x, has not been defined, is

that in which n is not a rational number. To extend the definition to this

case, we suppose n to be defined by a convergent sequence [nr], in which all the

numbers nr are rational. We shall shew that the aggregate [x
nr

]
is convergent,

and the number which it defines we shall denote by xn .

We have xnr xnr+* = xnr
(1
-

tf&quot;r+8 -nrJ ;
now

, since [nr ]
is a convergent

aggregate, all the numbers nr are numerically less than some fixed number,
and therefore

j

x1^
\

&amp;lt; A, where A is some fixed number.

First suppose x &amp;gt; 1, then

hence xUr xnr+&amp;gt;
&amp;lt; A \x

lnr
~ n

&amp;gt;-+

1 1 .

Now let r be so chosen that, for all values of s,

I

x-l

r
-

r+s

where q is a positive integer ;
then

12
q-\&amp;gt;

hence
|
x Hr~ nr+* 1 1 &amp;lt;

X 1

i y. _ J
Or

,
j

Xn* Xnr+*
|

&amp;lt; A
,

and if q is chosen so that -
&amp;lt;

--- ---
, where e is a fixed number, we see

q A (x-l)
that r may be so chosen that

|

x&quot;r
- xnr+*

j

&amp;lt;
&amp;gt;

for all values of s
;
therefore

{x
1

*} is a convergent sequence.

If x &amp;lt; 1, then \-\ is a convergent sequence, and therefore \xnr \ is also
(x

llr
]

convergent, since it is the quotient of {1} and {x
n
r}. If x 1, then {x^}

= 1.

Thus in every case
{#&quot; }

is a convergent sequence if [nr ]
is convergent.

Since
{ar&quot;*}

x {x
m

^}
=

{x
nr+m

r\,
we see that the definition of xn

,
when n is

not rational, is such that the relation xm x xn xm+n is satisfied.

THE REPRESENTATION OF REAL NUMBERS.

39. The ordinary mode of representation of a real number is by means of

a decimal, or more generally by a radix-fraction. When the decimal is non-

terminating, this mode of representation is a case of the representation by a

convergent sequence of rational numbers, in accordance with Cantor s theory.
For example, the number TT is represented by the sequence

(3, 3-1, 3-141, 3-1415, 3 14159, 3-141592, ...),
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where, by known processes, any prescribed element can be found as the result

of a definite number of arithmetical operations.

The general theorem will be established that every positive non-rational

real number N is uniquely representable by means of a non-terminating series

of radix-fractions, of which r, the radix, is any integer ^ 2.

Of the numbers 0, r, 2r, 3r, . . . , there is (see 35), of all those which are

less than rN, a greatest one c r, which may be zero
;
thus

rN &amp;gt; c r, and &amp;lt; (c + 1) r
;

N
it follows that N c H -

,

r

where Nl is a positive number less than r.

In a similar manner we obtain

where N2 ,
N3 ,

... Nn+i are all &amp;lt; r
;
therefore

where c , c1} c2 ,
... cn are each of them positive integral, or zero, and

&amp;lt; Nn+l &amp;lt; r.

r-i TIT / ^1 ^2 Cn \

Since N- c i-
-i + -2

2
+ ... + -^ &amp;lt;-,

\ r f* rnJ rn

and it has been shewn that has the limit zero as n is indefinitely increased,

we see that the sequence, of which the nth element is

Ci Co C-n

GO + -+-.+ . .. + -,
ry&amp;gt;

/*& /**n

is convergent, and represents the real number N. This is expressed by

in which N is represented by a non-terminating radix-fraction.

Let us now consider the case in which ^V is a rational number - in its
b

lowest term. We have a = a b + /3 , where j3 &amp;lt; b
;
and r/3 = ^b + J3l} where

fr&amp;lt;b; r& = oa & + &,..., r/9n_j = a.n b + j3n , where /3lt &, ... /3n are all less

than b.

If one of the numbers /3, say /3n ,
is zero, we have
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and thus N is expressed in terminating radix-fractions
;
this case can only

arise when b contains only prime factors of r. The terminating series of

radix-fractions can be replaced by a periodic one which does not terminate.

For if we use an 1 instead of an ,
as the numerator of rn

,
we have

r/3w_ x
=

(an
-

1) b + b
;

v ^J
thus fin becomes b instead of zero, and

rb = (r- 1)6 + b; lr-

thus j3n , fin+i, &quot; are all equal to 6; and an+1 ,
an+2 ,

... are all equal to r 1.

Thus N is represented by

It thus appears that a rational number, ivhich in its lowest terms has a

denominator which contains only prime factors of r, is capable of a double

representation; (1) by a terminating series of radix-fractions ; (2) by a non-

terminating series of radix-fractions, of which the numerators after some fixed
one are all r 1.

In case none of the numbers &, &, ... fin ,
... vanishes, it is clear that

since all these numbers are either 1, 2, 3, ... 6 1, they cannot be all unequal.

Suppose fin is the first which is repeated, and let fin
=

fin+m ;
it is then clear

that fin+i
=

fin+m+i, fin+2 = fin+m+-2, ,
and therefore the number is repre

sented by a recurring series of radix-fractions.

40. When a number is defined by means of a convergent sequence of some

special form, it is in general not immediately obvious whether the number is

rational or irrational. Many special investigations relating to particular cases,
and various general criteria, have been given by well-known mathematicians.

One of the most important modes of such representation of a number is

that by an endless continued fraction. This fraction may be regarded as an

aggregate, each element of which is a finite continued fraction. Legendre
established the fundamental theorem that a number represented by an end
less continued fraction

__ _
bib2 b3

&quot;

bn~
&quot;

that is, by an aggregate of which the nth element is

bi 62 + 63

&quot;

bn

is irrational*, provided the positive integers an , bn are such that for every
value of n, bn an ^l; except that when bn an = 1, for every value of n ^ m,

* A proof of this theorem is given by Pringsheim, &quot;Ueber die Convergenz unendlicher Ketten-

briiche,&quot; Sitzungsberichte d. layer. Akad. vol. xxvn, 1897, p. 318.
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where m is some fixed number, and when at the same time the signs before

all the fractions -^ ,
for n&amp;gt;m, are negative, then the continued fraction

on

converges to unity, or to a rational fraction, according as m 1, or in&amp;gt;\.

This theorem contains as special cases the theorems previously established

by Lambert, that ex
,
tan x, loge x, tan&quot;

1
x, TT are irrational for rational values

of x. The irrationality of e and e2 was first proved by Euler*. Legendref
himself applied the general theorem to prove the irrationality of TT-, although

his proof was lacking in rigour.

The following general theorem has been proved} by Cantor:

If 6, b, b&quot;,
... is a set of positive integers such that, q being any

arbitrarily chosen integer, all the numbers 1, b, W, bb
b&quot;, ..., from and after

some fixed number of the sequence, are divisible by q] then any number N
can be uniquely represented by

, A, ft v
+

~b

+ W + bW + &quot;

where 7 is an integer, and X, p, v, ... are integers (including 0) such that

Further, in order that the number N may be rational, it is necessary that,

from and after some fixed term of the series, all the numbers A,, p, v, ...

have their highest possible values. If this condition is not satisfied, N is

irrational.

As an example of this theorem, the number e represented by

1 l _!_

is seen to be irrational.

Another mode of representation is that in which the sequence of integers

b, b
, b&quot;, ..., from a particular element onwards, is periodic. In this case, the

necessary and sufficient condition that the number represented by

1&amp;gt;

+
lb

+
bbV

~ + &quot;

should be rational, is that the sequence /3, /9 , 0&quot;, ... be, from and after some

fixed number of the sequence, periodic. This is a generalization of the

theorem relating to a number represented by radix-fractions.

* On the history of these theorems see Pringsheim s article &quot;Ueber die ersten Beweise der

Irrationalitat von e und TT,&quot; Sitzungsberichte d. bayer. Akad. vol. xxvn.

t See his Elements de Gdometrie, Note 4; see also Kudio s work, &quot;Archimedes, Huygens,

Lambert, Legendre,&quot; 1892, p. 166.

J Schlomilch s Zeitschrift, vol. xiv (1869),
&quot; Ueber die einfachen Zahlensysteme.

&quot;
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If 6 = 2, 6 =
3, b&quot;

= 4, ... we obtain the theorem* that the number re

presented by

4- -U-^i-l- J-
C^~l

~ i~

where c ^ n 1, is rational, only if, from and after some particular value of n,
cn = n 1.

A mode of representation of numbers by sequence of products has been
given f by Cantor. He shews that every number N&amp;gt; 1, can be uniquely
represented in the form

where a, b, c, ... are integers such that

b ^ a2
, c ^ b\ d ^ c

2
,

. . . .

NaThe number a is determined as the integral part of If =
N 1 a + 1

6 is the integral part of ^-^ if ^=0, c is the integral part of

i , and so on.

As an example, \/2 is represented by

where 17 = 2. 3 2
-l, 577 = 2. 17 a -l, 665857 = 2. 577 2 -

1, ....

The criterion for determini

owing :

The number represented by

, ....

The criterion for determining whether N is rational or irrational is the

following :

where b^ a2
, c &*,...,

all the numbers a,b,c,... being positive integers, is rational if, from and after
some fixed number of the sequence a,b,c,..., each number is the square of
the preceding number of the sequence; but the number is irrational if
this condition is not satisfied.

* See Stephanos, Bulletin de la soc. math, de France, vol. vn (1879). For further information
on the history of this subject see Pringsheim s article I. A. 3, in the Encydopadie der Math
tl tssenschaften.

t Schlbmilch s Zeitochrtft, vol. xiv (1869),
&quot; Ueber zwei Satze....&quot;

H .
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THE CONTINUUM OF REAL NUMBERS.

41. If !, 6j are any two real numbers such that a l &amp;lt; b1} then two real

numbers a 2 ,
b.2 , (a2 &amp;lt; b2 ), can be found both lying between aI} 6 1; and such that

the difference between a2 ,
6.2 is as small as we please, i.e. b2 a.2 &amp;lt; e, where e is

an arbitrarily prescribed number. Between a 2 ,
62 , two more numbers a3 ,

b3 ,

(a.. &amp;lt; 63), can be found whose difference is again as small as we please ;
and

this process may be carried on indefinitely. This property of the aggregate
of real numbers may be expressed, to use the term introduced by G. Cantor,

~\ by saying that the aggregate of real numbers is connex; it arises from the

fact that an indefinite series of numbers can be found which lie between any
.

1
_i

two given numbers. If we anticipate a term which will be introduced when
we come to the general theory of aggregates, the property of connexity may
be expressed by saying that the aggregate of real numbers is everywhere dense.

It will further be observed that the aggregate of rational numbers is also

connex, or everywhere dense; so that, so far as this property is concerned,

there is nothing to differentiate the one aggregate from the other.

If the difference of an and bn is denoted by en ,
and the sequence

d, e2 &amp;gt; n, satisfies the condition that, corresponding to any fixed

arbitrarily small positive number 77, a value of n can be found such that

f, e+i . . . are all less than 77, then there exists a single real number x which is

greater than all the numbers a-i ,
a2 ,

. . .
,
and less than all the numbers 6 1} b2 ,

This number x is the limit of either of the sequences (alt az ,
... an , ...) and

(&!, &2 &amp;gt;

bn , ...), and is defined by a section of all the real numbers

If we confine ourselves to the domain of rational numbers, there subsists

in that domain no such property; that is, the above numbers a, b being all

rational, no such rational number as x necessarily exists.

In the domain of Real Number, (a) every convergent sequence has a limit

which is a number belonging to the domain, and (6) every number is the limit

of properly chosen sequences of numbers belonging to the domain. The

. possession by the domain of real numbers of these properties (a) and (b) is

expressed by saying that the aggregate of real numbers is perfect.

1 jj / The domain of Rational Number possesses the property (b) but not the

property (); consequently the aggregate of rational numbers is not perfect.

From the point of view of Dedekind s theory, the property that the

aggregate of real numbers is perfect expresses the fact that every section of

the real numbers corresponds to a single real number, and the converse.

A section of the rational numbers does not always correspond to a rational

number; consequently the aggregate of rational numbers is not perfect.

We here give the name continuum* to an aggregate which possesses the

two properties of being connex, and of being perfect. This is in the first

* See Cantor, Math. Annalen, vol. xxi, p. 576.
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instance taken to be the definition of the meaning of the word continuum, as
it is frequently used in Analysis. Thus the aggregate of real numbers forms
a continuum; whereas the aggregate of rational numbers is essentially discrete,
and does not form a continuum, since one of the two essential properties^cTa&quot;&quot;

continuum is absent.

The aggregate of real numbers is spoken of as the continuum of real

numbers, or the arithmetic continuum.

The real numbers which lie between two numbers a, b do not form a

continuum in accordance with the above definition; but if the two numbers
a, b themselves are considered to be included in the total aggregate, then this

completed aggregate does form a continuum.

It should be remarked that, in accordance with a somewhat different

definition of the term continuum, employed by Weierstrass, and which will

be referred to in Chapter II, the real numbers between a and b form a
continuum.

All the real numbers x such that a^x^b, in the ordinal sense of the

symbols &amp;lt;, =, &amp;gt;,
are said to form an interval (a, b); and such an interval

is frequently described as a closed interval.

The real numbers x which are such that a &amp;lt; x &amp;lt; b, are frequently said to
form an open interval (a, b).

The closed interval (a, 6) is a continuum, since it satisfies the two necessary
conditions for the applicability of the term; but the open interval (a, 6) is not
a continuum in this sense of the term, as it contains convergent sequences
which have no limit belonging to the open interval. Such an open interval
has been termed by Cantor a semi-continuum, but, in accordance with the
observation made above, it may be termed a Weierstrassian continuum.

Of the two essential properties of the arithmetic continuum, that of

connexity, and that denoted by the term perfect, the latter is absolutely
indispensable, in order that the arithmetic continuum may be suitable to be
the field of operations in analysis. It will appear, when we come to the con
sideration of the theory of functions of a real variable, that many of the most
important properties of a function may still subsist even if the domain of the
variable lacks the property of connexity; but that such properties would not

belong to functions of a variable which is defined for a domain such that

convergent sequences of numbers in it possess no limit within that domain,
and which therefore lacks the property of being perfect. This is the more
..remarkable on account of the fact that, in the older traditional notion of a

continuum, the property of connexity was the one which was regarded as all

important; the more essential property of being perfect has only been ex

plicitly formulated in the course of the construction of the modern arithmetical

theory.

42
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42. The term arithmetic continuum is used to denote the aggregate ,of

real numbers, because it is held that the system of numbers of this aggregate
is adequate for the complete analytical representation of what is known as

continuous magnitude. The theory of the arithmetic continuum has been

criticized on the ground that it is an attempt to find the continuous within

the domain of number, whereas number is essentially discrete. Such an

objection presupposes the existence of some independent conception of the

continuum, with which that of the aggregate of real numbers can be com

pared. At the time when the theory of the arithmetic continuum was

developed, the only conception of the continuum which was extant was that

of the continuum as given by intuition; but this, as we shall shew, is too

vague a conception to be fitted for an object of exact mathematical thought,
until its character as a pure intuitional datum has been clarified by exact

definitions and axioms. The discussions connected with arithmetization have

led to the construction of abstract theories* of measurable quantity; and

these all involve the use of some system of arithmetic, as providing the

necessary language for the description of the relations of magnitudes and

quantities. It would thus appear to be highly probable that, whatever

abstract conception of the intuitional continuum of quantity and magnitude

may be developed, a parallel conception of the arithmetic continuum, though
not necessarily identical with the one which we have discussed, will be

required. To any such scheme of numbers, the same objection might be

raised as has been referred to above; but if the objection were a valid one,

the complete representation of continuous magnitudes by numbers would,

under any theory of such magnitudes, be impossible. It is clear that it

is only in connection with an exact abstract theory of magnitude, that any

question as to the adequacy of the continuum of real numbers for the

measurement of magnitudes can arise. For actual measurement of physical,

or of spatial, or temporal magnitudes, the rational numbers are sufficient;

such measurement being essentially of an approximate character only, the

degree of error depending upon the accuracy of the instruments employed.

The purely ordinal nature of the conception of the arithmetic continuum,

including the ordinal character of an interval, has been pointed out in the

course of the development of the theory. This will be further elucidated

in connection with the abstract theory of order-types, to be discussed in

Chapter IV.

* See 0. H. Holder, Die Axiome der Quantitdt und die Lehre vom Mass, Leipziger Berichte,

vol. LIII (1901) ; also Veronese s work, Fondamenti di Geometria, 1891 ;
and Bettazzi s work, Teoria

delle grandezze, 1890.
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THE CONTINUUM GIVEN BY INTUITION.

43. Before the development of analysis was made to rest upon a purely
arithmetical basis, it was usually considered that the field of operations was

the continuum given by our intuition of extensive magnitude, especially of

spatial or temporal magnitude, and of the motion of bodies through space.

The intuitive idea of continuous motion implies that, in order that a body

may pass from one position A to another position B, it must pass through

every intermediate position in its path. An attempt to answer the question,
what is meant by every intermediate position, reveals the essential difficulties

of this conception, and gives rise to a demand for an exact theoretical treat

ment of continuous magnitude.
The implication contained in the idea of continuous motion shews that,

between A and B, other positions A, B exist, which the body must occupy
at definite times; that between A

,
B

, other such positions exist, and so on.

The intuitive notion of the continuum, and that of continuous motion, negate
the idea that such a process of subdivision can be conceived of as having a

definite termination. The view is prevalent that the intuitional notions of

continuity and of continuous motion are fundamental and sui generis] and

that they are incapable of being exhaustively described by a scheme of

specification of positions. Nevertheless, the aspect of the continuum as a field

of possible positions is the one which is accessible to Arithmetic Analysis, and

with which alone Mathematical Analysis is directly concerned. That property
of the intuitional continuum, which may be described as unlimited divisibility,

is the only one that is immediately available for use in Mathematical thought;
and this property is not sufficient for the purposes in view, until it has been

supplemented by a system of axioms and definitions which shall suffice to

provide a complete and exact description of the possible positions of points
and other geometrical objects which can be determined in space. Such a

scheme constitutes an abstract theory of spatial magnitude.
The exact theory of magnitude was developed to a considerable extent

by Euclid; but not until recently, under the irifluence of the ideas of the

arithmetical theory, has it been perfected in a form which exhibits the exact

system of axioms and definitions necessary for a characterisation of continuity,
that is adequate for mathematical analysis. Besides the arithmetic theory of

number, there exists at the present time a theory of magnitude which runs

to a certain extent parallel with the former theory. Some mathematicians*

still prefer to regard number as primarily representing the ratio of two

magnitudes; but they nevertheless to a large extent employ the methods of

arithmetical analysis.
*

P. Du Bois Keymond in his Allgemeine Functioncntheorie strongly advocates the view tha

linear magnitude forms the basis of the conception of Number. See also Stolz, Allgemeine

Arithmetik, where both views of Number are developed. See also G. Ascoli, Rend. 1st. Lomb. (2)

28 (1895).
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THE STRAIGHT LINE AS A CONTINUUM.

44. Although it is no part of the plan of the present work to enter fully
into the general theory of Magnitude, it is necessary briefly to consider the

case of those magnitudes which are segments of a straight line
;
that straight

line which is the ideal object of geometry, and which is the ideal counterpart
of the physical straight line of perception.

The length of the segment between two points A, B, of a straight line,

is a particular case of a magnitude ;
and we shall take this conception as a

datum, subject to a set of axioms* relating to the notions of congruency, and
to the notions greater and less as applied to magnitudes.

We assume that any number of congruent segments OA, AB, BG, ... can

be constructed on the straight line; and that any segment OA can be divided

into any number of segments which are all congruent to one another.

Any segment OA may be taken as the unit of length, so that its

magnitude is represented by the number 1; its multiples OB, OC, ... are

denoted by the numbers 2, 3, .... If each one of the segments OA , AB, BC, . . .

be divided into the same number q of equal parts, then, if P is a point of

division, OP is denoted by a fractional number p/q, where p is the number of

the sub-segments in OP. Thus when p, q are any positive integral numbers,

p/q represents a definite magnitude OP, the unit magnitude OA having been
fixed upon beforehand.

Further, the number p/q may also be regarded as representing the position
of the point P itself. In order to represent points of the straight line on both
sides of 0, the convention is made, that points on one side of shall be re

presented by positive numbers, and those on the other side by negative numbers;
thus if P is on the right of 0, and P on the left of 0, and if OP = OP

,
the

point P is represented by the number p/q. The length of any segment of

the straight line, whose ends are points to which rational numbers have been

assigned in the manner explained above, is the difference of the above two
numbers. In this manner, we have a correspondence established between the

aggregate of rational numbers and an aggregate of points on the straight line,

the relation of order being conserved in the correspondence, so that the two

aggregates are similar.

The set of points, thus represented by rational numbers, we may speak of

as the rational points of the straight line
;
but it must be remembered that a

definite origin 0, and a definite unit of length OA, are supposed to have been
fixed upon beforehand

;
and if these be altered, the set of rational points will

in general be altered also.

* These axioms are discussed by 0. Holder, Leipziger Berichte, vol. mi, 1901.
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It has been assumed as an axiom that, if PiQi is any segment of the straight

line, it may be divided into any number % of equal parts : of these, if P2Q2 be

taken as one, the same axiom asserts that P2Q2 may be similarly divided into

any number, n2 ,
of equal parts, P3Q3 being one of the parts ;

and that this

process may be repeated an unlimited number of times. The axiom is equivalent

to an assumption that the straight line is capable of unlimited divisibility ;

and this, being a characteristic property of the intuitional linear continuum,

must also hold for its ideal counterpart, the straight line which we are here

considering.

We proceed to assume as another axiom that, PjQi, P2Q2
&amp;gt; PsQs, being the

segments constructed as above, there exists in the straight line one point X,

and one only, which separates all the points P1; P2 ,
P3 ,

... from all the points

Qi, Qz, Qs, If Y be any point other than X, then points belonging to the

sequence P1} P2 , P3 ,
... and points belonging to the sequence Qlt Q.2&amp;gt; Q3 ,

... can

be found which are both on the same side of Y.

The point X may be regarded as the limit of either sequence of points ;

and the property corresponds to that property of the arithmetic continuum

which is expressed by saying that it is perfect.

In accordance with this axiom there is one single point on the straight line

which corresponds to any given real number
;
and this point, or the magnitude

of the corresponding segment, may be represented by the real number.

This axiom has been stated by Dedekind, in a form corresponding to his

definition of an irrational number : that a section of the rational points, in

which they are divided into two classes, is made by a single point.

Another form of the axiom is that known as the Axiom of A rchimedes *
:

that if AB, A B are any two segments of the straight line, of which AB is

the smaller one, an integer n can always be found such that n . AB &amp;gt; A B .

As in the case of the arithmetic continuum, this is equivalent to the negation
of the existence of infinitesimal segments of the straight line.

This axiom being assumed, there is a complete correspondence between

the points of the straight line and the aggregate of real numbers. Thus the

nature of the linear continuum, that is, so far as its possible parts, and the

possible positions in it, are concerned, is completely represented and described

by means of the arithmetic continuum, the axioms relating to the straight line

having been so chosen that this may be the case. It will be observed that

there is no real disparity between the rational points and the irrational points

of the straight line
;
a point, which with one origin and one unit of length, is

a rational point, may be an irrational point if another origin, or another unit

of length, be chosen.

* The importance of the Axiom of Archimedes in this connection was pointed out and, discussed

by Stolz, Math. Amialen, vols. xxn and xxxix.
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45. The mode which has been adopted above, of establishing a complete

correspondence between the aggregate of real numbers and the aggregate of

points in a straight line, though the most convenient mode, is not the only

possible one. All that is really necessary for the correspondence is that, in

accordance with some systematic scheme, the points in the straight line shall

be made to correspond with the numbers of the arithmetic continuum, in such

a way that the relation_of order is conserved in the correspondence. It is not

necessary that the difference of two numbers should represent the length of

the segment of the straight line which is terminated by the points that

correspond to the two numbers. The mode of correspondence given above is

however the simplest one, and will therefore be adopted for the purpose of

enabling us to use the language of geometry in analytical discussion.

In the case of space of two or of three dimensions, it will be assumed as

axiomatic that one point of the space, and one only, corresponds to each pair
or triplet of real numbers which represent Cartesian coordinates. This

axiom may be considered as fundamental in the Cartesian system of analytical

geometry.

The disputable idea that the theory here explained necessarily implies that

a continuum is to be regarded as made up of points, which are elements not

possessing magnitude, has frequently been a stumbling-block in the way of

the acceptance of the view of the spatial continuum which has been indicated

above. It has been held that, if space is to be regarded as made up of elements,
these elements must themselves possess spatial character

;
and this view has

given rise to various theories of infinitesimals or of indivisibles, as components
of spatial magnitude. The most modern and complete theory of this kind has

been developed by Veronese*, and is based upon a denial of the principle of

Archimedes which has been already referred to. In Veronese s system, when
a unit segment of a straight line has been chosen, there exist segments which

are too large, and others that are too small, to be capable of representation by
finite numbers

;
and these segments are respectively infinite, and infinitesimal,

relatively to the unit segment chosen. Under this scheme, a section of the

rational points, or a section of the points represented by real numbers, is made,
not by a single point, but by an infinitesimal segment. Veronese has con

sequently introduced systems of infinite and of infinitesimal numbers, each

of an unlimited number of orders, for the measurement of segments which,

relatively to a given scale, are infinite or infinitesimal. From his point of view,

the points on a straight line which represent the real numbers form only a

relative continuum, i.e. one which is relative to the particular scale of measure

ment employed; and he contemplates the conception of an absolute continuum,
for the representation of which his series of sets of infinite and infinitesimal

* See his Fondamenti di Geometria, Pisa, 1894
;
a German translation by Schepp has been

published in Leipzig.
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numbers are requisite. A segment, which in a given scale is finite, may be

infinitesimal, or infinite of any order, when measured relatively to another scale.

The validity of Veronese s system has been criticized by Cantor and others,

on the ground that the definitions contained in it, relating to equality and

inequality, lead to contradiction ; it is however unnecessary for our purpose
to enter into the controversy on this point. The straight line of geometry is

an ideal object of which any properties whatever may be postulated, provided
that they satisfy the conditions, (1) that they form a valid scheme, i.e. one

which does not lead to contradiction, and (2) that the object defined is such

that it is not in contradiction with empirical straightness and linearity.

There is no a priori objection to the existence of two or more such adequate

conceptual systems, each self-consistent, even if they be incompatible with one

another
;
but of such rival schemes the simplest will naturally be chosen for

actual use. Assuming then the possibilityof setting up avalid non-Archimedean

system for the straight line, still the simpler system, in which the principle of

Archimedes is assumed, is to be preferred, because it gives a simplerconception
of the nature of the straight line, and is adequate for the purposes for which

it was devised. The case of the non-Euclidean systems of geometry is an

instance of the existence of valid geometrical schemes divergent from one

another, which nevertheless all afford a sufficient representation of physical

space-percepts.

An answer to the difficult question, in what sense the straight line, or a

space of two or of three dimensions, admits of being regarded as an aggregate
of points, can only be discussed after a full treatment of the nature and

properties of infinite aggregates has been developed. The discussions in

Chapters n, in and iv, of infinite aggregates, and especially of the notion

of the power or cardinal number of such an aggregate, will throw light upon
this subject.



DESCRIPTIVE PROPERTIES OF SETS OF POINTS

46. AN aggregate of real numbers, each element of which consists of a

single real number, is defined by any prescribed set of rules or specifications

which are of such a nature that, when any real number whatever is arbitrarily

assigned, they theoretically suffice to determine whether such real number
does or does not belong to the aggregate. The difficulty of regarding an

aggregate, so defined, as a definite object, is bound up with the difficulties

connected with the notion of the linear continuum, i.e. the aggregate of all

real numbers, out of which the defined aggregate is to be obtained by a pro
cess of selection which, except in the case of a finite aggregate, can never be

actually carried out in its entirety, but which is determined by a rule or set

of rules. The precise scope of the definition will be rendered clearer by the

consideration of various classes of actually defined aggregates which will be

considered in the present Chapter; moreover, the theoretical difficulties of the

notion of such an aggregate, in general, will be in some measure elucidated

by the discussions in the present and the following Chapters, of the notion of

the power, or cardinal number, of an aggregate.

In accordance with the principle explained in 44, each number of a given

aggregate may be represented by a single point on a fixed straight line; thus

to an aggregate of numbers there corresponds an aggregate of points on the

straight line. An aggregate of single numbers, or of their equivalent points,
we shall speak of as a linear set of points.

The theory of linear sets of points, of which the present Chapter contains

an account, arose historically from the discussion of questions connected with

the theory of Fourier s series and of the functions which can be represented

by such series. A consideration of the properties and peculiarities of the

sets of points at which infinities or other discontinuities of such functions

exist, led to a study of the properties of linear sets in general, and to the

development by G. Cantor, P. Du Bois Reymond, Bendixson, Harnack, and

others, of a general theory which has lately received wide applications both

in Analysis and in Geometry.

Corresponding to the theory of linear sets of points, there exist theories

of plane, solid, or ^-dimensional sets of points. Each element of an aggregate
in ^-dimensions consists of an association of p real numbers (x

(l

\ x, ...#*&amp;gt;),

and such an element is spoken of as a point in jo-dimensional space. The
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/^-dimensional continuum consists of the aggregate of all such points, when
each of the numbers # (1)

, x, ... oc
(& may have any value in the linear arith

metic continuum.

A considerable part of the theory of sets of points in two or more dimensions

is completely parallel to the theory of linear sets of points; the proofs of many
theorems for linear sets of points being applicable without essential modifica

tion to the case of sets in any number of dimensions. This remark applies
both to the descriptive properties of sets considered in the present Chapter
and to the metric properties which will be discussed in Chapter in. At a

certain stage of the descriptive theory, however, the properties of linear sets

of points exhibit a simplicity which the properties of sets in two or more
dimensions do not possess. The greater complexity in the case of two or

more dimensions, than in one dimension, corresponds to the greater com

plexity of the Analysis Situs for space of two or more dimensions than in the

case of linear space.

In the present Chapter an account will be given both of those descriptive

properties which are practically independent of the number of dimensions of

the sets, and of those properties in which essential divergence exists between

the case of linear sets and that of sets in two or more dimensions.

The whole theory of sets of points is essentially an arithmetical theory ;

the geometrical nomenclature and representation is a matter of convenience,
not of necessity.

THE UPPER AND LOWER BOUNDARIES OF A LINEAR SET OF POINTS.

47. A simple case of a linear set of points is that in which the set consists

of all the points of a linear interval (a, b) either closed or open, in accordance

with the definition of such an interval given in 41.

Thus the set of points which form a closed interval (a, b) consists of all

points x such that a ^ x ^ b
;
and the set of points of an open interval (a, b)

consists of all points x such that a &amp;lt; x &amp;lt; b. Either of the sets of points a; for

which a x &amp;lt; b, or a &amp;lt; a; ^ b, may be said to be the points of a semi-closed

interval (a, b), open at b or at a.

A point x of the set forming a closed interval (a, b) is said to be jn the

interval or segment (a, b). A point x of the set forming an open interval (a, b)

is said to be within, or interior to, the interval or segment (a, b), or is said to

be in the openTriterval (a, b).

Let a set of points be such that every point of the set lies upon a straight

line, the position of each point being determined by its distance from a fixed

origin upon the straight line, in the manner explained in 44. If a point fi

exists, such that no number of the set is greater than /3, the set is said to be
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1
bounded on the right. In this case it will be shewn that there is a definite

point b, such that no point of the set is on the right of b, and such that either

(1) b is itself a point of the set, or else (2) that points of the set are within the

interval (b e, b), however small the positive number e may be taken to be
;

or that both the conditions (1) and (2) are satisfied.

The point b may or may not itself be a point of the given set. In either

case it is said to be the upper boundary of the given set. If 6 is itself a point

of the given set, it is said to be the upper extreme point of the set.

When there are points of the given set interior to the interval (b e, b)

\| for every value of e
(&amp;lt; b), the point b is said to be the upper limit of the set. ^

In case b is both the upper limit, and the upper extreme point, of the set,

the upper limit is said to be attained; and 6 may then be called the maximum

point of the set.

To prove the existence*, under the condition stated, of an upper boundary,
as above defined, it may be observed that all the numbers of the continuum

of real numbers can be divided into two classes, one of which contains every
number which is greater than all the numbers of the set, and the other of

which contains every number which either belongs to the set or is less than

some or all of the numbers of the set. The section thus specified defines a

number b which is the upper boundary of the set.

In a similar manner, it may be shewn that, if the set is bounded on the

left, i.e. if a point can be found such that all the points of the set are on the

right of such point, then a point a exists, which is such that no points of the

set are on the left of a, and such that either a is a point of the set, or else

points of the set are within every interval (a, a 4- e), where e is an arbitrary

positive number, or else that both conditions are satisfied simultaneously.

In case points of the set lie within every interval (a, a + e), then a is called

the lower limit of the set; and the lower limit is said to be attained if a be

itself a point of the set. In any case in which a is a point of the set, it is then

said to be the lower extreme point of the set. The term lower boundary may
in all cases be applied to a.

A set of points which has both an upper and a lower boundary is said to

be a bounded set. Thus a set is bounded if every point x in it is such that

x\&amp;lt; A, where A is some fixed positive number.

48. If no point /3 exists, which is such that no point of the set is on the

right of /3, then the set is said to be unbounded on the right ;
or it is said

that the upper limit of the set is + oo
;
the two statements being regarded

as tautological. Similarly, if no lower boundary a exists, the set is said to be

unbounded on the left
;
or it is said that the lower limit is oo .

* The existence of upper and lower boundaries was proved by Weierstrass, in his lectures. See

also Bolzano, Abh. d. Bohmischcn Gesellsch. d. Wiss., vol. v, Prag, 1817.
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The symbols + oo
,

oo do not really represent numbers
; they must be

taken to represent what is sometimes spoken of as the improperly infinite,

i.e. the mere absence of an upper or a lower boundary respectively. In order,

however, to avoid circumlocution in the statement of theorems concerning sets,

it is usually convenient to speak of + oo
,

- x
,
used in the above sense, as if

they were numbers which correspond to upper and lower limits respectively.

The statement that + oo is the upper limit of a given set is thus taken

to be equivalent to the statement that, if A is an arbitrarily chosen positive

number, there exist points x of the set such that x&amp;gt; A. Similarly if oo is

the lower limit of a set, there are points x of the set such that x &amp;lt; A.

In the present Chapter, it will frequently be assumed that the sets treated

of are bounded
;
and the interval (a, 6) will be said to be the interval in which

the set exists. This restriction is not so great a one as might at first sight

appear; for an unbounded set can be placed into correspondence with a bounded

one, in such a manner that the relative order of any two points in the one

set is the same as that of the corresponding points in the other set. If

x = where the radical is taken to have always the positive sign, then
Var2 +l

to a point x, in the unlimited interval (- GO
, + oo

), there corresponds a point x ,

in the open interval (-1,4-1); and also a?/ | #2 , according as x
l | ^2 . The

same object might have been attained by using the transformation

2
x

7T

There is no real loss of generality in considering only such sets as lie in

/ _
Qf

a given interval, say (0, 1) ;
for the relation x -

^
- establishes a complete

correspondence between sets in the interval (a, /3) and sets in the interval

(0, 1), the relative order of points being preserved in the correspondence.

The points of the interval (a, ) may be made to correspond in order with

the points of the interval (0, 1), in such a manner that an arbitrarily chosen

point 7 within (a, /3), corresponds to an arbitrarily chosen point within (0, 1) ;

for example the point \, This correspondence can be effected by the trans

formation
x x a. 7 ff

x 1 # ? 7 a

NON-LINEAR SETS OF POINTS.

49. A plane, or two-dimensional, set of points is an aggregate of which

each element is constituted by a pair of real numbers (a?
(1)

, x\ Such an

element may be spoken of as a point P in a plane ;
the rectangular coordinates

of P being xw
,
# (2)

. Corresponding to intervals, in the case of linear sets of

points, we now consider rectangles, or cells, of which the sides are parallel to

the coordinate axes.
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A closed cell
(a&quot; ,

a&amp;lt;

2)

;
b&amp;lt;

l

&amp;gt;,

6&amp;lt;

2

&amp;lt;)

is regarded as the set of all points (a;*
1

,
# (2

&amp;gt;)

such that a 1 ^ x {1
&amp;gt; ^ b {l&amp;gt;

,
a (2) ^ x ^ 6 (2

.

An open cell (a
(1)

, a 2
; b m

,
6 (2)

) is regarded as the set of all points (x
w

, x)
such that a 1

&amp;lt; xw &amp;lt; bw , a (2)
&amp;lt; x &amp;lt; 6&amp;lt;

2
&amp;gt;.

The set of all points (x
w
,x^) such that a 1 ^ aj

1
&amp;lt; 6 1

,
a 2) ^ # (2)

&amp;lt; 6 (2)

, may
be spoken of as the semi-closed cell (a

(1)
,
a 2

;
6 (1)

, 6
(2

).

A plane set of points (#
(1)

,
# (2)

) is said to be bounded, in case two positive
numbers A w

, A exist, such that
j

xw ^ A (1)
, x\A, for every point

(x&amp;lt;v,x)of the set.

When all the points of a given set are in a closed cell (a
(I)

,
a &amp;lt;2)

;
b (l&amp;gt;

, 6
(2)

),

this cell may be spoken of as a fundamental cell for the given set of points.

More generally, a p-dimensional set of points consists of elements each

of which is constituted by an association (V1

*, x (

v,...x (p)
] of p real numbers.

The ^-dimensional closed cell (a
(1)

,
a 2

,...a^ ;
b w ,

& 2

&amp;gt;,...&w) is the set of all

points (XM , x, . .
.&amp;lt;)

such that a (1&amp;gt; ^ x (l) b &amp;lt;l)

, a^x ^ 6 (2)
, ......a ^x l& ^ b (&

The p-dimensional open cell consists of all points such that a (l)
&amp;lt; xw &amp;lt; bw

,

a&amp;lt;x&amp;lt;b
al

&amp;gt;,

......a* &amp;lt; x^ &amp;lt; b (&
;
and the semi-closed cell consists of all points

such that a(l) ^ x^ &amp;lt; 6 (I

&amp;gt;,

a(2) ^ aP &amp;lt; b (

*\ ......a (& ^ X( P }

&amp;lt; b(?\

All points of the closed cell such that aW = a (

i\ or x (^ = b for some value

of q (= 1, 2, 3, . . .p) are said to be on the boundary of the cell.

If positive numbers A
M

,
A (

*\. . . J&amp;gt; exist, such that for all points (x
(l)
,x

(

^\. . .X(P ]

)

belonging to a given set of points the conditions

are satisfied, then the p-dimensional set is said to be bounded, and any closed

cell in which all the points of the set are contained may be spoken of as a

fundamental cell for the given set. If no such fundamental cell exists, for a

given set of points, that set is said to be unbounded.

An unbounded set of points (x
(i
\ x(

*\ . . .afr ]

) may be correlated with a bounded
set (

(1)
, p ,...^) for which a fundamental cell is (-l,-l,..._i ; 1, !,...!) by

means of the relations

(*i2&amp;gt;)

2

}5, (q = 1, 2, 3, . . .p

or by means of the relations

&amp;lt;/&amp;gt; = _
tan&quot;

1 x *\ (q
=

1, 2, 3, . . .p).

Any cell will be correlated with another cell by means of either of these
relations. It is clear that these relations are only examples of an indefinite

number of other relations by which a similar correlation may be obtained.

In order that every point on the boundary of the cell (-1, 1,...; 1,1...)

may correspond to a point in the #-space, it is convenient to adjoin a set of

points at infinity to that space. For example, in the case p = 2, points (x
(l

\ oo )
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for all values of XM
, points (

(l)
,

oo ) and points (oo , #&amp;lt;

2)

), ( oo
,
#(2)

) will be

taken to correspond to the points (f
(l)

, 1), (
(1)

, !),(!, |
(2)

), ( 1,
(

-&amp;gt;) respectively.

Also the four points (00, 00) will be adjoined so as to correspond to the

four points (+ 1, + 1) in the finite rectangle. In this manner it can be assumed

as a matter of convenience that the boundary of the rectangle ( 1, 1; 1, 1)

corresponds to a boundary adjoined to the #-space. The advantage of this

procedure is that no exception need be made as regards the correspondence
of an f-set with an #-set, when the -set has points on the boundary of the cell

in which it is contained.

In stating properties of sets of points which are independent of the number
of dimensions it is frequently convenient to employ a notation in which the

number p of dimensions does not appear. To effect this the point (ot
l

\ x(2
\ . . .atp])

of a p-dimensional set may be denoted by a single letter x, as in the case of

a linear set. The cell (a
(l)

, a(2)
,

. . .a ?
;
b(1

\ 6(2)
, . .

.#*&amp;gt;) may then be denoted by (a, b).

Thus (a, b) denotes an interval when p = l, and a cell when p &amp;gt; 1.

LIMITING POINT OF A CONVERGENT SEQUENCE OF INTERVALS, OR CELLS. (// f\

50. Let (ttj, 6j), (2, 62),
... (an ,

bn ) ... be an unending sequence of closed

intervals which are such that any one of them (an ,bn) lies entirely in the

preceding one (an_i, 6n_,), the two having at most one end-point common; thus

an an-i, 6n = &n-i; moreover, suppose that the lengths 6j
- aly b2

- az ,
...

bn an ,...form a sequence which converges to zero, the condition for which

is that, corresponding to any arbitrarily small e, n can be so chosen that bm - am ,

(xv

for all values of m which are ^ n, is &amp;lt; e. It will be seen that, in accordance

with the axioms explained in 44, there exists one point and one only which is ***.*
in every interval of the sequence. This point may be called the limiting point
of the convergent sequence of closed intervals.

Each of the aggregates (alt 2 ,
o8 ,...a,...), (6lf b2 ,...bn ,...} being con

vergent, defines a number
;
and in fact, in virtue of the definition of equality

in 26, they define the same number x. This number x is not less than an
and not greater than bn , whatever n may be; the point x therefore lies in all

the intervals, and is the limiting point whose existence was to be remarked.

If y be any number greater (or less) than a; we can find n so great that

bn x &amp;lt; y
-

x, if y &amp;gt; x
;
or that x an &amp;lt; x y, if x &amp;gt; y : thus y does not lie in

(dn, bn ). Hence there is only one point which satisfies the prescribed conditions.

If for every n, from and after some fixed value, the inequalities an &amp;gt;an_i,

&,&amp;lt;&n-i both hold, then the limiting point x is in the interior of all the

intervals of the sequence. If, from and after some fixed value of n, say n^ ,

we have an an_i, bn &amp;lt; bn-i, the limiting point x coincides with the common

end-points a,,^, a% ,
a ni+1 ,....
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If the intervals (a l} 6j), (a2 ,
b2),...(an ,

bn)... are all open intervals, there is

not necessarily any point which is in all the open intervals. Consider, for

example, the set of open intervals (0, 1), (0, ^ ) ,
[ 0, 5) ... (0, -I ,

In this
\ 2iJ \ &amp;gt;jj \ n/

case the point x denned by either of the sequences

is the point 0, which is not in any of the open intervals of the given set. It

thus appears that the theorem does not hold for the set of open intervals if,

from and after some fixed value of n, we have an = an+1 ,
or if, from and after

some fixed value of n, we have bn =bn+i. If however, from and after some

fixed value of n, both the conditions an &amp;lt;an+l ,
bn &amp;gt;bn+l are satisfied, the

theorem is valid
;

for the point x, defined as above, is a point in every open
interval (an ,

bn) from and after some fixed value of n.

If the intervals of the given set are semi-closed
; being all open at the

right-hand end-points, the theorem holds good unless bn = bn+1 ,
from and after

some fixed value of n.

In the case of a sequence of ^-dimensional closed cells

Kli) n (2
&amp;gt; a W h W b (2

&amp;gt; b W\
,
un ,...un f }

un , un ,...vn r ),

where n = 1, 2, 3, . . .
,
each of which is in the preceding one, so that an+i &amp;lt;9&amp;gt; = an{q)

,

and bn+l
{q) = bn (9)

,
for all values of n, and for the values 1, 2, 3, . . .

, p, of q, and if

bn{q) an(q
\ for each value of q, forms a sequence of numbers ^which converges to

zero, for n 1,2,3,..., there is a unique point which is in all the cells of the set,

and which is called the limiting point of the set. For the sequence of linear

intervals (an(q\ bn(q)
) defines, for each value of q, a single point od q) in all the

intervals. Thus the point (x
(l
\ a/

2
,

. . .x(q}
), uniquely determined, is in all the

cells of the sequence, and it is easily seen that it is the only point that satisfies

this condition.

If the cells are open, the corresponding theorem does not hold, unless there

exists some value of n from and after which an(q)
&amp;lt; an+1(q)

, bn(q)
&amp;gt; bn+1

(q}
, for each

value of q.

If the cells are semi-closed, for the validity of the theorem the condition

bn(q)
&amp;gt; bn+l

(q) must be satisfied, from and after some fixed value of n, for every
value of q.

The number
j
2 (b

(q] a &amp;lt;9))H may be called the span, or the length of the
U=i )

diagonal, of the cell (a
(1)

,

(2)
,...a&amp;lt;P&amp;gt;;

6(1)
, 6

(2)
,

. .
.&&amp;lt;*&amp;gt;).

This number may also be

spoken of as the distance between the two points (a
(l)

,
a(2)

, . . .a(p)
); (b

(l}
,
b(

-\ . ..b(p)),

and may be denoted by PQ, when the points are denoted by P, Q respectively.

A convergent sequence of closed cells is one in which each cell is in the

preceding one, and such that the sequence of spans of the cells converges to
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zero
;
such a convergent sequence defines a unique point in all the cells of

the sequence.

In the case of such a convergent sequence of cells, the convergence of the

sequence of spans to the limit zero ensures that, for each value of q, where

1 ^ q ^ p, bn(q] dn(q)
converges to zero, as n is indefinitely increased. A sequence

of closed cells, each of which contains the next, may however be such that

bn(g) an(q)
converges to zero for some of the values of q, but not for all these

values. In that case the sequence of cells may be said to be incompletely con

vergent ;
the points of a cell of dimensions lower than p will all be contained

in each of the cells of the given sequence. This cell may be termed the limiting

cell (or interval) of the given sequence.

For example, if p = 3, we may have bn
(l) an(l) and 6n

te) - an(2}

converging
to zero, but 6H

(3) an
(3}

converging to some number greater than zero
;
in that

case the sequence converges to a limiting interval. Again,if 6n
(l) an(1)

converges

to zero, but bn
(2) an(2)

,
bn

(3] an(3)

converge to numbers greater than zero, the

limiting cell is two-dimensional.

SYSTEMS OF NETS.

51. Let the linear interval (a, b) be divided into a number ml of parts, such

that the lengths of all the parts do not exceed a positive number S
x ;

let Z)j

denote the finite set of intervals so obtained. By introducing further points
of division of (a, b), let a new finite set of intervals D2 be determined, of which

the number is ma(&amp;gt; m^, and let the length of each interval of D2 not exceed a

positive number 82 (&amp;lt; Sj). Proceeding in this manner, there can be defined, in

accordance with some specified set of rules, a sequence D1} Dz ,
... Dn , ... of

finite sets of intervals, such that the intervals of Dn are all not greater than

an assigned number 8n . Let it be supposed that the numbers 81} 82 ,
... 8n ,

...

form a sequence which converges to zero.

If we regard the intervals of each set Dn as semi-closed, i.e. closed on the

left and open on the right, except that the extreme interval on the right is

taken to be closed, each point of the closed interval is in one and only one of

the intervals of the set Dn ,
for each value of n.

The set Dn of semi-closed intervals (except that the extreme one on the

right is closed; may be spoken of as a net, and the nets corresponding to

n= 1, 2, 3,... may be called a system of nets fitted on to the interval (a, b). -O i
The particular net Dn may be called the net of order n, or the nth net, of the

system. The mn separate intervals of the net Dn may be spoken of as the

meshes of the net Dn .

The fundamental property of such a system of nets is that each point x of .

the interval (a, b) is in one and only one mesh of each of the nets Dn .
.

These meshes, for n=l, 2, 3, ..., constitute a convergent sequence of .

intervals of which the point x is the limiting point. In each net of the

H. 5
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system the rank, or order, of the meshes may be taken as their order from left

to right in the interval (a, b).

In case Dl
consists of ra meshes of equal breadth, D2 of w2 meshes of

equal breadth, and in general Dn consists of mn meshes of equal breadth, the

system of nets will be said to be symmetrical.

In some cases it is convenient to employ nets in which all the meshes are

closed at both ends. In that case a point x of (a, 6) that is an end-point of a

- mesh of Dn will, in general, belong to two adjacent meshes of D
n&amp;gt;

and of all

the subsequent nets of the system. Such a point will consequently be the

limiting point of more than one sequence of meshes. Such a system of nets

may be spoken of as a system of nets with closed meshes. It may or may not

be a symmetrical system.

In case the interval (a, b) is replaced by an indefinite interval (- oo
,
oc

),

(a, oo
),

or (- oo
, b), the number of meshes of a net fitted on to such indefinite

interval will not be finite, but as before, the set of numbers 81( 82 ,
... 8n , ...

will be taken to converge to zero.

The definition of a system of nets can be extended to the case of cells of

two, or of any number p, dimensions. In the case of the two-dimensional cell

(a
(l)

,
a(2)

;
b(l

\ 6(2)

),
this rectangle is divided by straight lines parallel to the axes

into a set A of rectangular cells, the spans of all of which are ^ 8^ Some or

all of these cells are again divided into smaller cells, by the introduction of

fresh straight lines parallel to the axes, so that the new set of cells D2 is such

that their spans are all ^ &amp;gt; Proceeding in this manner, in accordance with

a specified set of rules, and the sequence {87l } being taken to converge to

zero, we obtain a sequence D1} D2 ,
... Dn ,

... of sets of cells. We take each of

the cells of Dn to be semi-open, except that those which have a side in

common with one of those sides of (a
(l)

,
a&amp;lt;

2)
;
b(l

\ 6(2)

) which do not contain the

point (tt
(l)

,
a(2)

) are closed along that side; that side itself being taken to be

semi-closed, unless it has (a
(2)

,
6(2)

) for an end-point, in which case it is

regarded as closed. Each of the sets Dn of rectangular cells is then termed a

net; each of the cells of which Dn is composed is termed a mesh of the net Dn ;

and the totality of the nets {Dn }
is called a system of nets fitted on to the

cell
(a&amp;lt;,

a(2)
;
6(1

&amp;gt;,

6&amp;lt;

2)

).

Any point x in the fundamental cell is now in one and one only of the

meshes of Dn ,
for each value of n; and consequently x is the limiting point of

a unique sequence of meshes of the cells of the system.

It is easy to arrange the meshes of a net Dn in ascending order or rank.

Thus we may take those cells which have a side in common with a part of

(a
(l)

,
a(2)

;
6 (1)

,
a (2)

) in ascending order from left to right; after these we may take

in order from left to right those cells which have a side in common with one of

r.hose just referred to; then we take in order from left to right those cells

which have a side in common with one of these latter, and so on.
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If the nets of Dn all have the same span 8n for each value of n, and if the

ratio of 8n+J to 8n is independent of n, the system of nets is said to be

symmetrical.

As before, a system of nets may be fitted on to the unbounded plane of

In case all the meshes of Dn ,
for every value of n, are closed, the system

is said to be a system of nets with closed meshes. In this case the sequence
of meshes of which the limit is a prescribed point (x

(l

\ #(2)

) is in general not

unique.

It is unnecessary to point out in detail the corresponding definition and
convention for the case of a jp-dimensional cell, when p &amp;gt; 2. It is clear that

the number of dimensions makes no difference as regards the properties of a

system of nets.

It will appear that a system of nets provides an apparatus which is of

considerable utility as an instrument of investigation in the theory of sets of

points, and in that of functions of one or more variables. The employment of

this nomenclature has the advantages of preventing repetition in the proofs
of various important theorems, and of providing the means of giving those

proofs in a form applicable not only to linear sets of points or to functions of

one variable, but also to sets of any number of dimensions, or to functions of

any number of variables.

Although the method, equivalent to the employment of systems of nets, has been in

use for a considerable time past, the first formulation of the idea of a system of nets

appears to be due to de la Vallee Poussin*. His terminology is however not identical with
that here employed. He speaks of what is here termed a system of nets, as simply a net

(reseau), and what is here called a net is termed by him a lattice (grillage). Moreover he
considers only what are here described as symmetrical systems of nets, and this is

sufficient for the special purpose for which he employs them. For the more general

purposes of investigation, it is however convenient not to make this restriction; ac

cordingly the wider definition given above has been here adopted.

THE LIMITING POINTS AND THE DERIVATIVES OF A SET.

52. If a point x be taken in the interval (a, 6), an interval (x e^ x 4- e,)

which lies entirely in (a, 6) is called a neighbourhood of the point x
;
and this

neighbourhood may be made as small as we please by proper choice of ^ and ea .

An interval (x, x + e2 ) is called a neighbourhood of x on the right, and (x elt x)
is called a neighbourhood of x on the left. The end-points a and b can only
have neighbourhoods on the right and the left respectively. A neighbourhood
of a point may be open or closed.

In the case of a point (#
(l)

,
x(i]

) in a plane, the cell

O(I) -
e/&quot;,

x - e; ^ + e,
(l)

,
x + e,

(2)

)

* See his treatise Integrates de Lebesgue, Paris, 1916, p. 16, et seq.

52
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is called a neighbourhood of (x
(l
\ #(2)

) ;
it may be closed or open. Corre

sponding to neighbourhoods on the right or left, of a point # of a linear

interval, there are in the plane four partial neighbourhoods of the point

(#
(l)

,
x(2)

), viz. the four rectangles

In p dimensions, similar definitions hold good; a point has 2p partial neigh
bourhoods. The neighbourhoods can always be supposed to be in a funda

mental cell, to which the point is confined.

If a set of points G, in any number of dimensions, have been

defined, and a point P be such that every neighbourhood of it contains a point

: of G, other than P itself, the point P is called a limiting point of the set G,

whether P belongs to G or not.

It should be observed that, if every neighbourhood of P contains a point
of G, other than P, it must contain an infinite number of points of G. For

let us suppose that a certain neighbourhood H of P contains only a finite set

of points plt p2 ,
... pm belonging to G. We may suppose P to be the limiting

point of the sequence \dn }
of meshes belonging to the nets [Dn ]

of a system of

nets fitted on to H, and such that P is interior to all the meshes dn . Each of

the points p1} p2 ,
... pm can be in only a finite number of the meshes dn of the

sequence; hence, from and after some fixed value of n, dn contains no point of

G
,
but dn is a neighbourhood of P containing no points of G, other than P

itself, which is contrary to the hypothesis made above.

A limiting point of G, defined as above, is also called a point ofaccumulation.

Another definition of a limiting point is that it is a point P such that G
contains a sequence of points {Pn }

for which the distance PPn is less than

an arbitrarily chosen number e, for all sufficiently large values of n. A point
which satisfies this condition is certainly a limiting point, in accordance with

the definition here adopted, but the question whether the converse holds will

be discussed in Chap. IV, in connection with the multiplicative axiom.

The fundamental theorem will now be established, that: Every bounded

set ofpoints G which contains an infinite number ofpoints possesses at least one

limiting point.

We may suppose a system of nets to be fitted on to the fundamental cell,

or interval, in which G is contained. Of the meshes of Dj at least one must

contain an infinite set of points belonging to G
,

let d1 be thar one of such

meshes which is of lowest rank. Of the meshes of D2 which are contained in

d at least one must contain an infinite set of points belonging to G
, let o?2 be

that one of such meshes which is of lowest rank. Proceeding in this manner

a definite sequence of meshes dl} d.2 ,
... dn ,

... is defined, each of which

contains an infinite set of points belonging to G. The limiting point P of

r-
f- .W
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this sequence {dn}
of meshes is a limiting point of G. For any assigned

neighbourhood of G contains dn ,
from and after some fixed value of n, and

therefore contains an infinite number of points of G.

It has thus been shown that G has at least one limiting point. It may
have a finite number, or an indefinitely great number, of limiting points. It

should be observed that a limiting point of G may or may not itself be a

point of G. In the case of a linear set of points, if either boundary of the set

be not a point of G, it is certainly a limiting point of G; it may however be

both a point of G and a limiting point of G.

A limiting point P of a linear set G is a limiting point on both sides, if

an indefinitely great number of points of G lie in every neighbourhood of P
on the right, and also in every neighbourhood of P on the left. Otherwise P
is a limiting point of G on one side only. This distinction may be extended

to the case of a limiting point P of a set G in p dimensions, the 2* partial

neighbourhoods of P corresponding to neighbourhoods on the right and left

of a point of a linear set.

53. The theorem of 52 does not hold for the case of unbounded sets of

points. For example, the linear set which consists of the points 1, 2, 3, . . .
, n, . . .

has no limiting point, in accordance with the definition given in 52. The
same remark applies to the set of points 1, 2, 3, . . .

, n, . . . . If we apply
to either of these sets the transformation = #/V#

2 + 1, where the positive
value of the radical is always taken, the sets on the interval of which cor

respond to the above sets are

l/\/2, 2/V5, 3/VlO, n/Jn*+l, ...;

and -1/V2, -
2/V5, -3/VfO, - n/VnTl, ...,

which have as limiting points the points 1, 1 respectively; these points n,

1,
- 1 being the end-points of the interval ( 1, 1) of . To the indefinitely

great interval of x, which is an open interval, there corresponds the open
interval (-1, 1) of

,
and in the former interval there are no points which

correspond to the points 1,3 of the interval of x. If we agree to adjoin to

the set of real numbers, two improper numbers 00,00, which are taken to

correspond to the numbers 1,1 in the closed interval ( I, 1) of
,
we now

regard ( oo
,
oo ) as the closed interval of x corresponding to the closed interval

(1,1) of . To a neighbourhood (1 e, 1) on the left of the point
=

1, there

will correspond the interval (
-- -

. oo
)
on the left of the adjoined point

\e(2-e) /

x = oo in the linear interval of x. The point x = oc may be regarded, in an

extended sense of the term, as the limiting point of the set of points 1, 2, 3,

It corresponds to the limiting point 1 of the corresponding set 1/V2, 2/Vo,

3/VfO in the segment (-1, 1).
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In this extendec^ sense of the term &quot;

limiting point,&quot;
the point oo will be

a limiting point of any set G which is such that, corresponding to any arbitrarily

chosen positive number A, there are points x of G for which x &amp;gt; A. Similarly,

the point
- oc may be regarded as a limiting point of the set G, if there are

points of G for which x &amp;lt; A, for all values of the positive number A. When
co or oo

, is, in this extended sense of the term, a limiting point of G, the

point 1, or 1, is a limiting point of the set of points which corresponds to G
in the -

segment.

To a neighbourhood (x 1 ,x + e2) ofa point x, not GO or oo
,
in the interval

( oc
,
oo

),
there corresponds a neighbourhood ( e/, + e./) of the point f

which corresponds to x. It is easily seen that sequences of values of elt e2 which

converge to zero, correspond to sequences of e/, e/ which converge to zero. Thus

a finite limiting point of a set G in the interval (
oo

,
oo ) of x corresponds to

a limiting point of the corresponding set in ( 1, 1) which is in the interval.

It thus appears that, when the two points 4- oo
,

oo are adjoined to the

indefinite interval of x, so that it becomes a closed interval, the theorem as to

the existence of a limiting point holds of the closed interval. The difference

in the form of the condition that either of the points oc
,

oo should be a

limiting point, from the condition applicable to a finite point, is seen to be

unessential, as it disappears when the set is transformed into a set in the finite

closed interval ( 1, 1).

The intervals
(A,&amp;lt;x&amp;gt;), (

oo
, A) may be termed neighbourhoods of the

points oo
,

oo respectively.

The case of a plane set may be considered in a similar manner. Employing
the transformation ,

by which points (x
{l}

,
x (-y

) of the unclosed infinite cell ( oo
,

oo : oc
,
oo ) are

placed in correspondence with points of the unclosed cell ( 1, 1
; 1, 1) in the

plane of (
(1)

,

(2)

) ;
we see that, corresponding to a set of points in the latter

plane which has a limiting point on the boundary of the rectangle ( 1, 1; 1, 1),

there will be a set of points in the plane of (x
(l)

,
x (2}

) which has a limiting point,

in the extended sense of the term, on a boundary adjoined to the rectangle

(
GO

,
oc

;
oo

,
oo

).
In this case also, any limiting point of a set in the rect

angle ( 1
,

1
; 1, 1) in which the points (f

(1)

,

(

-&amp;gt;)

are contained, will correspond
to a limiting point of the corresponding set in the rectangle ( oo

,
oo

;
oc

,
oo )

in which the points (x
w

, x) are contained. It is clear that there is an arbi

trary element in the particular transformations employed.

The set of points (a?w, X) such that a&amp;gt;
- e ^ xw &amp;lt; a (1) + e

,
and x &amp;gt;

A,
where e, e

,
A are positive* numbers, may be called a closed neighbourhood of

the point (a
(1)

,
oo

).
A similar definition may be given for an open neighbour

hood of the point. The set of points for which # (1) ^ A, x {- ] ^-B, where A and B
are positive numbers, may be termed a closed neighbourhood of the point
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(oo, oo); if # (1)
&amp;gt; A,x (z}

&amp;lt; B, the neighbourhood is open. Similar defini

tions will apply to points at infinity of the other types.

54. Returning to the case of a set G in a finite interval or cell, we observe

that the limiting points of G form a set of points which may be finite or

infinite; this set is called the derived set*, or first derivative of G, and may
be denoted by G . In case the set G contains an infinite number of points,

it possesses itself a derivative set G&quot;,
which is called the second derivative

of G. If we proceed in this manner, we may obtain a series

G
, G&quot;, G &quot;,

... G ln)

of derivatives of G. If the nth derivative G(n] contains a finite number only of

points, then these have no limiting point, and we may say that G(nJrl] = 0.

It may however happen that, however large the integer n may be, the deriva

tive G(n) contains an indefinitely great number of points; and thus a next

derivative exists.

A set G which possesses only a finite number of derivatives is said to be of

the first species.

In this case, if G{s) contains only a finite number of points, the set G is

said to be of order^s. Thus, for example, a set of the first species and order

zero contains only a finite number of points ;
and a set of the first species

and order 1 has a first derivative which contains only a finite number of points.

It will be observed that the order of each derivative of G is less by unity than

that of the one which precedes it.

A set G which possesses an indefinite number of derivatives is said to be of

the second species.

As an example, we may consider the set of rational numbers in the interval

(0, 1). The first derivative of this set contains every real number in (0, 1),

and all subsequent derivatives are identical with the first.

EXAMPLES.

i. Let: *-( * I *-;
We see that G consists of the single point 0, which does not belong to G ; thus G is of the

first species and of order 1.

2. Let the points of G be given by

1 1 11
T~ &quot;I

~
&quot;I

~

r
3&amp;gt; 5

8
* 7 3 II 4

* The notion of the derivative of a set was introduced by Cantor, Math. Annalen, vol. v (1872),

p. 128. Du Bois Reymond contemplated the existence of limiting points of various orders, Crelle s

Journal, vol. LXXIX (1874), p. 30; in Math. Annalen, vol. xvi, p. 128, Du Bois Reymond defined

a limiting point of infinite order.

t Cantor, Math. Annalen, vol. v, p. 129. t Cantor, Math. Annalen, vol. v (1872).

Ascoli, Ann. di Mat., Series n, vol. vi, p. 56, 1875.
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where
.Sj, s2 ,

s.
4 ,

s each have all positive integral values. Here G consists of the four sets

of points given by

&amp;gt;*1\ tTtt \ S
-t*&amp;gt;l ,1, J_ 1,1 _L l + lj.J

1

;

11. 1

3
8

5 2
7&quot;

3 3
8

5&quot;

2
ll&quot;

4 3
8

7&quot;

3 II*4 5
8
*

7&quot;

3 ll*4

and of the six sets of points

i l i i i _L _L+
11111

3* 58a 3
8

7 83 3
8

ll 84
5&quot;

a
7&quot;

3 5* ll 4 7 3 ll 4

and of the four sets of points

JL ! 1 JL.
3 , 5V 7V n

together with the single point 0. Gr
&quot;

consists of the last ten of these sets, and of the

point 0. The second derivative G &quot;

consists of the last four sets, and of the point ;
G&quot;&quot;

consists of the point only. The set G is of the first species and of the fourth order.

3. Let* the points of G be given by

11 1
6^1 ^2 ^n

where n is a fixed number, and each of the numbers i, a.2 ,
... an takes every positive

integral vaiue. In this case G is of order n.

4. The zeros f of the function sin- form a set similar to that in Example 1.

The zeros of the function sin / \ form a set of the second order, those of

I sin -
J

\ x/

form a set of the third order, and so on.

5. LetJ the points of G be given by

1 1

where mi, m^, ... mn have all positive integral values, including zero, and n is & fixed

integer. It can be seen that (?(&quot;) consists of the point zero only.

DESCRIPTIVE TERMINOLOGY.

55. If GI, G2 ,
G3 ,

... Gn denote a number of sets of points (either linear

or in any number of dimensions), the set which contains every point that

belongs to one or more of the given sets is called their greatest common

measure, and is denoted by M (G1} G.^, . . . Gn ).
In case no two of the given sets

have a point in common, the common measure of the sets may be denoted by
(7X -|- Q2 + . . . + Gn ,

and it may be spoken of as their sum. By some writers the

term &quot;sum&quot; is employed for the greatest common measure.

* H. J. S. Smith, Proc. Lond. Math. Soc., vol. vi, p. 145, 1875.

t P. Du Bois Eeymond, Journ. f. Math., vol. LXXIX, p. 36.

J Mittag-Leffler, Acta Math., vol. iv, p. 58.
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That set which contains all those points which belong to every ojie of the

given sets is called their greatest common divisor, and it may be denoted by

D(G l , G2 ,
... 6rw ).

These definitions are still applicable in the case of an

unending sequence of sets GI, Gz ,
G3 ,

....

If all the points of a set H are points of a set G, H is said to be contained

in G, or to be a part, or component, of G. The set G is said to contain H.

Those points of G that do not belong to H form a set which may be denoted

by G-H. The set G H is said to be the complement of H with respect

to Cr, and is sometimes denoted by CG (H) If the set G consists of all the

points of the fundamental interval, or cell (open or closed), which contains H,

the set G H is called the complement of H, and is denoted by C(H}.

A set, all of ivhose limiting points belong to the set itself, is said to be closed.

Thus, in a closed set, the derivative G is a component of G.

Although the definition of a closed set would be applicable to an unbounded v
/y

set, in case limiting points in the extended sense of the term are admitted, as

explained in 53, it is usually convenient to restrict statements as to closed

sets to the case in which they are bounded. Accordingly, it will in general be

assumed that a closed set is a bounded one.

A set of points G is said to be an isolated set when no point of the set is a

limiting point of the set.

Thus, we have, for an isolated set G, the condition D (G, G )
= 0.

If, from any set G, we remove those points which also belong to its

derivative, the remainder is an isolated set; thus G D(G, G ) forms an

isolated set. Any set G may be regarded as the sum of an isolated set and of

a component of the derivative G .

If a component H of the set G is such that every point of G is a limiting

point of H, the set H is said to be dense in G.

If we consider the case in which H is identical with G, we obtain the

definition:

If every point of G is a limiting point of the set, G is said to be dense

in itself.

For a set G, dense in itself, G is a component of the derivative G . The

rational numbers of the interval (0, 1) form a set that is dense in itself.

A set G which is both closed and dense in itself is said to be perfect*.

Thus a perfect set G is identical with its derivative. It follows that every

perfect set is of the second species, u T
^

By some writers f the term perfect is applied to sets which, in accordance

with the terminology of Cantor here adopted, are only closed, without

*
Cantor, Math. Annalen, vol. xxi.

f For example Jordan, see Cours d Analyse, vol. i, p. 19.
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necessarily being dense in themselves; what is here called a perfect set is then

spoken of as an absolutely* perfect set.

In case the set G consists of all the points of a closed interval, or cell,

a set H which is dense in G is said to be everywhere dense f in the given

interval, or cell. This is equivalent to the statement that:

A set H is said to be everywhere dense, or dense in an interval, or in a

cell, provided that no interval, or cell, contained in the given one, exists ivhich

contains no points of H.

Similarly, if a set H is dense in a set G, no interval, or cell, can be

determined such as to contain points of G and no points of H.

If H is dense in G, the derivative H of H contains every point of G.

The derivative G of a set G which is everywhere dense in an interval, or cell,

must contain every point of the closed interval, or cell. This property may be

used as a definition^ of the term &quot;everywhere dense.&quot;

By Du Bois Reymond the term pantachisch was used with the same

meaning as everywhere dense.

Any interval, or cell, contained in a fundamental interval, or cell, may be

spoken of as a sub-interval, or sub-cell.

If, in every sub-interval, or sub-cell (a, b
), of the fundamental interval, or

cell (a, b), in which a set of points G is contained, another sub-interval, or

sub-cell
(a&quot;, 6&quot;),

can be determined which contains no points of G, the set G is

said to be nowhere dense, or non-dense in (a, b).

Thus a non-dense set is one such that no interval or cell exists in which

the set is everywhere dense.

A component H of a set G is said to be non-dense in, or relatively to G, if,

in any interval, or cell, that contains points of G, a sub-interval, or sub-cell, can

be determined which contains a point of G but no point of H.

A point P of a set G is said to be an interior point of G, ifa neighbourhood

ofP can be determined all the points of which are points of G.

If, however, the set Crbe bounded, and contained in a fundamental interval,

or cell, a point of G on the boundary of the interval, or cell, may be regarded
as an interior point of G relatively to the interval or cell, if a neighbourhood
of the point exists such that every point of that neighbourhood which is in

the fundamental interval, or cell, is a point of G. Such a point is however not

an interior point of G, relatively to unbounded space, or to an interval, or cell,

which contains the fundamental interval or cell in its interior.

*
Bord, Leqons aur la theorie des fonctions, p. 36.

t Cantor, Math. Annalen, vol. xv, p. 2.

J Baire, Annuli d. Mat., ser. 3, vol. in, p. 29.

Math. Annalen, vol. xv, p. 287.
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Those points of a set G which are not interior points of G, together with

those points of C (G) which are not interior points of C (G), form a set which is

called the frontier of G or of C(G}; the set C(G) denoting the complement of G
in the unbounded interval or space in which G is contained.

If, however, G is contained in an interval, or cell, and C(G) denotes the

complement of G with respect to such interval, or cell, the set ofpoints of G not

interior to G, relatively to the interval or cell, together with those points of C (G)

which are not interior to C (G), relatively to the interval or cell, forms the

boundary of G or of C(G) relatively to the fundamental interval, or cell.

To illustrate the distinction here made, we consider for example the

linear set consisting of all the points of the closed interval (a, b); the boundary
of G consists of the two points a, b, which are not interior points either of G
or of C(G), the complement of G relatively to (

oo
,
oo

). But, relatively to

the interval (a, b), the points a, b are interior points of the closed set (a, b),

in accordance with the convention made above; and thus the set has no

boundary relatively to the interval (a, b).

Every point of an open interval, or cell, is an interior point of the open
interval, or cell, regarded as a set of points. For example, every point of an

unbounded space is an interior point of the unbounded space considered as a

set of points.

An open set* is one in which every point is an interior point. A set is

open relatively to a fundamental interval, or cell, when every point is an

interior point relatively to the interval, or cell.

The term open set is however employed by some writers to denote any set

which is not closed.

A non-dense set has no interior points, but an everywhere dense set may
also have no interior points. An open set contains none of the points of its

frontier.

It is frequently of importance to consider the properties of sets which are

contained in a given perfect set G, or which have a part in common with G.

A point P of a set H is said to be an intenor point ofH relatively to G, if
it is a point of G and is such that a neighbourhood of P exists for which all

the points of G in that neighbourhood are also points of H.

Those points of G which are limiting points both ofH and of CG (H), where

H is a component of G, are said to form the frontier of H and of CG (If)

relatively to G.

A set H, all the points of which are interior points ofH relatively to G, is

said to be open relatively to G.

* de la Vallee Poussin, Integrates de Lfbesgne, p. 10.
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A set H, such that no point which it has in common with G is an interior

point ofH relatively to G, is said to be diffuse relatively to G, or to be diffused
in G.

IfH has points* in common with G, and is not diffuse in G, it is said to be

compact in G.

This property of compactness was formulated by de la Vallee Poussin,
whose definition is equivalent to that here given.

&amp;lt;&amp;gt;

-

PROPERTIES OF CLOSED AND OPEN SETS.

56. The complement C(G)of a closed set G with respect to a closed interval,

or cell, in which G is contained is an open set, relatively to the interval or cell.

Conversely, the complement of an open set contained in a closed interval, or cell,

is a closed set.

For any point P of G(G) which is not a limiting point of the closed set G
is such that a neighbourhood of P can be determined which contains no points
of G. All the points of such neighbourhood (or of the part of it in the

fundamental interval, or cell) are points. of C (G). Therefore P is an interior

point of C(G). It follows that C (G) is an open set.

IfH be an open set, a limiting point of C (H) cannot belong to H, because

every point of H has a neighbourhood none of the points of which belong to

C(H). Since every limiting point of G(H) belongs to G(H), the set G(H)
is closed.

A closed set G being essentially bounded, the complementary set C(G) with

respect to the unlimited interval or space in which G is contained is open in

the absolute sense.

An unbounded open set will only necessarily have a closed set as its

complement, provided the meaning of the term closed set is extended by
admitting adjoined points at infinity as points of the closed set (see 53).
For example, consider the linear set of all points x such that &amp;lt; x\ the

complementary set with respect to the indefinite interval ( oo
,
oc ) is the set

for which - oo
&amp;lt; x ^ 0; and this can only be regarded as a closed set if the

improper point oo is admitted as part of it.

The complement GG (H) of a closed set with respect to a perfect set G which
contains H is open relatively to G. Conversely the complement with respect to

the perfect set G of a set H contained in it, and open with respect to it, is a
closed set.

The proof of this theorem is precisely similar to that of the last theorem.

i, G2 be closed sets, both the sets M(Gly (?,), D(Glt G2) are closed.

*
Integrates de Lebesgue, p. 106.
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Let P be a limiting point of M (G l ,
G2) ;

then P must be a limiting point
of one at least of the sets G1} G2 . For, if this were not the case, a neighbour
hood of P could be determined so as to contain no points of G

1
or of G2 ,

other

than P, and therefore none ofM (G 1 ,G2 ). The point P consequently belongs to

one at least of the closed sets, and therefore to M(G1} G2 ), which is therefore

closed. A limiting point P, of D(Gl} G2),
is clearly a limiting point both of

(TJ and of G2 ;
therefore P belongs to both these sets, and thus to D (G1} G2),

which is consequently closed.

The theorem can be readily extended to the case of any finite number of

closed sets. Thus:

IfGlt G2 , ... Gn be closed sets, both the sets M(G!, G2 ,... Gn),D(Gl ,
G2 ,

... Gn)

are closed.

If the number of closed sets is indefinitely great, so that they form a

sequence G1} G2 , ... Gn , ... of such sets, the set M(G1} G2 , ...) is not necessarily
closed. For if Pl belong to Gl} P2 to G2 ,

P3 to G3 ,
. . ,

,
the point P, the limiting

point of the sequence P1; P2 ,
...

,.
does not necessarily belong to any of the sets,

and thus does not necessarily belong to M(G1} G2 , ...). On the other hand the

set D (G1} G2 ,...), if it exists, is necessarily closed, for every limiting point of it

is also a limiting point of Gm ,
for each value of m, and is therefore a point of

Gm for each value of m.

IfQ1} 0.2 , 3 ,...be a finite number, or a sequence, of open sets, M(0l} 2 , 3 , ...)

is also an open set.

The sets 1; 2 ,
. . . all being open sets, the complementary sets C (Oj), 0(0.,), . . .

are all closed sets : and consequently D {C (Oj), C (0.2), . . .

}
is a closed set, whether

the number of the given sets is finite or not. But the set D (C
f

(01 ), C(0.2), ...}

is clearly the complement of M(0 l} 2 , ...), which is consequently an open set.

In case the sets Oj, 2 , ... are all contained in a finite closed interval or cell,

the complementary sets 0(0^, (7(0.2), ... are taken relatively to this interval

or cell. If this is not the case, the sets 0(0i), C(02 ), ... will only be closed, in

an extended sense of the term, when limiting points at infinity are admitted.

This being taken into account, the proof applies to this case.

//&quot;(),, 2 ,
... 0,,,. be a finite number of open sets, the set D(0 l9 2 ,

... Om ), if it

exists, is also an open set.

For the set D (0, , 2 ,
. . . TO ) is the complement of the set M {C (00, C(02 ), . . .

C(0m}\, which is a closed set.

The theorem does not hold for the case of an infinite number of open sets.

It has been seen that the properties* of a set of being perfect, closed, open,

dense, or non-dense, are invariant for a wide class of transformations of which

examples have been given in 53
; special account being taken of the cases

in which boundaries at infinity must be adjoined to the space in which a set

* See a paper by E. H. Neville, Acta Math., vol. XLII, p. 63.
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exists. These properties of a set are accordingly said to be descriptive properties,

as distinct from the non-invariant metric properties which will be considered

in Chapter in.

PROPERTY OF THE SUCCESSIVE DERIVATIVES OF A SET.

57. The following fundamental property of the successive derivatives of a

set of points, in any number of dimensions, will now be established.

All the derivatives G
, G&quot;, G&quot;, ... G (n}

,
... of a given set are closed sets, and

each of these derivatives, after the first, consists of points belonging to the

preceding one, and therefore to G .

This theorem, usually stated for a bounded set, holds also for an unbounded

set, provided the extended meaning be given to the terms, limiting point,

closed set, which has been formulated in 53.

If a point P of G in}
,
where n = 2, existed, which did not belong to G

,
then

a neighbourhood of P could be determined, so as to contain only a finite set of

points of G, or no such points; and this neighbourhood would therefore contain

no points of G ,
and consequently none of G&quot;, G&quot;

,
... G (n)

]
which would be

contrary to the hypothesis that P belongs to G (n)
. Therefore every point of

QW (n
&amp;gt;

9) belongs to G . By considering the case n 2, we see that G is a

closed set.

If we take Gr (n
~

2) to be the original set, it follows from the above that every

point of G {n)
,
the second derivative, belongs to G (n

~
1}

, the first derivative. We
have thus shewn that

G (n] = D(G , G&quot;,... G&amp;lt;&amp;gt;).

The derivative G of a set G which is dense in itself is perfect.

For G is closed, and every point of G belongs to G ;
thus G contains no

point which is not a limiting point of G . Therefore G
, being both closed and

dense in itself, is perfect.

ENUMERABLE AGGREGATES.

58. An aggregate which contains an indefinitely great number of elements

is said to be enumerable*, or countable (abzalbar, denombrable), when the aggre

gate is such that a (1, 1) correspondence can be established between the elements

and the set of integral numbers 1, 2, 3, ....

An aggregate of objects is therefore enumerable if the objects can be

arranged in a series which has a first term and in which any assigned object

belonging to the aggregate has a definite place assigned by a definite ordinal

number n. Thus the elements of an enumerable aggregate can be represented

by a sequence of symbols
^l&amp;gt; ^2&amp;gt; ^n&amp;gt;

*
Cantor, Crelle s Journal, vol. LXXVII (1873), p. 258.
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It follows from this definition that the elements of two enumerable

aggregates are such that a (1, 1) correspondence can be established between

them.

Ifa new aggregate be defined by selecting, in accordance with a rule or finite

set of rules, elements from those which belong to an enumerable aggregate, an

indefinitely great number of such elements being taken, then the new aggre

gate is also enumerable. For such an aggregate selected from ult u2 ,
... un , ...

is ur ,
us ,

u t ,
...

(r&amp;lt;
s&amp;lt; t ...), which satisfies the conditions of having a first

term, and of having each element of the aggregate in a definite place in the

series. It thus appears that a (1, 1) correspondence can be established between

an enumerable aggregate and one which is a part of that aggregate, provided this

part be not finite. This is the characteristic property which distinguishes an

aggregate containing an indefinitely great number of elements from one con

taining only a finite number of elements. For example, a (1, 1) correspon
dence exists between all the integral numbers and all the odd numbers, or

between all the integral numbers and all the prime numbers.

If a finite number of enumerable aggregates be given, or even if the number

of such aggregates be indefinitely great, but enumerable, then the new aggregate

formed by combining these aggregates into a single one is itself enumerable *.

We may denote such a composite aggregate by the letters

?/ ?/ ?/ tlKoi . CCoQ i^o-: * tvon , *

and we shall shew that the double sequence so formed represents an enumer
able aggregate. To see this, it is sufficient to write the sequence in the form

U
13&amp;gt;

U\,n 1&amp;gt; 2*2, n 2) ^3, 3) ?
/( 1, 1

where the sum of the indices is the same for all the terms which are written

in one horizontal line. It is now clear that each number
tipq

has a definite

place in a sequence in which un has the first place ;
the double sequence is

therefore enumerable.

*
Cantor, Crelle s Journal, vol. LXXXIV (1875).
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An important particular case of the above result is the following

theorem :

Th.e aggregate of all the rational numbers is enumerable.

A rational number p/q may be denoted by upiq : therefore the aggregate
is enumerable. It makes no difference that any particular number p/q occurs

an indefinite number of times as u
rpj rq ; since, if all such terms except those

for which r = 1, and p/q is in its lowest terms, be removed, the aggregate left

is still enumerable.

For example, the aggregate of rational numbers in the open interval

(0, 1) may be arranged in the order ^, ^, f , ^, f, 1, f, f , f, ^, f ,
...

;
in which

each fraction that occurs is in its lowest terms.

A method of placing the rational fractions between and 1 into corre

spondence with the integers 1, 2, 3, ... has been given by Faber*. By this

method the integer corresponding to a given fraction can be calculated by
means of formulae. Faber shews that there exists a unique representation of

a given fraction p/q, in the finite form

Oi Oa
,

a s On

2! 3! 4!
+ +

(w + l)!

where ar is an integer (or zero) &amp;lt; r + 1
;
whereas every integer is uniquely

representable in the form

where br is an integer (or zero) &amp;lt; r + 1.

To the fraction p/q there corresponds the unique integer

a
l + a 2 . 2 ! + a3 . 3 ! + ... + an . n !

59. A more general theorem has also been established by Cantort.

An algebraical number is one which is a root of an algebraical equation in

which the coefficients are all rational numbers, so that the coefficients may
without loss of generality be taken to be integers. Cantor s theorem is, that

all the algebraical numbersform an enumerable aggregate.

To prove this theorem, let

PO ^ &amp;lt; P\& i T pn == vJ

be an equation in which p , p1 ,
... pn are all positive or negative integers ;

and let
I /n I

]

n\
i _[_. I /ji j

i y* A/
JL/O A l ~l~ r^ f^n &quot;^

^ **
3

then N is a positive integer which may be called the rank of the equation.
It is clear that there are only a finite number of equations of any given
rank, these equations having only a finite number of roots. If then we
let N 3, 4, 5, ... successively, all the algebraical numbers can be arranged

* Math. Annalen, vol. LX, p. 196.

f-
Crelle a Journal, vol. LXXVII.
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in a simple sequence ;
and thus they form an enumerable aggregate. The

aggregate which is formed of all the real algebraical numbers is consequently

also itself enumerable.

A number which is not an algebraical number is said to be transcen

dental. The existence of transcendental numbers was first established* by

Liouville, who shewed how examples of such numbers could be formed. No

general criterion is known by which it can be decided whether a number,

defined by a given analytical procedure, is algebraical or transcendental.

The first case in which such a number, well known in Analysis, was shewn to

be transcendental was that of the number e, the base of the natural system of

logarithms ;
and the first proof that e is transcendental was given by Herrnite.

The next case in which a number, defined analytically, was shewn to be

transcendental was that of the number TT. The first demonstration of this

important fact is due to Lindemann f, who proved the more general theorem

that, if ex = y, the two numbers x, y cannot both be algebraical, except in the

case #=0, y= 1. It follows that the natural logarithms of all algebraical

numbers are transcendental, as also are all numbers of which the natural

logarithms are algebraical.

60. The following fundamental theorem will now be established + :

The aggregate which consists of the continuum of numbers in a given

interval is not enumerable.

Suppose that w
l ,
w2 ,

ws ,
... denote the numbers in an enumerable aggre

gate ;
it will then be shewn that, between any two real numbers a, /3 whose

difference is as small as we please, a number occurs which does not belong to

the enumerable aggregate. It will then follow that, in the given interval

(, @), there are an unlimited number of points which do not belong to the

enumerable aggregate, and thus that the latter cannot contain all the points
of the continuum. If the enumerable set of points is not everywhere dense

in (a, /3), then smaller sub-intervals inside (a, /3) can be taken which contain

no points of the aggregate ;
and thus we have only to consider the case in i

which the given aggregate is everywhere dense in (a, /3). Let W
K&amp;gt;

be the first I

of the points w l ,
a&amp;gt;2 ,

... which lies within (a, /?), and a)K .2
be the ngxi of these

points which lies within (a, /3), so that ^ &amp;lt;
*2 . Let a be the smaller, and

/3 the greater of the numbers w
Ki ,

WK^,
then a &amp;lt; a &amp;lt; ft &amp;lt; /3, and ^ &amp;lt; K2 ;

and

if
//,

&amp;lt; /ca , then &&amp;gt;M does not lie within the interval (a , ft }. Considering this

latter interval, let
&&amp;gt;*,,

w
Kt
be the first two of the numbers of the enumerable

aggregate which lie within (a , ),
and let a&quot; be the smaller and

ft&quot;
the

greater of these ; then a. &amp;lt; a.&quot; &amp;lt; 0&quot; &amp;lt; $ ,
and tc.2 &amp;lt; KS &amp;lt; /c4. Proceeding in this

manner, we obtain a whole series of sub-intervals each one of which is entirely

* Liouville s Journal, vol. xvi, 1851.

t See Math. Annalen, vol. xx.

J Cantor Crelle s Journal, vol. LXXVII.

NH.
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within the preceding one; thus (a.
M

, ft
(v}

) lies within (a
1 &quot;&quot; 1

, /3
*&quot;1

); and if

fji ^ KZV , then tuF does not lie within (a
M

, ft
(v)

) ,
also

fCi ^ fC&amp;gt;2
^ /Cg . . . \ &2v_2 ^ ^^ 1 ^ ^1v )

and 2t&amp;gt; ^ /f2l/ ;
and thus &&amp;gt; lies outside (a

(v)
, /3

( &quot; ]

)-
Since the numbers a

, a&quot;,

a
&quot;

... are in ascending order, and all lie within (a, ft), they have a limit A
;

similarly , 0&quot; , j3
&quot;

... have a limit B; and a*&quot; &amp;lt; A B&amp;lt;j3
M

. If A &amp;lt; B,

then, since all the numbers &&amp;gt; are outside the interval (A , B), the given

\ aggregate is not everywhere dense in (a, /3) ;
which is contrary to hypothesis.

- Hence we have A = B; and the number A, or B, is a number which does not

occur in the aggregate Wj, a&amp;gt;2 ,
...

;
thus the assumption that all the real

numbers in a given interval can be effectively arranged in a simple sequence
has been shewn to lead to a contradiction.

It will be observed that the point of the foregoing proof consists in the

fact that an everywhere dense enumerable aggregate necessarily has limiting

points which do not belong to the aggregate.

A second proof*, also due to Cantor, .that the continuum is not enumerable

is the following : Without loss of generality, the interval may be taken to

be (0, 1). Suppose it to be possible to state a set of rules by which all the

numbers within this interval are arranged in a sequence, so that there is a first,

a second, a third, and so on
;
and so that every number occurs somewhere in

the arrangement. Since certain rational numbers are capable of double

representation, viz. by means of a decimal in which, from and after some fixed

place, all the digits are zero, and also by a decimal in which, from and after

some fixed place, all the digits are 9, we shall suppose this last mode of

representation excluded, so that each number is represented uniquely.

Subject to this convention, let the numbers, in order, be exhibited as decimals

PZ\

where each p stands for one of the digits 0, 1, 2, ... 9.

It is assumed that we are in possession of a set of rules by means of

which the wth digit of the wth number can be determined, for each pair of

values of m and n, by means of a finite number of applications of the given
set of rules. Let it be assumed that, if possible, all the real numbers in the

open interval (0, 1) occur in the above sequence. If now a number in the

open interval can be determined which does not occur in the above sequence,

a contradiction will have been shewn to be involved in the assumption that

all the numbers in the interval occur in the above sequence. Now such a

* Jahresbericht der deutschen Math. Vereinig., vol. i, p. 77.
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number can be denned, for example, by the following rules. Let the nth

digit of the number be pnn =pnn + 1, unless pnn = 8 or 9
;
if pnn

= 8 or 9, let

pnn = 0. The number pu p^ p3X ... pnn differs in respect of at least

one digit from every number in the above sequence, and therefore cannot

occur in the sequence. The contradiction in the original assumption is thus

established.

It will be observed that, in general, when any sequence of numbers in the

interval a&amp;lt;x&amp;lt;b has been defined, the existence of the sequence provides the

means ofdefiningother numbers in the interval thatdo not occur in the sequence.

THE POWER, OR CARDINAL NUMBER, OF AN AGGREGATE.

61. A notion of fundamental importance in the theory of aggregates is

that of the power, or cardinal number, of an aggregate. This notion will be

considered more generally and fully in Chapter IV, where it will be shewn

that the power of an aggregate is the generalization of the notion contained

in the cardinal number of a finite aggregate. At present, an account of the

notion of the power of an aggregate will be given, so far as it is necessary for

the application to the case of sets of points.

Two aggregates of objects are said to have the same power, or cardinal

number, when a (1, 1) correspondence can be established between them, so that

each element of either of the aggregates corresponds to one single element of

the other.

Finite aggregates have the same power when they consist of the same

number of elements, i.e. when they have the same cai dinal number. Of

aggregates which are not finite we consider first enumerable aggregates.

Every enumerable aggregate has the power of the aggregate of integral

numbers
;
and this we may denote by a. It has been shewn above that, if

from an aggregate of power a any elements be removed, then the remaining

aggregate, provided it contains a non-finite number of elements, has still the

same power a. It has further been shewn that the composite aggregate

formed of a finite, or enumerable, set of enumerable aggregates has the same

power a. It follows, as an interesting case, that the set of all those points of

an n-dimensional space whose coordinates are rational numbers has the power
a of the set of integral numbers, or of the rational numbers in a given linear

interval.

It is easily shewn that the power of the set of all the points in an interval

nr* fj

(a, b) is the same as that in any other finite interval, say (0, 1) ;
for ,

_
=

(/ (,lf

establishes a (1, 1) correspondence between the points x of (a, 6) and the

SO

points of (0, 1). Again, the relation - -=. establishes a (1, 1)
V#2 + ti*

correspondence between all real numbers, and those in the interval ( 1, 1) ;

62
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and thus the power of all real numbers is the same as that of all those in a

finite interval. This power is called the cardinal number of the continuum,

and may be denoted by c.

As regards unenumerable aggregates in general, it can be shewn that the

power of such an aggregate is unaltered by removing from the aggregate

any elements which form an enumerable aggregate. Let A denote the given

aggregate, and a the enumerable aggregate which is removed; and let B denote

the remaining aggregate, which cannot be enumerable, for otherwise (a, B), or

A, would be so also. From B, suppose an enumerable aggregate a to be

removed, leaving the aggregate C, thus A =
(a, a, C), B =

(a, C). Now (a, a )

and a
, being both enumerable, have the same power; and a (1, 1) correspon

dence therefore exists between their elements
;
and since A and B have the

aggregate C in common, it therefore follows that A and B have the same

power. As an example of this theorem, we see that the set of irrational points

in a given interval has the power c of the set of all numbers in the interval.

Again the set of transcendental numbers in a given interval has the power c

of the continuum
;
whereas the set of algebraical numbers in the same interval

has the power a. In this proof, the assumption has been made that the

unenumerable aggregate B necessarily contains an enumerable part a.

The known infinite sets of points defined in accordance with the methods

usual in the theory of sets of points, in a line or in a continuum of any
number of dimensions, have either the power a or the power c

;
but it has not

yet been established that the assumption of the existence of an infinite set

ofpoints which has neither the power a nor the power c leads to a contradiction.

Other aggregates have been contemplated which have a power higher than

c
;
these will be referred to later, in dealing with the theory of functions.

62. The p-dimensional continuum has the power c of the one-dimensional

continuum*.

To prove this theorem, we use the fact that any irrational number in the

interval (0, 1) can be exhibited as an infinite continued fraction

1 1 1
x =

where a ly a2 ,
... ap ,

... are determinate integers for any given irrational number

x in the interval (0, 1). Let
1 1 1

x, =

p+2

xn =
p T 2p T a

3jp
-t- ...,

*
Cantor, Crelle s Journal, vol. LXXXIV, p. 242.
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thus, corresponding to any value of x, a set of irrational numbers x-i, x, ... xp
is uniquely determined, and conversely, corresponding to any set of irrational

numbers xlt xz ,
... xp ,

an irrational number x is uniquely determined.

It has thus been shewn that the irrational points of the linear continuum

(0, 1) correspond uniquely to those points of the jo-dimensional continuum in

which each coordinate is in the interval (0, 1), and is irrational. It has been

shewn in 61 that the set of irrational values of x1} in the interval (0, 1), has

the same power as the set of all the numbers in this interval. Since this holds

also for xz ,
xa ,

... a&amp;gt;pt it follows that a (1, 1) correspondence exists between that

set of points in the n-dimensional continuum, for which xl} sc2 ,
... xp all have

irrational values, and the set in which #1; #2 , ... xp have all values rational or

irrational; thus these sets have the same power. Hence the set of all points

of the jo-dimensional continuum, in which each coordinate is in the interval

(0, 1), has the same power as the set of all points in the linear interval (0, 1).

It has thus been shewn that the ^-dimensional continuum has the same

power c as that of one dimension.

THE ARITHMETIC CONTINUUM.

63. The arithmetic continuum being regarded as obtained by adjoining to

the set of rational numbers the set of all their limiting points, the question

arises how far it is legitimate to consider the complete set so obtained as

constituting a single object, determined by means of the elements of which

it is composed. A finite set of numbers, or points, constitutes a single object

determined by means of its parts, in the sense, that those parts can be

exhaustively exhibited by means of a finite number of specifications repre-

sentable by a finite number of symbols. An enumerable set of numbers, or of

points, in particular the set of rational numbers, is not determinate in the

sense that the elements of the set can be exhaustively exhibited; but it is

determinate in the sense that a rule of tabulation can be given, such that each

particular number of the set occupies a determinate place in the table; and

each particular number can be represented by means of a finite number of

symbols. Such a set may be regarded as an aggregate, or single object, in

the same sense in which the natural numbers 1, 2, 3, ... may be regarded as

forming an aggregate. When we come, however, to the case of the continuum,
or aggregate of all real numbers, the fact that this aggregate is unenumerable

introduces a new element into the question of the legitimacy of considering
the set of these numbers as forming a determinate whole, or as constituting
a single object of thought. The set of real numbers cannot be tabulated in

such a manner that no number fails to occur at some definite place in the

table. In fact it has been shewn, in 60, that the assumption of the existence

of such a table leads to contradiction. It thus appears that no set of rules or

specifications can be given which suffice to determine successively all the
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numbers of the set; and no finite set of symbols can exhaustively exhibit the

(numbers.

The only sense in which the numbers of the set are determinate is

that each such number is the limit of a convergent sequence of numbers,

taken from the unending table formed by the rational numbers. It may fairly

be doubted whether such a negative specification of elements amounts to a

valid synthetical definition of a determinate aggregate; this point will however

be further discussed in Chapter IV, in connection with the general theory of

aggregates. It will there be shewn that the arithmetic continuum has an

order-type possessing definite characteristics which, in their totality, uniquely

characterise it. This expresses the only kind of unity which can appertain to

the continuum, considered as a synthetic arithmetic construction. From the

point of view of Arithmetical Analysis the existence of the aggregate of real

numbers, as a single definite object, possessing assigned properties, may be

regarded as a fundamental postulate ;
the validity of such postulation being

subject to the law of contradiction. If it be held that we possess an in

dependent knowledge of the existence of the geometrical continuum, derived

by a process of idealization from our intuition of space, we may regard the

function of the set of real numbers to consist, not in a synthetical formation of

the concept of the continuum, but inversely in an analysis of the contents of

the continuum. It is difficult to see how precision can be introduced into the

intuitional notion of the spatial continuum apart from some theory relating

either to points or to infinitesimals; and the language employed in such a

theory must be of a symbolical character amounting to the use of some kind

of arithmetical notation. Regarding the geometrical continuum in this way
as a single object of which we have a direct knowledge obtained from our

intuitions of space and time, the reduction to a precise abstract form may be

regarded as being made upon the assumption that the system of rational

numbers, with their limits adjoined, is adequate to the analytical description

of the continuum, in the sense that each point in the continuum is represented

uniquely by a single real number, and that there is no point in the continuum

which is not so represented. This amounts to a definition, in a certain sense,

of the contents of the geometrical continuum. Such definition is not the only

possible definition, but it is a legitimate one, provided it suffices for the

purposes we have in view in Analysis and Geometry, and provided it does

not conflict with the concept of Continuity as derived from intuition. The

generic distinction between a continuous geometrical object, and a point,

or set of points, situated in that object, is not capable of direct arithmetic

representation. This does not, however, impair the efficiency of Arithmetical

Analysis in dealing with geometrical objects. In Cartesian geometry, for

example, Analysis is really concerned only with the points that can be

determined in the geometrical objects with which it deals. This does not

mean that a continuous geometrical object is analysed into points which are

of necessity to be regarded as its
&quot;parts,&quot;

but it does mean that, for the
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particular purposes of Analytical Geometry, an adequate treatment of it is to

regard it as a set of points.

Taking as data the set of rational numbers, an irrational number of the

continuum is defined in some manner which involves the use of words and

symbols. Such a symbol may have a unique meaning, or it may be of the

nature of a variable having as its field some enumerable set of rational, or of

integral, numbers already defined; for example the symbol n maybe taken to

denote any integer of the sequence of natural numbers. By means of a given

stock of such words and symbols it is possible to define only an enumerable

set of elements of the continuum, each word, or symbol, being employed a finfte

number of times only. On this ground it has been maintained* by Konig that

the elements of the arithmetic continuum fall into two classes; the first class

consisting of numbers capable of finite definition, and those of the second class

being inherently incapable of finite definition. If this view were justifiable,

grave difficulties would arise in the whole theory of the arithmetic continuum,

which is the basis upon which Arithmetic Analysis rests. For an object that

is inherently incapable of being defined finitely may be held not to be definable

at all, and such an object is regarded by many, if not most, mathematicians as

not being an existent object for mathematical thought. The fallacy involved

in the introduction of this distinction appears clearly when the method and

implications of Cantor s second proof, given in 60, that the continuum is

unenumerable, are fully scrutinized. It was there shewn that if, by means of

a given stock of words and symbols, a set of numbers forming an enumerable

aggregate is defined, the existence of such aggregate enables us to introduce

a new word or symbol, or to give a new meaning to an existing symbol, which

will represent the enumerable aggregate itself, and can then be employed for

the purpose of defining new elements of the continuum which do not occur in

the aggregate. Such a new element has a finite definition in the same sense

as that in which the elements of .the enumerable aggregate in question have

finite definitions. It must be remembered that an enumerable aggregate may
itself be denoted by a single word or symbol that can be created or assigned

ad hoc, whenever the enumerable aggregate has been defined.

The essence of the proof in 60 is then that there exists, and can exist, at

any time, no stock of words and symbols which cannot be increased for the
,

purpose of defining new elements of the continuum. The theorem that the

continuum is unenumerable is equivalent to the fact that the assumption of

the existence of a final and complete stock of words and symbols, by means of

which alone elements of the continuum can be defined by finite definitions,

leads to a contradiction. Those elements of the continuum which are at the

present time, or will be at a future time, capable of definition by means of the

* See Konipt, Math. Annalen, vol. LXI, p. 157, also vol. LXIII, p. 217. See also Richard, Acta

Math., vol. xxx, p. 295, and Hobson, Proc. Land. Math. Soc. (2), vol. iv, p. 170, and Whitehead

and Kussell, Principia Matliematica, vol. i, p. 64.
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words and symbols in existence, may form an enumerable set; but this does

not prove that there exists any element of the continuum that is inherently

incapable of finite definition. In fact it can be proved that those elements of

the continuum that remain when the hypothetical elements incapable of finite

definition are removed, form an aggregate which has all the properties of the

continuum, and can therefore be identified with it.

Let us consider the continuum of real numbers in the interval (0, 1), and

let G denote the set of those numbers in it that are capable of finite definition.

In the first place, the set G is dense in itself, for any element of it is the limit

of a sequence of rational numbers, all of which belong to G. Next, the set G
is closed; for if every number of a convergent sequence {xn } belong to G, it

can be proved that the limit of the sequence belongs to G. Denoting the set

[xn ] by E, the number which is the limit of the sequence can be finitely defined

as follows: Let the numbers of E be represented by non-terminating decimals

so that in none of them are all its digits, from and after a fixed one, equal to 9.

Let the wth
digit of a number x be defined as that digit which is identical

with the mth
digit of an infinite number of the elements of E, The number x

so defined is the limit of the sequence of numbers all of which belong to G,

and x, being thus finitely defined, itself belongs to G.

The set G is thus dense in itself and closed, and is therefore perfect; it is

clearly everywhere dense in the interval (0, 1). It has therefore all the

properties of the continuum, and therefore the hypothetical non-definable

elements can be disregarded.

It will be observed that the elements of the continuum cannot be exhaus

tively represented by any finite set of symbols, each used a finite number of

times. Thus there can exist no systematic notation which suffices to represent
all the numbers of the continuum.

TRANSFINITE ORDINAL NUMBERS.

64. The theory of transfinite ordinal numbers had its origin* in the

investigation of the theory of sets of points. The general abstract theory
of such numbers, or order-types, will be deferred until Chapter iv; it is

necessary however to introduce here the conceptions connected with the

formation of these numbers, with a view to utilizing them in the theory of

sets of points.

Let PJ, P2 , ...Pn ,
... denote a sequence of points in a given interval,

representing a sequence a lt a.2 ,
a3 ,

... of increasing numbers, so that

a l &amp;lt;az &amp;lt;a3 ... &amp;lt;an

* An account of Cantor s earliest presentation of this subject will be found in Math. Annalen,

vol. xxi, p. 545.
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This sequence of points has a limiting point which is not one of the points of

the sequence, and is on the right of all those points; this limiting point we

may denote by Pw . The symbol &&amp;gt; may be regarded as denoting a new ordinal

number which comes after all the ordinal numbers 1, 2, 3, ... n, ...
;

it is

called the first transfinite ordinal number. The number o&amp;gt; is not contained in

the sequence of finite ordinal numbers, but comes after all of them; and we

shall see that it may be taken as the first of a new sequence of ordinal

numbers, all of which must be regarded as ordinally greater than the finite

ordinal numbers.
P(u POI+ I FW-2 Piaj-n

*~~
P, P-2

P
3
Pn

:

&quot;&quot;?.

~
B

FIG. 1.

Suppose that beyond the point PM there are other points which we wish

to regard as belonging to the same set as the points P1} Pz ,
... Pn ,

... Pu \

then these points will be denoted by Pu +i, P 0&amp;gt; +^, ... P^+ n , ,
and if these

points are finite in number, there will be one of them Pu+m which is the last

on the right. The indices of all the points of the set will then be

1, 2, 3, ... n, ... a), &&amp;gt; + 1, co + 2, ... (o + m;

and the numbers
&&amp;gt;,

to 4- 1, ... w + m are regarded as a set of transfinite ordinal

numbers, which commences with the first transfinite ordinal number
&amp;lt;w,

and

contains the m succeeding transfinite ordinal numbers. It may however happen
that the set of points Pw ,

Pw+1) Pw+2) ... has no last point. In that case,

assuming that the points are all contained in a finite interval, the set has

a limiting point which is not contained in the set itself; and this limiting

point we denote by P^+o, or Pw . 2 &amp;gt;

where &&amp;gt; . 2 is an ordinal number which is

not contained in the set w, w + 1, + 2, ...
,
but comes after the numbers of

that set.

If we wish to include further points which are on the right of P^.9, we
must introduce numbers denoted by &&amp;gt;. 2 + 1, to. 2 + 2, ...; and, in case these

points form an infinite set in a finite interval, they will have a limiting point
which will be denoted by PM .2+M or Pw . 3 . We have now the ordinal numbers

1, 2, 3, ... w, w + 1, &) + 2, ... &). 2, &). 2 + 1, w. 2 + 2, ... to. 3.

If we proceed further in this manner, it is clear that we may require numbers

to . n, w .n + 1, &&amp;gt; . n + 2, ... &&amp;gt; . n + 1, ...
, where n denotes any finite number.

Further, it may happen that the set of points Pu ,
Pa) . 2 , P&amp;lt;o.3,

... PW . M ,
...

is itself infinite, and has a limiting point on the right of all these points. This

point we denote by P^; and the number to
2 we consider to be a new ordinal

number which succeeds all the numbers &amp;lt;D . n + m, where n and m have all

possible finite values.

Points on the right of Pws may be denoted by means of the indices

to
2 + 1, w 2+ 2, &)

2 + 3, ...
;
and if these points are infinite in number, they may

have a limiting point Pus+ w .
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Points on the right of PW2+(0 may be denoted by the indices &amp;lt;w

2 + &&amp;gt; + !,

&amp;lt;u

2 + w + 2, . . .
;

if these have a limiting point, it will be denoted by the index

wr + 03. 2. Proceeding in this manner, we may have points of which the indices

are &amp;lt;u

2 + co . 3, &amp;lt;w

2 + &&amp;gt; . 4, . . . . If there is an infinite set of such points, and the

set has a limiting point, on the right of the set, this limiting point will have

&&amp;gt;

2 + to
2
,
or to

2
. 2, for its index.

If we proceed still further, we see as before that we may have to

contemplate numbers of the form to
2

. p + &amp;lt;o . q + r, where p, q, r are finite;

afterwards &amp;lt;w

3
,

o&amp;gt;

3 + l, ..., o&amp;gt;

3
. p -f &amp;lt;w

2
. q + &&amp;gt; . r +s, &c. The general type of

ordinal numbers which can be obtained in this manner is represented by
&&amp;gt;

w
Pn + &amp;gt;

n~l

-pn-i + + &amp;lt;&quot; Pi + Pol and it is clear that, for the representation
of points of a given set, such numbers may be required as indices.

It may happen that the set of points whose indices are w, or, o&amp;gt;

3
,
... is not

finite; then the limiting point of such set will be denoted by the index &)&quot;.

Starting afresh with this number, we may form numbers such as

(l)
un .pn + un- l

.pn_ 1 +...+p0f

If the points whose indices are a)
10

, w^, &&amp;gt;

w3
, ... do not form a finite set, their

limiting point will be denoted by w^.

In a similar manner we may denote by e^ the number which comes after

the sequence &&amp;gt;, &&amp;gt;&quot;,
&&amp;gt;&amp;lt;o

w
,
w^ u&amp;lt;a

...; and starting from ea ,
we may similarly

proceed to form further numbers in endless succession.

65. All the ordinal numbers which can be formed in the manner above

described are formed by means of the application of Cantor s two principles of

generation (Erzeugungsprinzipien).

(1) After any number another immediately succeeding it is formed by the

addition of unity.

(2) After any endless sequence of numbers, a new number is formed which

succeeds all the numbers in the sequence, and has no number immediately

preceding it.

All transfinite ordinal numbers which can be formed by means of these

two principles of generation are said to be ordinal numbers of the second class.

The finite ordinal numbers are said to be of the firstdass; they are formed

successively, starting with the number 1, by means of the first principle of

generation alone.

The numbers of the second class are of two essentially distinct species:

(1) non-limiting numbers, those numbers which have each a number im

mediately preceding them, and from which they are formed by the addition

of unity; for example to + n, ay. p + o). q + 1, &&amp;gt;

w + w + 1 : and (2) limiting

numbers, those which have no number immediately preceding them, from

which they are formed by the addition of unity ;
for example &&amp;gt;,

&&amp;gt;

2 +
&&amp;gt;,

(a&amp;lt; + &&amp;gt;

2

are limiting numbers.
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Any particular number of the second class can be denoted by a finite

number of symbols, but there is no upper limit to the number of symbols

required to denote such numbers.

Cantor has further postulated the existence of a number fi which comes

after all the numbers of the second class, and is the first number of a new

set which is called the third dass. The number fl cannot be obtained as the

number which succeeds a simple sequence, by means of the second principle

of generation; for every number which can be so obtained is itself a number

of the second class. This number fl can be obtained only by means of a third

principle of generation, which postulates the existence of a new number

coming after all the numbers of the complex formed by the application of the

first and second principles of generation. The validity of the postulation of

the existence of the number fi, and of the higher numbers of the third class,

will be discussed in Chapter IV.

66. A fundamental property of the numbers of the second class may be

expressed as follows:

Let PI, P2 ,
P3 ,

Pn , PU, PU+I, be an infinite set of points such that

either (1) there is a last point Pp, where /3 is some number of the second class,

or (2) there is no last point, but every index occurs which is less than some

limiting number
&amp;lt;y of the second class, whereas the index 7 itself does not occur;

the set of points is then enumerable.

The sets

P P Pf-\t *
2&amp;gt;

* n , . ..

P P P-* (O )
-*

(0+ 1) -*-
U)-f-7l )

*

p p p
-*&amp;lt;o.2&amp;gt; *.S+1 *.*+

P P
-1 (o. r&amp;gt;

-1 to . r+1&amp;gt;

where every index less than o&amp;gt;

2
occurs, form an enumerable aggregate of

enumerable sets of points ;
and this has been shewn, in 58, to be itself an

enumerable set. Now consider the sets

P P P P P*lj *
2&amp;gt;

*
3&amp;gt; -L&amp;lt;a;

-L
&amp;lt;o

P P P P

P&amp;lt;at.2&amp;gt; -Pw2
. 2 + 1) -*&amp;lt;o

2 .2 + (o&amp;gt;

P P P

such that in the first set there is every index less than to
2

,
in the second,

every index less than &&amp;gt;* . 2, and so on. Each of these sets is enumerable, and

there is an enumerable set of such sets
;
hence the whole set, which contains

every index less than o&amp;gt;

3
,
is enumerable. In this manner it can be shewn that,
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if every index less than &amp;lt;w

n
occurs, the set is enumerable. If the theorem

holds for sets which contain every index less than /3j, B2 , /3:!
...

, then it holds

for a set which contains every index less than ft, the limiting number of the

sequence /3 } , /32 , ft For the points with indices less than /31; with indices

= /3j and &amp;lt; /32 ,
with indices ^ /32 and &amp;lt;/33 ,

&c. form an enumerable sequence
of enumerable sets; therefore, by the theorem of 58, the whole set with

indices &amp;lt; /3 is enumerable. Since the theorem holds for fti
=

to, /32
=

o&amp;gt;

2
,

@3
= w3

,
... it holds for @ = a)

u&amp;gt;

. By continual application of this method, since

any number can be reached by means of the two principles of generation, and

since every number is either a limiting number, or is obtained from one by

adding a finite number, we see that the general theorem holds.

It will now be shewn, conversely, that if a set of points Pl ,
P2 ,... Pn ,

. . . PM ,
... Pp, ... is enumerable, there must be some definite number 7 of the first

or of the second class, such that 7 does not occur among the indices of the points,

and such that every number less than 7 does so occur.

In case 7 is a limiting number, there is no last point of the set; but if 7
is not a limiting number, there is a last point, viz. the one of which the index

is the number immediately preceding 7.

To prove the theorem, we observe that, since the given set of points is

enumerable, it may be placed in correspondence with a set of points Q1(

Q-2, Qn , in which all the indices are numbers of the first class. Let us

suppose that, if possible, no number 7 exists
;
and let P

tti
be the point of {P}

which corresponds to the point Q1 of {Q}. Let QPl
be the point of {Q} of

smallest index, such that the corresponding point of {P} has an index which

is &amp;gt;a1 ;
denote this index by cr2 * Then let QP2

be that point of {Q}, of

smallest index, such that the corresponding point of {P} has an index &amp;gt; 2 ;

denote this index by 3 . Proceeding in this manner, we have a set of points

Qi, Qp t &amp;gt; Qpi&amp;gt;--Qpn &amp;gt; corresponding in order to a set of points P
ai
P

a2 ,

P
03 ,

... P0w ,
... where j

&amp;lt; a2 &amp;lt; 3 ... &amp;lt; ctn &amp;lt; ... . There exists a number a of

the second class, which is the limit of the sequence a1} a.2 ,
... an ,

...
;
and by

hypothesis there exists a point Pa , which has a for index. Now the set {Q}

can contain no point which corresponds to Pa , because each point Qn corre

sponds to a point of {P} with an index less than a, and thus there is a

contradiction in the hypothesis that a occurs amongst the indices of the points
of {P}. Hence there exist numbers of the second class which do not occur

as indices in the set {P}, and these numbers form a set which is a part of the

aggregate of numbers of the second class. In this set there must be a lowest

number 7, and this number 7 is the first which does not occur amongst the

indices of the set {P}. That every part of the aggregate of numbers of the

first and second classes has a lowest number will be shewn, in Chapter iv,

to be a consequence of the structure of the ordered aggregate.
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EXAMPLES.

1. On a straight line AB, let us denote by Plt P%, P3 , ..., those points at which the

ratio ABjPB has the values 1, 2, 3, .... The point PI coincides with A, and the point

B can only be represented by PM . Now take any one of the segments PrPr + 1

-

this may
for convenience be represented on an enlarged scale. Denote by Qrl , Qr2 , Qr3 , ..., the

points on Pr Pr + i, at which PrPr + i/QPr + i
takes the values 1, 2, 3, ...; thus Pr + 1 can

only be represented by Qru - Supposing this to have been done with every segment
PrPr + \ of AB, let us imagine all the points Q to be marked on AB, and to be numbered

from left to right.

In PiP2 ,
we shall have 1, 2, 3, ... co,

in P&amp;lt;2P3 there will be w + 1, o&amp;gt; + 2, ... co . 2,

andinPa/^ o&amp;gt; . 2 + 1, . 2 + 2, ... co . 3 ;

the point B can be represented only by co
2

. If now we proceed to take each segment

QreQr, s + i&amp;gt;

ar&amp;gt;d to divide it in a similar manner, at points R for which QrsQr,i + i/^Qr,s + i

has the values 1, 2, 3, ..., and then imagine all the points R obtained in every such

segment Qrs Qr, +i to be marked on AB, and numbered as before, from left to right, it will

be seen that all the numbers (*
2p+ a&amp;gt;q

+ r will be required, and that the point B can be

represented by co
3
. The points PI, P2 ,

... P&amp;lt;a
will have for their ordinal numbers

1, co
2

,
co
2

. 2, co
2

. 3, ... co
3

;
the point Qrs will be numbered co

2
. r+ co . s; the finite numbers

are all used up in the first sub-segment of AB. By proceeding to further subdivision, we

may exhibit on AB, the ordinal numbers (a
n
pn+ &amp;lt;i&amp;gt;

n ~ 1pn- 1+ ...+p() ,
and the point B will

then be represented by co
n + 1

.

2. The properties of the integral numbers in relation to their prime factors may be

employed to rearrange the series 1, 2, 3, ..., so that the numbers may be made to

correspond with a series of ordinal numbers of the first and second classes.

First take the primes 1, 2, 3, 5, 7, 11, ... ; these correspond with the numbers of the

first class 1, 2, 3, ... n, .... Then take the squares of the primes, omitting unity ;
we thus

have 22
,
32

,
52

,
7 2

,
II 2

, ..., corresponding to co, co + 1, co + 2, ... co + rc, ....

We then take the cubes of the primes,

2 3
,
33

,
5 3

,
7 3

,
II 3

, ..., corresponding to co . 2, ca . 2 + 1, ... co . 2 + ?i, ...,

and in general, 2r + 1

,
3r + 1

,
5 r + 1

,
... , corresponding to co . r, co.r+1, ...&amp;lt;o.r+ n

t
.... We

may then take the numbers ab which consist of the product of two prime factors ; these,

arranged in ascending order, correspond to co
2
,

o&amp;gt;

2+ l, ... o&amp;gt;

2
+?i, .... Next take the numbers

a262
,
which consist of the squares of the last set; these correspond to o&amp;gt;

2
+a&amp;gt;,

a&amp;gt;

2+ a&amp;gt;-f 1,

We then take the successive sets of numbers of the forms a363
,
a464

,
...

;
we thus obtain

the numbers which may be taken to correspond with

w2 + a). 2, co
2 -fw. 2 + 1, ... o)

2+ w.3, ... o)
2 + co.p+ y, ...,

all of which are less than co
2

. 2. The sets of numbers of the forms

a2
ft, (a

2
6)

2
,

... (a
2
6), ... a3

6, (a
3
6)

2
,

... (a
3
b)

n
,

... a*b, (a
4
6)

2
, ...,

may then be taken. Afterwards, we may proceed with the numbers which contain three

different prime factors, and so on. It is clear that this mode of rearranging the integral

numbers in their natural order, so that they correspond in the new order with ordinal

numbers of the first and second classes, admits of great variety. In every case, there will

be some lowest number of the second class, which is not employed in the correspondence

established.
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PROPERTIES OF AGGREGATES OF CLOSED SETS.

67. The following theorem, due to Cantor, relating to a sequence of closed

sets, each of which contains the next, will be established :

Having given a sequence of closed sets G^G^, ... Gm ,
... each of which contains

the next, there exists a closed set GM each point of which belongs to Gm ,for every

value of m.

The sets may be in any number of dimensions.

Apply to the fundamental cell (or interval) in which Gl is contained a

system of nets Dl} D2 ,
... Dn ,

.... There must be at least one mesh dlt of the

net Dl} that contains points which belong to all of the sets Gm \
for otherwise,

for some value of m, no mesh would contain a point of Gm . In case more than one

mesh of Dl has this property, we may suppose d^ to be that one of such meshes

which has lowest rank in the ordered set of all the meshes ofDl . Consider next

those meshes of D2 that are in c^; as before there must be at least one of

such meshes which contains points that are in all the sets Gm ;
let dz be that

one of such meshes which has lowest rank of all the meshes of D2 that are in

d. Proceeding in this manner, there is determined a sequence dl , d.^, . . . dm ,
. . .,

of meshes belonging to Dr ,
D.2 ,

... Dm ,
... respectively, each of which contains

the next, and each of which contains points that belong to Gm for every value

of m. The sequence {dm }
defines uniquely a point P that is in all the meshes

of the sequence. This point P is a limiting point of Gm ,
for each value of m;

and since Gm is closed, it belongs to Gm . Thus the existence of at least one

point of Gu has been established. The set Gw is possibly finite, and is in any
case closed. For, in an arbitrarily small neighbourhood of a limiting point P
of the set Gu ,

there exist points of Gu ,
and therefore points of Gm \

hence P is

a limiting point of Gm . Since Gm is closed, P must be a point of Gm for each

value of m, and therefore P belongs to Gu .

The corresponding statement does not necessarily hold good for a sequence

{Gm}
of sets, each of which contains the next, when the sets Gm are not closed;

for the point P, in the above proof, is then not necessarily a point of the

unclosed set Gm . The set Ga therefore does not necessarily exist.

This is illustrated by the case in which Gm is the linear set of points

.
,

The point zero is such that, in any neighbourhoodm m+l m + 2

of it, points of Gm exist for each value of m, but that point does not belong

to Gm , consequently the set Gu does not exist.

The following generalization of Cantor s theorem has been given* by

Sierpinski :

Having given a family F of closed sets, the necessary and sufficient condition

that there exists one point at least which belongs to all the closed sets P, of F, is

* Bulletin of Acad. of Sciences of Cracow, April May, 1918.
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that every finite number of the sets P belonging to the family F has at least one

point in common.

This may be proved by the use of a system of nets.

The following is a corollary of this theorem :

If F is a family of closed sets P, such that, if any pair of the sets P be taken,

one of them contains the other, there exists at least one point common to all the

sets P which belong to the family F.

THE TRANSFINITE DERIVATIVES OF A SET OF POINTS.

68. If G denotes a set of points in a cell (or interval) (a, b), it has been

shewn in 57 that the derivatives G (n
, G, ... G (n}

,
... are all closed sets, and

that all the points of any one of these sets, after the first, are contained in the

preceding set. If G is of the second species, G (n] exists for all values of n,

and in this case, in accordance with the theorem of 67, the set D (G (1}
, G, . ..)

which contains points belonging to every G (n}
exists, and is closed. This closed

set may be denoted by G (&amp;lt;a}

, where co is the first transfinite number. It is

defined to be the derivative* of G, of order w. In case 6r (ci)) contains more
than a finite set of points, we can proceed to form successive derivatives of

GM in a manner similar to that in which the derivatives Gw , G (2}
,
... of G

were formed. These successive derivatives may be denoted by G i&amp;lt;a+1&amp;gt;

, G (M+2)
, ...

6r (&)+n)
,
...

,
and are regarded as the derivatives of G of orders &&amp;gt; + 1, w + 2,

... to + n, They have the same properties as the derivatives of finite order,

viz. that all the points of each are points of G(l
\ and that all the points of any

one of them are points of the preceding ones.

It may happen that one of the derivatives Gj(a&amp;lt;+n) contains no points; then

the process of forming derivatives has come to an end, the last one being
(&amp;lt;o+n-i)_ if tn is js no fae case, a repetition of the above reasoning shews that

the set D(G (&amp;lt;a+1

\ G (&amp;lt;a+2)

,
... G (&amp;lt;a+n

\ ...) contains at least one point, and is

a closed set; this set is denoted by G u&quot; 2)
,
and is defined to be the derivative

of G of order &&amp;gt; . 2. In the same manner we can proceed to form further

derivatives, whose orders are numbers of the second class.

In general, if a1} oc2 ,
ct3 , ...,... denote a sequence of numbers of the

second class, whose limiting number is /3, the same reasoning as before

shews that, if all the derivatives G (a
\ Cr

&quot;

2
*,

... G (an}
,
... exist, then the set

D (G
(a
^, G ( 2

,
... G lan)

,
. . . ) contains at least one point, and is a closed set. This

is denoted by G (/3)
,
and is defined to be the derivative of G of order y3.

If we form the successive derivatives of the set G, whose orders are the

numbers of the first and second classes, it may happen that there is a first

number 7, of the first or second class, for which G^ =
;
but this number y

cannot be a limiting number of the second class.

* See Cantor, Math. Annalen, vol. xvn, p. 357.
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It may, however, happen that no number 7, of the first or second class,

exists for which G (v ] =
0, so that derivatives of G exist of orders corresponding

to all the numbers of the first and second classes. It will be shewn in 82

that, if G f does not vanish, for some number 7, of the first or of the second

class, then there necessarily exists a number /3, of the first or second class,

such that G (fi) = G (fi+l} = G (ft+
&quot;

}
... . This set G (fi) is a perfect set, and it is

frequently denoted by G {a]
,
where O is the first transfinite number of the

third class. The notation G (n) may however be employed, independently of

the acceptance of the theory of numbers of the third class.

Conversely, if G(a] does not exist, G{^ } must first vanish for some number

7 of the first or second class, which number cannot be a limiting number.

EXAMPLES.

1*. Let G&amp;gt; denote the enumerable set of points, each one of which is given by

1 + _J_ + .^ + &amp;gt; ..,
1

where n has all positive integral values, excluding zero, and m^, m 2 , ... mn have all positive

integral values including zero, independently of one another.

It is easily seen that in G(n
\ the points , x^Ti a^ occur

&amp;gt;

and hence that 6K&quot;)

exists, and consists of the single point zero.

2*. Let G denote the enumerable set of points, each one of which is given by

-L + ._i_ +...+
ip4^..^ + gh^1

..^. +^..^..-^
1_ 1

where ??il5
m2 ,

... mn , p, &amp;lt;?i, g2 ,
... qp have all positive integral values, including zero. In

this case 6r
(

a&amp;gt; + 71
) consists of the single point zero.

3*. Let G denote the enumerable set of points, each one of which is given by

1 +
1

+
1

.... ,

*

|

1

._ _ __ , ,

n+m + +m + + l

l ... n l 1 t ... n l t
...

where n, m l5 w? 2 ,
... mn , p, ql ,

... qp ,
have all positive integral values. In this case (PC - 2

)

exists, and consists of the single point zero.

SETS OF INTERVALS OR CELLS.

69. The properties of a set of intervals, or of cells, which intervals, or cells,

are assigned in any manner, are closely connected with the properties of sets

of points, and will therefore be considered here in some detail.

* These examples were given by Mittag-Leffler, Acta Math., vol. iv, p 58.
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Let us suppose that a finite set of non-overlapping intervals has

been defined, all in the finite interval (a, b). Denoting these intervals by

(i, 6j) (a2 ,
62 ) ... (an ,

bn ), let us suppose that all the intervals (a,., br ) of the

set are such that none of their lengths b r ar are less than a fixed positive

number e. Then the number n of the intervals cannot exceed (6 a)/e. For

the 2n points a1} 61( a2 ,
b.2 , n, bn divide (a, b) into at most 2n + l parts, the

sum of the lengths of which is b a. These parts consist of the n given

intervals, and in general of complementary intervals; it follows that the sum

of the lengths of the n given intervals cannot exceed b a
,
and thus that the

number of the integrals cannot exceed (b a)/e.

Next, suppose that any non-finite set of non-overlapping intervals is defined,

all of the intervals lying in the fundamental interval (a, b). Choose a sequence

ej, e.2 ,
... en , ... of positive decreasing numbers which converges to zero. The

number of intervals of the given set which are of length en is finite, since it

does not exceed (b a)/en . The intervals of the given set can now be arranged

in order of their lengths, taking first those that are &amp;gt; elt then those that are

&amp;lt; 6j and = e2 ;
and so on; there being only a finite number of intervals in each

set. In case a number of intervals are of equal length their order may be that

in which they occur in (a, 6), from left to right. Therefore, since all the

intervals of the given set can be arranged as a simply infinite aggregate, they

form an enumerable aggregate.

Next, suppose that the intervals of a given non-overlapping set are in the

unbounded interval (
oo

,
oo ), in which the position of any point is denoted

by x. If we consider the correspondence =
x\\igp + 1, where the radical always

has the positive sign, the unlimited interval ( oo
,
oo ) corresponds to the open

segment (
-

1, 1) in which the point f lies. The intervals of the given set

correspond uniquely to intervals in ( 1, 1), and the set of these latter

intervals is enumerable; hence the given set is so also. It has thus been

shewn that:

Every set of intervals in a bounded, or unbounded, interval which is such

that no two of the intervals overlap is either finite, or forms an enumerable

aggregate*.

The corresponding theorem can be shewn to hold for a set of non-over

lapping cells in two or more dimensions. Two such cells may have a portion
of their boundaries in common.

It will be sufficient to consider the case of plane cells; the method of proof
can be extended to the case of cells of any number of dimensions.

First, let a finite set of non-overlapping cells (a r
(l)

, u,.
(2)

;
br

(l
\ br

{2}
)

(r = l, 2, 3, ...n) be contained in the cell (a
(1)

, a&amp;lt;-&amp;gt;;

b(l
\ 6(2)

),
and let us

suppose that br
w -a r

(l} ^ e
(1)

,
&r

(2) -
r
(2) ^ e

(2)
,
for r=l, 2, 3, ...n; where e(1)

,

*
Cantor, Math. Annalen, vol. xx, p. 118 et seq.

H.
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e(2) denote fixed positive numbers. The number n of the cells cannot exceed

(6
(1

&amp;gt;-a
(1)

)(6
(2) -a(2)

)/e
(1)

&amp;lt;
2)

.

For, let the fundamental cell (a
(l
\ a(2)

;
6(1)

,
6(2)

) be divided into parts by

constructing straight lines parallel to the #&amp;lt;

2) axis through the points on the

#(1
&amp;gt; axis which are represented by the 2n numbers a^

1

, &j
(1)

,
a2

(1)
, 62

(1)
.

an(1)
, 6n

(1)
,
and by constructing straight lines parallel to the xw axis through

those points of the #(2) axis that are represented by the 2n numbers
n (2) /, (2) n (2) I (2) n (2) 7, (2)u

l I
ul &amp;gt;

W 2 J 2 &amp;gt;

an &amp;gt; Vn

The sum of the products of the sides of these parts into which the

fundamental rectangle is divided is clearly equal to (b
(l) a(1)

) (6
(2) a(2)

). Every
one of the rectangles of the given non-overlapping set is either identical with

one of these parts, or is the sum of two or more of the parts. It then easily

follows that

and from this it follows that the number of the rectangles of the given set

cannot exceed (b
w - a(1)

) (6
(2 &amp;gt;- a(2)

)/e
(1)

6&amp;lt;

2)
.

Now let us consider a given non-finite set of cells, no two of which overlap,

and all in the rectangle (a
(1)

,
a(2)

;
b(l

\ 6(2)

).
Give to e(1) the values in a sequence

of diminishing numbers e^
1

,
e2

(1)
,
... en

(1)
,
... which converges to zero; e(2) having

the values in another such sequence e^
2

,
e2

(2)
, ....

The number of cells of the given setwhich are such that one side is ^ en
(1&amp;gt;

,
and

the other ^ en
(2)

,
is finite

;
for it is not greater than (6

(1) a(1)

) (6
(2) a(2)

)/e,i
(1) en

(2)
.

We can now arrange the cells of the given set in order, taking first those

for which the sides are = e/ and ^ e^
2

;
then those for which the sides are

&amp;lt; ej
1

, e/
2 and ^ e2

(1)
,
e2

(2)
;
and so on; there being only a finite number in each

set. In each of such finite sets the cells are arranged in descending order of

magnitude of the products of the sides, or, in case of equality, in order of rank.

Thus, since the whole set can be arranged as a simply infinite aggregate, the

set is enumerable.

The case in which the cells of the set are in unbounded plane space can be

considered as before by employing the correspondence

We have now the general result:

Any set of non-overlapping cells in p-dimensional space forms an enumerable

aggregate.

It will be observed that, although geometrical language is employed above,

the proof of the theorem is essentially arithmetical.
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70. Every isolated set is enumerable.

This theorem may be proved by applying the theorem in 69.

Let P (x) be a point of an isolated linear set. The positive numbers h can

be divided into two classes, the first consisting of the numbers h such that the

closed interval (x, x + h) contains no points of the given set, except the point x,

and the second class consisting of those numbers h for which this is not the

case. The two classes will be separated by a number h1} where x+ hi is either

a point of the given set, or else is a limitingjgpjnt of the given set but does
I

not belong to it. A similar interval (x k2 , x) may be defined on the left of x\

the interval (x
- h2 ,

x + h^ contains no point of the given set in its interior,

except x. Let p be the smaller of the two numbers ^h 2 , ^h1} and let the

interval (x- p, x + p) correspond to the point x. Taking the set of all

intervals (x p, x + p) that correspond to the points of the given set, we see

that this set of intervals is non-overlapping, and is consequently enumerable.

Since each interval corresponds to the point x at its centre, it follows that the

given isolated set of points is enumerable.

In the case of an isolated set in space of two, three, or more, dimensions, it

can be shewn that, with each point x as centre, a circle, sphere, or hyper-sphere
of radius 2p can be so determined that no point other than x is interior to it,

and such that this is not the case for any circle, or sphere, of greater radius.

We then take the circle, or sphere, of radius p, corresponding to each point x
of the set. The set of all such circles, or spheres, will be non-overlapping. In

every sphere a cell with equal edges can be inscribed; and the set of all such

cells will be non-overlapping; to each cell there corresponds the point of the

isolated set at its centre. It now follows, as before, that the given isolated set

is enumerable.

Any set of points G is the sum of an isolated set and of one which is a

component of G . It follows that, if the derivative G is enumerable, so also

is G
;
but the converse does not hold.

Every set ofpoints ivhich is of the first species is enumerable.

For, if s be the order of G, the set G(s} contains only a finite set of points:
and therefore G(S

-
I) is enumerable. Consequently G(s

~
2}

,
G(s

-*\...G are all

enumerable sets.

A set of points of the second species is enumerable if one of its transfinite

derivatives is enumerable. An unenumerable set G cannot have any enumerable
derivative.

71. Let us consider a given set of overlapping intervals, not necessarily

enumerable, contained in a finite segment (a, 6). Let S be the set of those

points of (a, b) each of which is an interior point of one interval at least of the

given set.

72
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If P be a point of S, it is interior to an interval a of the given set, and

therefore a neighbourhood ofP exists, such that every point of it is an interior

point of a; and therefore all the points of that neighbourhood of P belong

to S. Hence P is an interior point of S; and therefore S is an open set.

Now it may be shewn that:
t,

Every open linear set of points consists of the interior points of a finite, or

enumerable, non-overlapping set of intervals.

For, if x be a point of S, it can be shewn, in exactly the same manner as

in | 70, that an interval (x h2 ,x + h^ can be defined which has the property

that every interior point of it belongs to S, but that gs-h2,x + h l do not belong
to 8. In this manner, to each point x, of 8, there is correlated a definite

interval 8(x); to all the points interior to S(x) the same interval S(x)

corresponds. Now let us consider the set of all such intervals 8; these intervals

are non-overlapping, and thus form a finite, or enumerable, set of intervals.

Their interior points are identical with the set S.

The following theorem has been established:

Every set of intervals contained in a finite segment can be replaced by a set

of non-overlapping intervals of which the interior points are the same as those

of the given set.

If we consider the given set as a set of open intervals, the theorem is

equivalent to the statement that the set of points, each of which belongs to

one or more open intervals of the given set, is itself an open set. This is a

generalization, for the case of an enumerable set of open sets, of a theorem

given in 56.

The new set may be spoken of as the set of non-overlapping open intervals

equivalent to the given set of open intervals.

In the case of a ^-dimensional set, it is shewn in exactly the same manner

as in the case p = 1, that, having given a set of overlapping cells, the set S, of

points, each of which is interior to one at least of the cells, is an open set. The

nature of an open set in space of more than one dimension will be considered

later.

72. The properties of any set of open intervals in a finite segment have

been shewn to depend upon those of a non-overlapping set of such intervals;

and we therefore proceed to the consideration of the latter.

Every point of (a, b) which is not interior to an interval of the non-

overlapping set is either

(1) a common end-point of two intervals of the given set; or

(2) a point interior to, or at an end of, an interval not belonging to the

given set, this interval containing no point which is interior to any interval of

the set; or
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(3) a limiting point, on both sides, of end-points of intervals of the set; or

(4) an end-point of an interval of the given set, and also a limiting point,

on one side, of end-points of intervals of the given set.

If either a or b is an end-point of an interval, we reckon that point as

belonging to the points (1).

The points described in (2) and (3) may be described as external points /

of the given set; and if a or b is a limiting point of end-points, it will be 1

reckoned as an external point.

The points described in (4) may be spoken of as semi-external* points.

Those points of the segment (a, b) which are not points of a given set of non-

overlapping open intervals, form a closed set.

This theorem is that particular case of the theorem proved in 56, that the

complementary set of an open set (relatively to a closed interval in which it is

contained) is a closed set, which arises when the open set is the given set of

non-overlapping open intervals.

It will now be shewn thatf, unless a given set of non-overlapping intervals

is a finite set, there must be at least one external or semi-external point; in

other words, the whole interval (a, 6) cannot be filled up by an indefinitely

great number of non-overlapping intervals, each one of which abuts on the

next, without leaving at least one point over, which is neither interior to an

interval nor is an end-point of two intervals
;
the points a, b being regarded

as end-points of two intervals if they are end-points of one interval of the

given set.

If there be any complementary intervals, i.e. intervals in which no point

belongs to the given set of non- overlapping intervals, then the points of these

intervals are all external points, and we therefore need only consider the

case in which no such complementary intervals exist. We observe that, when ^

the number of intervals is not finite, their end- points must have at least one

limiting point P. Now this point P cannot be interior to one of the given

intervals; for, if it were so, it would have a neighbourhood, viz. the interval

to which it is interior, within which are no end-points. Neither can P be a

common end-point of two intervals; for it would then have a neighbourhood
on the right, and also one on the left, within which there is no end-point

except P itself. The point P must consequently either be an external point,

i.e. one which is not an end-point but is a limiting point, on both sides, of

end-points; or else it must be an end-point of one interval, and a limiting

point, on one side, of end-points. If a, or b, is not an end-point, it is regarded
as an external point. It will subsequently be shewn that the external and

semi-external points form a set which may be either finite, or of cardinal

number a, or of cardinal number c.

* This term is due to W. H. Young, Proc. Land. Math. Soc. (1), vol. xxxv, p. 250.

f This theorem was given by W. H. Young, ibid. p. 251.
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Having given an overlapping system of intervals, those points that are end-

points of intervals of the system and are not interior points of any interval of
the system form a non-dense enumerable set.

If P be a left-hand end-point of an interval Pp of the given set, and if P
is not interior to any interval of the set, Pp cannot have in its interior any
other left-hand end-point Q of an interval Qq of the given system, such that Q
is not interior to any interval of the set. Hence all such intervals Pp are

non-overlapping, and therefore form an enumerable set.

Their left-hand end-points form an enumerable set, which is clearly non-

dense. Similar reasoning applies to those points which are right-hand end-

points of intervals of the given set, and are not interior to any interval.

Thus the theorem has been proved.

\ -&amp;gt; * &quot;I ;A\
&quot;

**

EXAMPLES.
/2 -i-l 2-l\

1*. In the interval (0, 1) take the intervals (0, j), (J, )...{ ,

-
rrr) anc^

\ ~2
n 2n J

also the intervals obtained by reflecting these intervals in the point \. The point \ is

external to all the intervals, and yet the limiting sum of the intervals is equal to 1, the

length of the whole interval (0, 1) in which the enumerable set of intervals is contained.

If instead of reflecting the intervals in the point ,
we take the interval (^, 1), the

^ V\ . v* point \ is now a semi-external point, and the limiting sum of the intervals is the same as

before.

/2-i_l 2- -IN
2*. Take the set (, 1), (0, j) ... ( , +1 1 ... of intervals, and divide each

interval into a set of sub-intervals similar to the whole. We now have a new enumerable

set of intervals which has no external points, but of which the semi-external points form an

enumerable set f , 5, J, f$, ....

THE HEINE-BOREL THEOREM.

73. If a set A of intervals, all in the fundamental interval (a, b), be such

that every point of the closed interval (a, b) is an interior point of at least one

interval of the set A (the end-points a, b being regarded as interior to an

interval when either of them is an end-point of such interval), then a finite set

of intervals, all belonging to A, exists, which has the same property as the set

A, viz. that every point of the closed interval (a, b) is interior to at least one

interval of the finite set.

This theorem, which is known as the Heine-Borel theorem, is of great

importance in the Theory of Functions, and may be proved as follows:

Apply a system of nets with closed meshes to the interval (a, b). There

must exist some value of n such that every mesh of the net Dn is interior to

one interval at least of the set A. For, let us suppose, if possible, that this is

not the case. Let an denote those meshes of Dn each of which is not interior

* See W. H. Young, Proc. Land. Math. Snc. (1), vol. xxxv, pp. 249251.
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to any interval of the set A. By hypothesis, n exists for every value of w;

and it is clear that the closed sets ot1; 2 ,
... ,

... are such that each set

contains the next. In accordance with the theorem established in 67, there is

at least one point x that is contained in all the closed sets {an }.
The set of

all such points x is closed
;
let x be the lower extreme of the set. The point

jj ^

x is interior to some interval (x-e,x + e ) of A
;
or to an interval (a, a + e)

in case x = a; or to an interval (b e
, b) in case x = b. i^

When n is sufficiently large, dn the maximum breadth of the meshes of

Dn is less than both e and e ; or, when x = a, is less than e
;
or when x = b,is

less than e. For such a value of n, x is either interior to a mesh of Dn ,
which

mesh is interior to the interval (x-e,x+ e ),
or else x is a common end-point

of two meshes of Dn both of which are interior to that interval
;
or x may be

at a or at b. In any case a mesh of an is interior to an interval of A
; contrary

to the supposition made above.

It has thus been shewn that, for a sufficiently large value of n, each of

the meshes of Dn is interior to one at least of the intervals A
; if, with each

mesh of Dn there be associated an interval of A to which it is interior, the

finite set of such intervals of A is a set such as is required.

In the above theorem it is not assumed that the given set of intervals A

is enumerable. It has been proved that the interval (a, b) can be divided

into a finite number of parts, each of which is interior to a set of intervals

belonging to A. Each such set of intervals may be finite, or infinite (enu

merable or not). The effective selection of a finite set of intervals of A, which

satisfies the condition of the theorem, presupposes a knowledge of the mode in

which the set of intervals A is defined. The theorem does not by itself pro-
!

vide any general method of making such effective selection. In the most

general case, the interval (a, 6) is divided into a finite number of parts,

each of which has associated with it an (in general) infinite set of intervals

of A, to all of which it is interior; the effective selection of the required

finite set of intervals involves the choice of one of the possibly infinite set of

intervals all of which contain one of these finite parts of (a, 6). The number

of such choices to be made, in each particular case, being finite, the principle

known as the &quot;multiplicative axiom,&quot; which will be discussed in Chapter IV,

is not required in its general form.

It is clear that the above proof is applicable to the case in which cells in

any number of dimensions take the place of linear intervals. The method of

employment of systems of nets is precisely the same as in the case of the

linear system. Accordingly we have the Heine-Borel theorem for the case of

^-dimensional sets.

If a set ofp-dimensional cells &{p
\ all in the fundamental cell (a, b), be such

that every point of the closed cell (a, b) is an interior point of at least one cell

of A (p)
(a point on the boundary of (a, b} being regarded as interior to a cell to
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whose boundary it belongs}, then a finite set of cells, all belonging to
A&amp;lt;P&amp;gt;, exists,

which has the same property as the set A&amp;lt;P&amp;gt;.

74. The Heine-Borel theorem can be generalized so as to apply to the
case in which the points that are to be interior to a finite number of intervals,
or cells, form any given closed set G, instead of consisting of all the points of
the closed cell (or interval) in which the given set A^ is contained. The
generalized theorem may be stated as follows:

^

Having given a (bounded) closed set G, and a set of cells A(

*, such that each

point of G is interior to one cell at least of the set A(

^, there exists a finite set

of cells, all belonging to A (

*, such that each point of G is interior to one at
least of the cells of the finite set.

To establish this theorem only a slight modification of the proof of the
theorem when G consists of all the points of (a, b) is required. We may
choose the cell (a, b) so that it contains G, and we can neglect any part of the
set Afr&amp;gt; that is not in (a, b). Those meshes of the nets A, A, which con
tain no points of G are throughout disregarded. The finite set an consists of
those meshes of Dn that contain points of G and are not interior to any cell of
AH It is then clear that the point x is necessarily a point of the closed set G.

If the given set G were not closed, the point x might be a limiting point
of G which did not belong to G, and thus the argument would break down.

The following theorem may be established by employing the generalized
Heine-Borel theorem:

Having given a closed set, an enumerable set can be determined which has

for derivative the given set.

With each point of the closed set G as centre let there be taken a cell of

span d. A finite number of these cells are such that every point of G is

interior to one of them; let this set be Cd ,
and let P^, P^\ ... p tf) be their

centres, all points of G. Let d have a sequence of decreasing values d,, d2 ,
...

converging to zero.

The totality of the points P,&amp;lt;&amp;lt;
... pn

w taken for every vdue of d in the

sequence is an enumerable set H of points of G. Since // consists of points
of the closed set G, every limiting point of H is a point of G. Every point of
G is interior to a sequence of cells belonging to C

dl , C^, ... and is therefore
a limiting point of the centres of the cells, i.e. every point of G is a limiting
point of H. Thus H = G.

75. It has been pointed out* by de la Vallee Poussin that the generalized
form of the Heine-Borel theorem still holds good in case A *&quot; is replaced by
an aggregate 8 of open sets. This may be stated as follows:

If a closed (bounded) setG, and an aggregate S of open sets, be such that

* See Integrates de Lebesgue, pp. 15, 112.
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every point of G belongs to at least one of the sets of S, a finite number of the

sets of S exists such that each point of G belongs to at least one of them.

To prove that theorem, it may be observed that with each point P of S, a

cell may be associated, with P in its interior, and such that the cell is interior

to one or more of the open sets of 8. The aggregate of all such cells may be
taken to be the set A(p) in the generalized form of the Heine-Borel theorem.
A finite part of the set A(^ exists such that each point of G is interior to one
or more of the cells of this finite set. Each of these cells is contained in an

open set belonging to S. Hence there exists a finite aggregate of the open
sets of 8 which has the required property.

In case the open sets S form an aggregate Hlt H2 ,
... //, ... H

ft ,
... such

that each one is contained in the next, the closed set G, each point of which is

in one or more of the open sets, must be contained in Hp, where ft is some fixed
number of the first or of the second class.

For a finite number of the sets // exists such that every point of G is

contained in one or more of them. If ft be the index of that one of this finite

set which has the highest index, G must be contained in Hp.
From this theorem, the following may be deduced:

If wu G-2 , ... 6ru ,
... Gp, ... are closed sets such that each contains the next,

and F is a closed set of points such that no point of F is contained in all the

sets G, there exists a definite number ft, of the first, or of the second, class, such

that no point ofF belongs to Gp.

To prove this, we consider, with respect to some cell containing G1} open
sets C(Gi), C(G2), complementary to Glt G 2&amp;gt;

.... Each of these open sets is

contained in the next. Any point of F.is contained in some of the sets C(Gl ),

C(G2 ), ...
;
and the set F is therefore contained in C (GB) for some value of ft,

and is therefore not contained in Gp.

It has already been pointed out that, when G is a set that is not closed,

and each point of G is interior to at least one of the cells of a given set, there

does not necessarily exist any finite part of the given set of cells such that

every point of G is interior to one of them. However, in any case, an enu
merable part of the given set of cells exists which has this property. Thus:

// G be any set of points, not necessarily closed, and each point of G be

interior to one at least of the cells of a given unenumerable set A (

^, there exists

an enumerable set of cells all belonging to A (

^, such that every point of G is

interior to one at least of the cells of this enumerable set.

This theorem can, as in the case of the Heine-Borel theorem, be proved by
means of a system of nets applied to the finite, or infinite, interval, or cell, in

which G is contained.

Of a net Dn , for any large enough value of n, say n lt some of the meshes

containing parts of G will be interior to one or more of the cells (or intervals)
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of the given unenumerable set. Let these meshes be denoted by &. For

values of n greater than n^ ,
we consider only those meshes of Dn that are not

contained in &. For some such value of n, say n2 ,
there will be meshes /32 ,

containing points of G, not contained in &, each of which is contained in one

or more of the intervals, or cells, of the given set. We obtain in this way a

sequence Pi,l32 , /83 ,
... of finite sets of meshes, each of which contains points

of G, and is contained in one or more of the intervals, or cells, of the given set.

Each point of G must be denned by a sequence of meshes belonging to this

set
{/?},

for such point is interior to an interval, or cell, of the given set. The

meshes of {31} /32 ,
... form an enumerable set, and corresponding to each of

such meshes, there exists a cell (or interval) of the given set. Hence there

exists an enumerable part of the given set such that every point of G is

interior to one or more of the intervals, or cells, of this enumerable part.

In the choice of one out of a possibly infinite number of cells which have

a given mesh in their interiors, the number of choices being in this case

indefinitely great, the &quot;multiplicative axiom&quot; is in general involved.

However, the following theorein may be established*, which is sufficient

for applications, and in the proof of which no use is made of the multiplica

tive axiom:

If each point of a given set is interior to a definite cell corresponding to

that point, an enumerable set of these cells can be so determined that all the

points of the set are interior to one or more of the cells of the enumerable set.

If the set G be not bounded, we may place it^in correspondence with a

bounded set, so that, to the given cells, there corresponds a set of cells having the

corresponding property with reference to the bounded set of points. There is

accordingly no loss of generality in considering a bounded set only, which

we can suppose to be contained in a fixed cell with equal sides. Instead of

the cell of the given set A (P) corresponding to a point P of the given set G,

we may substitute a cell A (P) with the point P as centre arid with its sides

all equal, and take A (P) to be the greatest such cell which has no point
exterior to A (P). We have now, corresponding to each point P of the given

set, a cell A (P) with P as centre. Take a set of positive diminishing numbers

{en }
which converges to zero, and let Gn be that part of G which consists of

points for which the spans of the corresponding cells A are &amp;gt; ew . Since every

point of Gn is in a cell (with equal sides) of spans all &amp;gt; en , every point of Gn is

in a cell of this system. Hence a finite set of these cells can be determined which

contain in their interiors all the points of Gn ,
and therefore all the points of

Gn with the possible exception of a finite number. By adding the cells cor

responding to this finite number of points of Gn ,
we obtain a finite set of the

cells A which contain all the points of Gn . We have now a finite set of cells

* See Borel, Legons sur les fonctions monogenes, p. 12.
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which contain all the points of G1} and a finite set which contain all the

points of G.2 that do not belong to G^, and generally, a finite set of cells

which contain all the points of Gn that do not belong to Glt G.
2&amp;gt;

... or Gn^.

Taking every value of n, we have now an enumerable set of the cells A . that

contain all the points of G, and we take the set of cells A which correspond
to the enumerable set of cells A as the required set.

76. In a proof given by Heine* that every continuous function is uniformly
continuous there is contained the germ of the theorem now called the Heine-

Borel theorem, as it was first explicitly stated and proved by Borelf, for

the case of a linear interval (a, b). Various proofs of the theorem have since

been published]:. It was pointed out by H. F. Baker that the proof by Goursat
|

of Cauchy s fundamental theorem in the theory of functions of a complex
variable contains a general method of procedure, equivalent to the use of nets

made in 73. The extension to the case of any closed set G was given 11 by
W. H. Young, and by Borel**.

By means of an analysis of the reasoning of Heine, W. H. Young was ledIf
to the discovery of the following more general theorem*, called the Heine-

Young theorem:

If, with each point x of a closed interval (a, b), we have associated a pair

of intervals rx and lx , such that, (1) x is the left-hand end-point of rx and the

right-hand end-point of lx and, (2) if x is an internal point of lx ,
then a; is an

internal or end-point of rx &amp;gt;\

there then exists a finite number of the intervals rx

abutting end to end and covering the whole segment (a, b).

It is unnecessary to suppose rb and la to be defined.

Starting with a as end-point, we take the interval ra ,
or (a, ^); we then

take the interval r
Xi

or (x1} #2); and so on. We thus obtain a series of intervals

of the given set, (a, x,} (xlt x2 ) ... (x,^, xn) ... .

If, for some value of n, xn = b, the condition of the theorem is satisfied by
the n intervals thus obtained. Otherwise, the sequence #1; #2) . . . has a limiting

point X on the right of all the points {xn \.
There is then an interval lx with

X as right-hand end-point.

All the points \xn ] except a finite number of them are interior to the

interval lx ; let these be xn ,
xn+l , .... By the hypothesis (2) in the statement

of the theorem rXn must reach at least as far as X, and this is not the case, as

it reaches only to xn+l . Hence the sequence {xn }
cannot be infinite. Thus the

theorem is established.

Journal f. reine und anyewandte Mat., vol. LXXIV (1871), p. 188.

t Ann. de I Ecole Norm. (3), vol. xn (1895), p. 50.

J See for example Lemons sur I integration, p. 105.

Proc. Land. Math. Soc. (1), vol. xxxv, p. 459, and (2), vol. i, p. 24.

II Trans. Amer. Math. Soc. vol. i, p. 15.

H Proc. Lond. Math. Soc. (1), vol. xxv, p. 387. For a further extension of the theorem, see

W. H. Young, Mess, o/ Math., vol. xxxm, p. 129, and also Proc. Lond. Math. Soc. (2), vol. n,

P. &amp;lt;&amp;gt;7.

**
Comptes Rendus, Jan. 1905. ft Proc. Lond. Math. Soc. (2), vol. xiv, p. 114.
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In case there exists no interval fa, so that the conditions of the theorem

hold for the half-open interval (a, b), there exists an enumerable set of the

intervals rx abutting on one another and covering the half-open interval (a, b).

For it is clear that in this case the point X must coincide with b.

The following theorem, originally due to Lusin*, and employed by him in

the theory of derivatives of a function, follows from the Heine-Young theorem :

If, associated with every point of a closed interval (a, b), we have all the

intervals with a; as end-point that lie in a certain neighbourhood of the point x

on both sides (except for the points a, b where the neighbourhood is on one side},

then a finite number of these intervals exists, abutting end to end, and covering
the interval (a, b}.

At each point x we take for rx the smallest interval with x as left-hand

end-point containing all those of the given intervals which have x for end-point,
whether originally associated with x or not; and for lx the part of the given

neighbourhood on the left of x.

There is then a finite set of these intervals rx covering (a, b), and abutting
on one another. Let these be (a, x^ (x1} x2) . . . (xn_lt b); and consider (xr_ l} xr).

We may choose an interval of the given set with xr_^ as left-hand end-point;
if this interval does not reach to xr we add one of the given intervals associated

with the point xr ,
and thus two of the given intervals make up (#,-_!, #)

Doing this for each interval (xr_l} xr ) we, by a finite number of choices, obtain

the required finite set which covers (a, b).

By means of Lusin s theorem the Heine-Borel theorem can now be deduced.

If we replace those intervals of A which contain x as interior point by all

intervals with a; as end-point contained in each one of the intervals of A, we
have the condition in Lusin s theorem satisfied. The finite set of abutting
intervals which covers (a, 6) having been determined, we replace each one of

the intervals of that finite set by an interval of A that contains it; this

requires only a finite number of choices; thus the Heine-Borel theorem is

deduced.

77. The following theorem will now be proved :

If any unenumerable set of overlapping intervals in (a, b) be given, then an

enumerable set of intervals all belonging to the given set exists, of which the

interior points are the same as those of the given set.

It has been shewn in 71 that the given set can be replaced by a non-

overlapping set of intervals with the same interior points. An interval of this

second set is however not in general an interval of the given set.

Let PQ be an interval of the equivalent non-overlapping set; then every
internal point of PQ is an internal point of one interval at least of the given

* Recueil de la soc. mat. de Moscou, vol. xxviu, 2 (1911).
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set. The point P is either an end-point of some interval Pp of the given set,

or else it is a limiting point of end-points of an infinite number of intervals of

the given set. In the latter case there exists an enumerable sequence Pipi,

P2
|&amp;gt;

2 ,
PAp3 ,

... of intervals of the given set such that P is the limiting point

of the sequence of points P1} P2 ,
... Pn , .... Similarly, unless Q is an end-

point of an interval qQ of the given set, it is the limiting point of a sequence

Q}, Qz&amp;gt; --Qn, ...of end-points of intervals q l Ql , q2Q2 , qn Qn, of the

given set. Consider the intervals PjQi, P2 Qa , PnQn, &amp;gt;

where P1} P2 ,
...

may be taken all to coincide with P in case the interval Pp belongs to the

given set, a similar convention being made as regards Q. Since every point

of PjQi is interior to some interval of the given set, therefore, in accordance

with the Heine-Borel theorem, a finite number of intervals of the given set

exists, such that every point of PiQi is interior to one at least of them. Let

a similar determination of a finite set of intervals be made for each of the

intervals P2 Q2 &amp;gt; PaQs, PnQn, ,
we have then altogether an enumerable

set of finite sets of intervals. The totality of these intervals forms a finite, or

an enumerable, set of intervals belonging to the given set, which contains

every point in the interior of PQ as an interior point. Applying the same

process to each interval PQ of the equivalent non-overlapping set, and re

membering both that the intervals PQ form a finite, or an enumerable, set, and

that an enumerable set of finite or enumerable sets is itself enumerable, we

derive the conclusion that an enumerable set of intervals exists, all belonging

to the given set, such that their internal points are identical with those of

the given set.

The assumption, here made, that, if P be a limiting point of end-points

of intervals of the given set, a sequence of such end-points exists which

converges to P, will be discussed in Chap. iv.

THE LEBESGUE CHAIN OF INTERVALS.

78. For the purposes of the Theory of Functions it is convenient to

consider a set of intervals in a given linear segment, of the kind known as a

Lebesgue chain.

If (a, b) be a given linear interval, a set Ca
b
of non-overlapping closed intervals

such that every point of the closed interval (a ^ x ^ b) is either a left-hand end-

point of one of the intervals or an internal point of one of these intervals, is said

to form a chain stretching from a to b. The chain is supposed to have a last

interval which contains b as interior point or as left-hand end-point.

To consider the nature of such a chain, let us suppose that we have defined

an interval (a, x^ with a as left-hand end-point, then a set of intervals

(a?,, ara), (a,-8 ,
a-s), ... from left to right. In case the right-hand end-point of one

of these intervals is b, we have, by adding one interval, a chain consisting of a
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finite number of closed intervals, reaching from a to b. But, if this is not the

case, the points #1; x2 , ... xn ,
.:. will have a limiting point ^ on their right,

which may coincide with b, in which case we have, by adding one more interval,

a chain reaching from a to b consisting of an enumerable set of intervals. But

if f, &amp;lt; b; starting from i, a set of intervals (,, 2), ( 2 , 3), ... is supposed to

be defined. If these reach from to b
,
either by taking a finite number, or

by taking an enumerable set, together with one more interval, 8, we have

again a chain from a to b, consisting of the intervals

Ol, ^2), (&amp;gt;2, #3) (, &), (&, 3) ...
, &

But if
, 2 ,

... have a limiting point ??i (&amp;lt; b), we proceed as before to set up
new intervals proceeding from r) 1 . This process may be carried on indefinitely,

until a chain is defined reaching from a to b. That this will always happen
when any set of rules is prescribed for the definition of the intervals is asserted

in the following theorem* :

If, for each point of the closed interval (a, b), there be assigned, by some

prescribed set of rules, one single interval with the point as left-hand end-point,

then, if X be any point in the closed interval (a, b), there is one and only one

chain stretching from a to X, composed of intervals of the given set.

It will be observed that the theorem asserts (1) the existence of a chain

from a to X, and (2) its uniqueness. Also, if a chain stretching from a to X
exists, and X be any point on the left of X, a chain from a to X exists which

is a part, or the whole, of the chain from a to X.

If (a, x^) be the interval corresponding to a, the theorem is clearly true for

all points x such that a ^ x ^ x
1 .

Let us assume, if possible, that there exists in (a, b) a set of points G, for

which the property in the theorem does not hold good. The set G must have

a lower boundary point X ( &amp;gt; x^, which may or may not belong to G. Let us

first suppose that X does not belong to G; it is consequently a limiting point
of G. There is, by hypothesis, a unique chain Cax reaching from a to X.
Since Ca

x has a last interval (X e
, X + e), or (X, X + e), the chain

Cax reaches from a to where is such that &amp;lt; &amp;lt; e. Now Ca
x

is the only
chain that can reach from a to

;
for any chain that reaches from a to f must

contain some chain that reaches from a to X, and this can only be the chain

Ca
x

. It follows that, in a certain neighbourhood of X on its right, there are

no points of G, which is contrary to the hypothesis that X is a limiting

point of G.

Next, let us suppose that X belongs to G, whether it be a limiting point
of G or not. Consider a sequence of points xlt x2 ,

... xn , ... of which X is

the limiting point, and such that x
l &amp;lt; x2 &amp;lt; xs . . . &amp;lt; xn &amp;lt; . . . . A unique chain

CaXn stretches from a to xn ;
also if n &amp;gt; n, (7/ is a part, or the whole, of Ca

x
*.

* See Pal, Bend, di Palermo, vol. xxxin, p. 352 (1912) ;
also G. C. Young, Quart. Journ. of

Math., vol. XLvn, p. 142, and W. H. & G. C. Young, Proc. Lond. Math. Soc. (2), vol. xiv, p. 128.
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Consider the complete set C of intervals each of which belongs to Ca
x
*, from

and after some value of n. Then C, together with the interval (X, X + e),

corresponding to the point X, constitutes a chain reaching from a to X. For

each point on the left of X is reached by GaXn for some value of n, and is

therefore an interior point, or a left-hand end-point of an interval of C. Any
chain reaching from a to X contains as a part a chain from a to xn ,

and this

can only be Ca
Xn

. As this holds for every value of n, any chain from a to X
must contain Ca

x
&quot; for every value of n

,
and therefore it contains G. Also C

must be independent of the particular sequence [xn }\
for any point x m of

another sequence must lie in an interval (xn ,
ocn+\), and the unique chain from

a to x m must be a part, or the whole, of the chain from a to xn+l . Any chain

from a to X can thus only consist of C and the interval (X, X + e); thus there

is a unique chain reaching from a to X, contrary to the hypothesis that X
belongs to G. It now follows that no such set as G can exist, and the theorem

is therefore established.

79. The reasoning by which Lebesgue establishes the existence of a chain

from a to b depends upon the employment of transfinite numbers of the second

class^
and upon the principle that every enumerable ordered aggregate must

be exhausted before some particular number of second class is reached. If a

set of intervals

(a, #1) (X, a?a) ... (xn-i, xn} (#, a?+i) O0, afc+i) ...

be numbered from left to right, the numbers employed will all be of the first,

or of the second, class. If the process of construction does not cease before

some particular number of the second class is used, the set of intervals would

be unenumerable; and, as they are non-overlapping, this is impossible (69).
Thus, by a set of such intervals, starting with a, the point 6 must be reached,
and the existence of a chain reaching from a to 6 is established.

It may happen however that, corresponding to each point x of (a, b), not a

unique interval, but a finite or infinite set of intervals is defined, with x as

left-hand end-point. In that case, the theorem as to the existence of a Lebesgue
chain takes a more general form than that of Pal, given above, and the

proof given in 78 fails*. For chains from a to xl and from a to x2 ,
where

#2 &amp;gt;#i, may both exist, but it does not follow that the former is part of the

latter. The general existence theorem may be stated as follows:

If, to each point x of the interval (a b) (except b) there be assigned a set of
intervals (finite or infinite) with x as left-hand end-point, an enumerable non-

overlapping set of the intervals can be so determined as to contain every point

of the semi-open interval (a, b) as interior or left-hand end-point.

A proof of this theorem not involving an infinite number of acts of choice

is a desideratum.

* W. H. & G. C. Young, Proc. Lond. Math. Soc. (2), vol. xiv, pp. 128130.
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For most of the purposes of the theory of functions the more restricted

form of the theorem, in which a single interval is denned, with each point of

(a, b) as left-hand point, suffices.

CLOSED AND PERFECT LINEAR SETS.

80. The following theorem may be stated:

Those points of the linear segment (a, b) which are not points of a given set

of non-overlapping open intervals form a closed set of points.

This theorem is a particular case of the theorem proved in 56, that the

complementary set of an open set, relatively to a closed interval in which it is

contained, is a closed set. In the present case this open set consists of the

points of a set of non-overlapping open intervals. In case a, or b, is a point of

the set of open intervals, it is regarded as an interior point.

Conversely, it has been shewn in 56, that

Every closed set of points in the linear segment (a, b) is the complement of
a non-overlapping set of open intervals.

In accordance with the classification given in 72 of the points which do

not belong to a set of open intervals, it appears that:

The most general linear closed set ofpoints in an interval (a, b) consists of

(1) the end-points of a set of non-overlapping intervals, (2) limiting points

of such end-points, and (3) the points interior to intervals every point of which

belongs to the closed set.

The open intervals belonging to the set C (G), complementary, relatively to

(a, b), to a given closed set G in (a, b) are said to be the intervals contiguous to, or

complementary to, the said G. The set of all such intervals may be spoken of as

the set of contiguous intervals, or complementary intervals, for the closed set G.

If the set G is non-dense, no interval exists in (a, b) which consists entirely

of points of (G) ;
and the set of contiguous intervals is then everywhere dense

in (a, 6), since no interval can be determined in (a, b) so as to contain no

points of the set of contiguous intervals. Thus:

Every linear non-dense closed set* in an interval (a, b) consists of the end-

points of the intervals of an everywhere dense set of open intervals and of the

limiting points of such end-points. rjr%vtl( VA \ v A Cv\i ft \( U
* This relation between everywhere dense sets of intervals and closed sets was discovered by

Du Bois Beymond and by Harnack. See Du Bois Raymond s Allgemeine Functionentheorie (1882),

p. 188 ;
also Math. Annalen,, vol. xvi, p. 128, where everywhere dense sets of intervals are intro

duced. See also Harnack, Math. Annalen, vol. xix, p. 239, and Bendixson, Acta Math. vol. n,

p. 416, and Ofv. af fivensk. Vet Forh., vol. xxxix, 2, p. 31. Proofs of the fundamental theorems

based on the amalgamation of abutting intervals have been given by W. H. Young, Proc. Lond.

Math. Soc., Ser. 2, vol. i, p. 240, and by Schoenflies, Gottinger Nachrichten, 1903.
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The most general type of closed set is obtained by adding to a non-dense
closed set all the points of some of the contiguous intervals.

The points of a non-dense closed set G consist in general of three classes:

(1) those which are common end-points of two contiguous intervals

abutting on one another
;

(2) semi-external points of the set of contiguous intervals; i.e. points
which are end-points of one interval, and also limiting points, on one side, of

end-points; and

(3) external points, i.e. such as are not end-points of any contiguous
interval, but are limiting points, on both sides, of such end-points.

The point a, or the point b, if it belongs to G, may be regarded as belonging
to (1) or (3), according as it is, or is not, an end-point of a contiguous interval.

Those points which belong to (1) are clearly isolated points of G. Hence,
^ l(

if no such points exist, every point of G is a limiting point; and therefore G \**~
is perfect. It follows that:

Every non-dense perfect linear set G consists of the end-points of an every- \\,

where dense set of non-overlapping intervals (contiguous to G), no two of which /. c^
abut on one another, together with the limiting points of these end-points.

If the closed set G is such that no semi-external points exist, then every
contiguous interval abuts on another one at both its ends. In this case, all t,
the points of G are either end-points of adjacent intervals, or limiting points, ,

on both sides, of a sequence of such end-points; unless a or 6 be a limiting
point, in which case it belongs to G. The end-points have the same cardinal

number a as the rational numbers, since the set of intervals is enumerable.
Moreover the external points form a finite set, or an enumerable set; because
to each such external point there corresponds an enumerable set of end-points
of which it is the limiting point, and in this correspondence any one end-

point can correspond to at most two limiting points, one on each side of it.

We thus have the theorem that:

A non-dense closed set is enumerable if its complementary intervals are such
that every one of them abuts on another one at each of its ends.

The condition here stated is sufficient, but not necessary, in order that the
non-dense closed set should be enumerable. For example, let the contiguous
intervals of a set G in the interval (0, 1) consist of the open intervals

* 8.2

The set G is enumerable, but the interval
( 0,

-
)
does not abut on another

\ */
interval.

81. Every non-dense linear closed set is, in general, made up of an enu
merable set and of a perfect set.

Let the intervals complementary to the set G be arranged in enumerable jT A) /
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order, that of descending magnitude; we may denote them by Blt 8.
2&amp;gt;

... 8n ,

If G is not perfect, it contains isolated points, each of which is the common

end-point of two adjacent intervals; let 8
Pl

be the first of the intervals (8)
at

an end of which there is such a point; let 8P
&amp;gt; be the interval which abuts on

8
Pl

at that end. It may happen that the other end-point of 8P
&amp;gt; is also a

common end-point of two intervals. If so, let 8P
&quot; be the interval which abuts

on 8P &amp;gt;,

and so on: after a finite, or enumerable, set of such intervals

we must arrive at an interval of which the end-point does not belong to 6r t ,

the set of isolated points of 0, or else at an end-point of the domain of G
,

unless G is an enumerable set. It may happen that 8
Pl

at its other end abuts

on another interval; in that case we proceed, in the same manner as before,

to find the intervals 8
q-, 8q ,

... each of which abuts on another one. Now
conceive all the intervals 8P ,

8P &quot;, ..., and, if they exist, 8q ,
8q ,

... to be amal

gamated with 8
Pl

into one interval 8
P1

{1

\ by removing all the common end-

points. If any isolated points of G now remain, let 8
Pi

be the first interval of

{8} after 8
Pl ,

of which an end-point is such a point; proceed as before, we

then have an interval 8
Pa

[l) formed by amalgamating a finite or enumerable

set of intervals. We proceed in this way, and thus form a set of intervals

8
Pl

(l

\ S
P2

(1)
,

... no end-points of which are points of G t .

Since G = Gt + G (l)
,
where G (l) is the derivative of G, the set of intervals

(S
(1)

( complementary to 6r (1) consists of the intervals 8
Pl

(1

\ 8
P2

(1)
,

... and of any
intervals [8\ which remain after such intervals as 8P &amp;gt;,

8P&quot;,
... 8

q ,
8
q ,

... have

been removed, and the 8P
{1) substituted for the 8P .

,

We proceed in a similar manner with G (1] = G\
(l) + G (2

\ again removing a

finite or enumerable number of the set {8
{l]

},
and again with G (

\ and so on.

It may happen that the process comes to an end after a number n of such

stages, either if Gt
(n} does not exist, in which case G (n] = G (n+l)

,
and thus G (n} is

perfect; or else, if G (n] does not exist, in which case G, being the sum of a

finite number of enumerable sets S(? t

(r)
,
is itself enumerable. If the process

does not come to an end for any finite value of n, we form the derivative

GM =D(G (1
\ G (2}

, ... G (n
\ ...), which contains all the points common to all

the derivatives of G of finite order. This set has been shewn, in 68, to exist,

and to be a closed set; G (u&amp;gt;} is then resolved as before into Gt

(a) + G (w+l
\ and

we proceed further as before.

We obtain, by proceeding in this manner,

where /3 is a number of the first or second class. It will now be shewn that

there must be some definite number /3 of the first or second class, for which

this process comes to an end, either by (rt
(/3)

containing no points, in which

case G (& = 6r (/3+l)
,
so that G (& is perfect; or else by G (?+1)

containing no points,
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in which case G, being the sum of an enumerable set of finite, or enumerable,

sets, is itself enumerable. The {8} contain all the indices 1, 2, 3, ... n, ...;

from these indices we must remove a finite, or an enumerably infinite number,
to obtain those indices which occur in the {8

(l)

}; and again an enumerable set

of indices must be removed from those which occur in the {S
(1)

j,
to obtain

those which occur in the {S
( 2)

}.
Now as the indices 1, 2, 3, ... n, ... are enu

merable, the process of removing successively a finite, or enumerably infinite,

set of them must cease for some order /3 of 8^\ for otherwise a more than

enumerable infinity of indices could be removed from the set 1, 2, 3, ... n, . ..,

which is impossible; hence, for some fixed number /3 of the second class, all the

indices must have been removed.

It has thus been shewn that, unless the given set G is enumerable, for

some number /3 of the first or second class, Gw = G (fi+1)
; and therefore Gw is

perfect. Thus G has been resolved into an enumerable set and a perfect one,
which may be called the nucleus of G.

If, for any value of /3, 6r (e) =
0, the set G is enumerable.

82. The following theorem*, more general than that of 81, includes the

latter as a particular case. The proof here given may be taken as alternative

to that of 81.

If PI, P2 ,
... Pn ,

... Pp, ... Pa ,
... are all closed linear sets of points such

that (1) if j &amp;lt; a.,, all the points ofPaz belong to P
ai ,

and (2) if in any interval,

any set Pa contains only a finite number of points, the set Pa+1 contains no

points in that interval; then either Pp must vanish for some definite number /3

of the first or second class, or else there is a definite number ft such that Pp is

a perfect set.

If, for some number /3, the set Pp vanishes, then P
y vanishes for all values

of 7 which are &amp;gt; /3.

Let us now suppose that there exists no number /3 such that P$ vanishes.

In this case there exists a set of points, which may be denoted by PQ ,
such

that each point of the set belongs to Pp, whatever number (3 may be. The
set Pn is closed, for if p be a limiting point of the set, in an arbitrarily

small neighbourhood there are points of Pp, whatever number & maybe;
hence p belongs to Pp, whatever ft may be, and thus /) itself belongs to Pn .

It will now be shewn that Pn contains no isolated points, and is therefore

dense in itself. If Pn contains an isolated point p, a neighbourhood of p can

be found which contains no point of Pn except p\ let Q be that part of Pl

which is contained in this neighbourhood. In the neighbourhood considered,

let us suppose a sequence of intervals 81( 82 ,
... 8n ,

... constructed, each one

containing the next one and the point p, and such that 8n converges to zero

as &amp;gt;i is indefinitely increased. Let Q(n) denote that part of Q which lies in 8n

* See Baire, Annali di Mat. (3), vol. m, p. 46 et seq.

82
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but not in 8n+] ,
then Q = Q (1

&amp;gt; + Q (2
&amp;gt; + . . . +

Q&amp;lt;&amp;gt;
+ . . . + p. There must exist a

number /31; of the first, or of the second, class, for which Q {1) contains no point of

P^; otherwise Qj would contain points which belong to Pn ,
and this is not the

case. Similarly, there exist numbers fi2 , fis ,
... fin ,

... such that Q (2) contains

no points of P^2 ,
and Q (3) contains no points of Pp3 ,

and so on. Of the numbers

Pi, fa, ... fin, , let 7! be the first which is
&amp;gt;/5,, then let j2 be the first

which is greater than 7,, and so on; we have therefore a sequence ylt y2 ,
...

&amp;lt;y
n ,

... of increasing numbers all of which belong to the set fil} /32 ,
... fin ,

....

This sequence 7^ j2 ,
... yn ,

... is either finite, with say 7 as the last, or else

there is a limiting number 7 of the second class which is greater than all of

them, and therefore greater than all the numbers fi} , fi2 ,
... fin ,

.... The set

Q can have no point, except^, which belongs to Py , hence, since PY contains

only one point in a certain interval, Py+1 contains no point in that interval,

and does not contain p ;
which is contrary to the hypothesis.

It has now been shewn that Pn is closed and dense in itself; it is there

fore perfect. Let us next consider the enumerable set of intervals which are

complementary to Pn . For any one of these intervals there exists a number

7 such that Py contains no point in the interior of the interval. As before, it

is seen that there exists a number, of the first or the second class, which is

greater than all these numbers 7; if this number be fi, the set P^ contains no

points which do not belong to Pn . It is thus seen that Pp is perfect, and

P0 = P0+i= ... =Pn-
The theorem has now been completely established.

If, in the above theorem, the condition (2) be omitted, the set Pn is closed

but not necessarily perfect. The set Pp, as before, contains no points that do

not belong to Pn ;
it then follows that P^ = P^ +1

= Pp+2 ,
=

We can thus state the following theorem:

If PI, P%, Pn , Pp, Pa, are all closed sets such that any one

contains all the others with a higher index; then, either Pp vanishes for some

definite number fi of the first, or the second, class, or else there is a definite
number fi, from and after which all the sets are identical.

83. Every perfect linear set* has the cardinal number c of the continuum;
and every closed infinite set has the cardinal number c, or else the cardinal
number a of the rational numbers.

Let the intervals whose internal points are the set C(G), the complement
of the perfect set G, be denoted by {8} ;

and let A denote the greatest, or one
of the greatest in case of equality, of the intervals {8}. Let I, the whole
interval (a, b) in which G lies, be divided into the three parts 1

, A, I, so that

l1} where 1 is on the left, and ^ on the right of A, the greatest

*
Cantor, Math. Annalen, vol. xxm, pp. 486 488.
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interval of |8). Denote the greatest of the intervals {8} in 1
, by A ,

and the

greatest in 11} by A,; then the interval 1 is divided by means of A into three

parts 1M ,
A

,
lol in order from left to right, and the interval ^ is divided by

means of Aj similarly into 110 ,
A 1} ln . Proceeding in this manner to a further

subdivision, let A^9
be the greatest of the intervals {8} which lie in lvq , where

p, q each has one of the values or 1; then lpq is divided into three parts lpqo ,

&pq&amp;gt; lpq\&amp;gt;
and so on indefinitely. The intervals {8} are thus arranged in the

order A, A
,
A 1} AOO, A01 ,

A 10 ,
An ,

... and each interval of
{8} occurs at a

definite place in the sequence. Consider a sequence of intervals

i, ip, lpq, ipqr ,
. . .

,

where p, q, r, ... all have definite values, each of which is either or 1. Each

of these intervals is contained in the preceding one, and has one end-point in

common with it; and the sequence determines a single point P which is

interior to all the intervals of the sequence, unless, from and after some fixed

index, all the indices are identical, in which case P is a common end-point of

all the intervals after a fixed one. Hence, since the point P is not interior to

any of the intervals {8}, it is a point of G. Conversely, every point of G can
)

be so determined by means of a sequence of intervals; for every point of G /

belongs either to 1 or to 11} and also to one of the four intervals lw , lol ,
llo ,

lu ,

and so on. The point P is the limiting point of the end-points of the

intervals Ap ,
Ap? ,

Apgr , ... with the indices the same as those of the sequence

^P, lpq) Ipqr, which determines the point.

Every number of the continuum (0, 1) is expressible in the dyad scale by
means of a sequence ~p, &quot;pq, pqr, ..., where each of the numbers p, q, r, ... is

either or 1
;
and all numbers are expressed uniquely in this manner, except &quot;\

those for which all the digits after some fixed one are 1, these numbers being
also expressible by a sequence in which only occurs after some fixed place. /
The numbers last mentioned correspond as indices of lp ,

lpq ,
lpqr ,

... to a point
of G which is an end-point of one of the intervals {8j; but in every other case

a number in the dyad scale corresponds to a point of G which is not an end-

point of the intervals {8{. Since the set of numbers of the continuum (0, 1)

has the cardinal number c, it follows that the points of G form a set of the

same cardinal number, because each point of G corresponds uniquely to a

single number of the continuum, except that two points of G which are end-

points of one contiguous interval correspond to a single number of the con

tinuum. Every closed set which is not enumerable has been shewn to contain

a perfect set as component ;
such a set has therefore the cardinal number c.

It will appear from the theory of order-types which will be discussed in

Chapter IV that the set of intervals {8} which define a perfect set G, when

taken in their order of position from left to right, have an order-type which

is the same as rj the order-type of the rational numbers which lie between

and 1, excluding and 1 themselves, taken in their natural order in the
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continuum. It follows that a correspondence can be established between the
intervals and the rational numbers, in which any two intervals correspond
to two rational numbers that have the same order. If we take each rational

number to correspond to the end-points of the corresponding interval, then
each irrational number corresponds to a point of G which is a limiting point
of end-points of intervals.

JL

EXAMPLES.

1. Let x be a number given by x =
| + ^ +

||
+ ...

+|^ + ...
?
where the numbers

c2 ,
... cn ,

... have each one of the values 0, 2. The set [x\ is a non-dense perfect set.

No number of the set lies between

and

l
.

these two numbers determine a complementary interval of the set, the interval being of

length . . The number of complementary intervals of length is 2&quot;&quot;

1

,
hence the sum

of all the complementary intervals is 2
,
which is unity. It is clear that the set of

n=l

complementary intervals is everywhere dense, and thus the set of points is non-dense.
This example was constructed* by Cantor, and is the first example of a perfect non-dense
set which has been purposely constructed.

2. Let us suppose that the numbers of the interval (0, 1) are expressed in the dyad
scale, in the form a^a^a^ ... an ...

;
where each a is either or 1. Each number for

which the a s all vanish, after some fixed one n ,
which must be 1, is also representable as

an unending radix fraction, in which an is 0, and all the subsequent digits are 1. Let the

numbers now be interpreted as if they were in the decimal scale. To each irrational

number in the dyad scale, there corresponds a single number in the decimal scale, repre
sented by the same digits. Of each rational number, there is a double representation in

the dyad scale, and there correspond two numbers in the decimal scale, which define a

complementary interval of the set of points which represents the numbers in the decimal
scale. A perfect non-dense set of points is thus defined.

3. Taking a positive integer m (&amp;gt; 2), let the interval (0, 1) be divided into m equal
parts, and exempt the last part from further subdivision. Divide each of the remaining
m - 1 intervals into m equal parts, and in each case exempt the last part from further sub
division. Let this operation be continued indefinitely. The points of division form a
non-dense set

;
for if an interval d be taken anywhere in the interval (0, 1), k may be so

chosen that
^&amp;lt;^,

and a segment f ^
&amp;lt;Z

r j
entirely within d, can be determined. This

segment is either an exempted interval, or its mth part is one. The end-points of the

* See Math. Annalen, vol. xxi, p. 590.
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intervals, together with their limiting points, form a non-dense closed set*, of cardinal

number c.

4. As in* Ex. 3, let the interval (0, 1) be divided into m equal parts, and the

last be exempted from further division. Then let the remaining TO - 1 parts each be

divided into i
2
equal parts, the last of each being exempted from further division. Let

the remaining parts be then divided into m3
equal parts, the last of these in each case

being exempted from further division. If this process be carried on indefinitely, the

end-points of the divisions, together with their limiting points, form a non-dense closed

set, of cardinal number c.

5. Let &!, Je2 ,
... kn ,

... be a sequence of positive integers, each of which is greater than

unity, and defined according to any law.

It can be shewn t that every irrational number #, in (0, 1), can be uniquely represented

in the form

*= !+_- + ... + *_ + ...,
/ j

fC
\ A?2 &quot;*i

A 2 r*n

where cn &amp;lt;
kn ,

and not all of the numbers cn ,
cn + 1 ,

... are zero, for any value of n.

It can further be shewn that
, .

--,-,
where

rjn=kn
- 1 -cn . If, from and after a certain value of n, the condition cn= kn

- 1 is

always satisfied, then all the
i]n vanish, and x is rational. It thus appears that these rational

numbers are capable of a double representation in the form

C

-

c{

(1) by the vanishing of all the c, after some fixed one, and (2) by the condition cn= kn - 1 /

being satisfied, from and after some fixed value of n.

If we now take those values of x, for which every c does not exceed some fixed integer X,/

these values of x form a non-dense perfect set
6&amp;gt;

It is easily seen
thal^

the
internal

of

which the end-points are ^^ 1

V X

C, C2 Cn+l
J

- :&amp;lt;

-f

contains no points of the set in its interior, although these points belong to the set.

A particular case of this set consists of the numbers given by

|0
^=

To
+
IcF2

+
To^2 -3

&quot;*&quot;
&quot; +

To&quot;
!+ &quot;

where every c is ^9. This set consists of the transcendental numbers first defined by

LiouvilleJ.

* See H. J. S. Smith, Proc. Land. Math. Soc. (1), vol. vi, pp. 147,148.

t Brod^n, Math. Ann., vol. LI, p. 299.

I
Liouville s Journal, vol. xvi, p. 133.
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PROPERTIES OF THE DERIVATIVES OF LINEAR SETS.

84. If a set is dense in any sub-interval of the interval in which it is con

tained, its derivative GM contains every point of the sub-interval, and is iden

tical, so far as such sub-interval is concerned, with the totality of the points of

the sub-interval
;
we confine ourselves therefore to the case in which G is a

non-dense set, and consequently its derivatives are also non-dense.

The derivatives of transfinite orders have been defined in 68
;
and it was

there shewn that there is either a last derivative, whose order is some number
of the first class, or non-limiting number of the second class

;
or else that de

rivatives of all such orders exist, and have a set of points 6r (Q) in common.

It was shewn in 68, that Gw being a non-dense closed set, two cases

arise :

(1) If 6r (1) is enumerable, in which case G is also enumerable, then G&
vanishes for some number /3 of the first or the second class. A set with an
enumerable derivative is called a reducible set.

(2) If 6r (1) is not enumerable, th*en tnere exists some number ft, of the first

or second class, for which G ( is a perfect set, and is consequently identical

with G^+1
&amp;gt;,

and with &amp;lt;

n
&amp;gt; as defined in 68. The set (?&amp;gt; is the sum of an

enumerable set and the perfect set 6r (/3)
. A set G which has this property, is

said to be irreducible.

It should be observed that, when Gw is unenumerable, and consequently of

cardinal number c, the same as the cardinal number of its perfect component,
we are unable to make any inference as to the cardinal number of G itself.

This may be a or c, or other cardinal number between the two, in case such a

number exists.

CLOSED SETS IX TWO OR MORE DIMENSIONS.

85. In considering the properties of closed sets of points in space of two
or more dimensions it is sufficient to treat in detail the case of plane sets only,
because these sets exhibit sufficiently clearly the respects in which linear closed

sets differ from other closed sets. The results obtained for plane closed sets

can immediately be extended to the case of such sets in any number of

dimensions. In the case of a linear set, each point P which does not belong-
to a given closed set is enclosed in an open interval which contains no points
of the set, and this interval has a maximum length in both directions, the

end-points of such maximum interval 8 being points of the closed set (or an

end-point of the fundamental interval), and this maximum interval is identical

with 8, for all points interior to 8. But, in the case of a plane set, if we con

fine ourselves to areas of given form and orientation, such as rectangular cells,

and these take the place of the linear intervals 8, it is not the case that a

closed set is defined as the set of boundary points, together with the external

points, of a unique system of such cells.
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If P be a point which does not belong to a given plane closed set G, in a

fundamental cell, and if we draw through P a straight line parallel to the line

whose equation is y = mx, then those points of the given set which lie on this

straight line form a closed set (see 56), and the point P must be interior to

an interval Am (P) contiguous to this closed set. If, on either side of P, there

are in this straight line no points of G, then on this side the extremity of the

interval Aw (P) may be regarded as the point in which the straight line

intersects a side of the fundamental cell. The interval Am (P) exists for every

value of m, and the extremities of the interval, for a fixed P, are points of the

plane set, or points on the boundary of the fundamental cell. The region of

plane space Ap ,
defined by all these intervals, for every value of m, when that

straight line is included for which x has a constant value, is free in its interior

from points of G. Such a region Am (P) may be regarded as the analogue, for

plane sets, of the interval 8 (P) for the case of linear sets. But the analogy is

not complete, for if Q be an interior point of Am (P), it is not necessarily the

case that Am (Q) is identical with Am (P).

If however we work only with rectangular cells, there exists in general no

unique rectangular cell, corresponding to a point P of G (G), which is such

that no interior point of it is a point of G, and that on its boundary there is a

point of G. If we describe a square cell of sides 2p with its centre at P, and

containing in its interior and on its boundary no point of G, we may keep

three of the sides fixed, and move the fourth parallel to itself until it either

contains a point of P, or becomes coincident with one of the sides of the

fundamental rectangle. We may then proceed to move another side parallel

to itself until the same thing happens, and so on with the other two sides.

The resulting rectangle will in general depend upon the order in which the

moving of the four sides takes place. Thus we obtain, in general, no unique

rectangular cell corresponding to the point P.

86. It is however possible, for a given closed non-dense plane set^6r,
to

construct an enumerable set, not unique, of cells which is everywhere dense,

and such that every point of G lies on the boundary of a rectangle, or is a

limiting point of points which lie on the boundaries of such cells. Let us

denote by 8 the fundamental cell in which the whole set G lies, and let 8 be

a cell constructed, as above, for a point P of the set C(G). Produce the sides

of 8, when necessary, until they cut the sides of 8, thus dividing S into at most

nine different rectangles, of which one is 8, and the others may be denoted by

8rt where r = 1, 2, ... 8. In each rectangle 8, take any point Pr which does not

belong to G, and construct for Pr a free rectangle 8r ,
as before; let the sides of 8r

be produced, when necessary, until they meet the sides ofSr ,
then Sr is divided

into at most nine rectangles, which consist of 8r and at most eight rectangles

Srg ,
where s = 1

, 2, ... 8.
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Proceeding in this manner, we obtain a set of rectangles

8, Sr ,
Srs ,

Srst , ...,

and in them a set of rectangles 8, Br ,
8rs , &rst , ..., each of which contains no

points of G in its interior
;
each of the numbers r, s, t, ... being one of the digits

1, 2, 3, ... 8. If p be a point of G which is not on a boundary of any rect

angle Sn ,
it must be in the interior of each ofan unending sequence of rectangles

Sr ,
Srg , 8rgt , ..., where r, s, t, ... have definite values; and this set of rect

angles must converge either (1) to a point in the interior of all of them, or

(2) to a linear interval, or (3) to a definite rectangle & in the interior of all

of them. In case (1), the point to which the rectangles converge is a limiting

point of those points of G which lie on the boundaries of the definite

sequence of rectangles B,., S,.s ,
S rst ,

In case (2), there must be, in the

limiting linear interval, at least one point which is a limiting point of G : for,

if not, the whole interval could be enclosed in a rectangle which contains no

points of G
;
and this is impossible. In case (3), we start with the rectangle

S,,,, and take a point Pw not belonging to G inside it, which point exists, since

G is non-dense, and construct the maximum free rectangle &amp;gt;. Produce its

sides as before to meet those of Sw ,
and proceed as before to construct

S^rst and 8^1 This process can be continued until an index is reached

which may be any number of the second class, but the point p must be reached

before some definite number of the second class appears as index
;
this

following from the fact that the number of non-overlapping regions which are

contained in a given space must be enumerable. Thus the point p is reached

after an enumerable set of steps of the process.

It has therefore been shewn that :

If G is a non-dense closed plane set of points, an everywhere dense

enumerable set of rectangles exists, such that every point of G is on a boundary

of one or more of the rectangles, or is a limiting point of such points, or lies in

a linear interval which is the limit of a sequence of the rectangles.

In case the set G is perfect, the rectangles of the set must either not abut on

one another, or every common side must contain either no points of G, or else a

perfect set of points of G.

87. That a perfect plane set G has the power of the continuum* may be

proved by projecting the points of 6r on a side of the fundamental rectangular
cell. The linear set of points which are the projections of G is a closed set.

For if P be a limiting point of the set of projects, let pp be an arbitrarily

small neighbourhood of the set of projects, of which P is the centre
;
con

struct straight lines PQ, pq, p q , perpendicular to pp, meeting the opposite
side of the fundamental rectangle in Q, q, q . In the rectangle pqqp there

* See Bendixson, Bib. Svensk. Vet. Handl., vol. ix (1884), where the first proof of this theorem

was given.
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are an infinite number of points of G. Let a symmetrical system of nets, with

closed meshes, be fitted on to this rectangle pqq p ;
the number m (see 51),

whose square is the number of meshes in A, being taken to be odd. There is

in at least one mesh ofA an infinite number of points of G in the interior or

on one of its boundaries parallel to pp ;
and one such mesh at least must exist

with its centre on PP
;
for otherwise P could not be a limiting point of the

projection of G. We take that one d, of such meshes which is nearest to pp .

Similarly there exists a mesh d2 ,
of A, contained in d,, with its centre on PP ,

and containing an infinite set of points of G. Proceeding in this manner, we

obtain a sequence dlf d2 ,
... of meshes each containing the next, and all having

the same property as d^ These define a point on PQ which must be a limiting

point of G, and therefore belongs to G. Therefore P is a point of the projection

of G ;
and thus the projection of G is a closed set. If a point P be an isolated

point of the projection of G, we may as before construct a rectangle pqqp which

contains no points of G that do not lie on PP . The component of G in this

rectangle must be perfect, and therefore the straight line PP contains a

perfect component of G. If the projected set is perfect, then it has the power

c of the continuum ;
and if it contains isolated points, these must be the

projections of perfect linear components of G ; therefore, in either case, G has

the power of the continuum.

It is clear that this method of proof can be extended to the case of a set

in any number of dimensions.

THE ANALYSIS OF SETS IN GENERAL.

88. With a view to the general analysis of sets of points in any number

of dimensions, it is necessary to classify the points of a given set according to

the cardinal number of those points of the set that are in the arbitrarily small

neighbourhoods of the various points*.

An isolated point of any set G is such that in a sufficiently small neigh

bourhood of the point there are no other points of G. For this reason an

isolated point may be said to be of degree zero in the set.

A limiting point of G, such that in every sufficiently small neighbourhood

of the point there is an enumerably infinite set of points of G, is said to be a

point of enumerable degree in the set, or of degree a in the set. Such a point

may or may not belong to G.

In case the point is such that, in every neighbourhood of it, there exists a

set of points of G that has the cardinal number of the continuum, the point

is said to have degree c in the set.

* An analysis of this kind, for sets in general, was given by Cantor, Ada Math., vol. TII. A

more elementary presentation of the matter, without the use of transfinite numbers, has been

given by G. H. Young, Quart. Journ. of Math., vol. xxxv, p. 102.
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As we are not entitled to assert that every infinite set of points has either

a or c for its cardinal number, we contemplate the existence of sets having a

hypothetical cardinal number x different from a or c. A point such that, in

every sufficiently small neighbourhood of the point, there existed a set of

cardinal number x of points belonging to G, would be termed a point of

degree x in the set G.

A point P, whether it belongs to G or not, is said to be a point of un-

enumerable degree in G if, in every neighbourhood of the point, there exists an

unenumerable set of points which belong to G. Such a point has been termed*

by Lindelof a point of condensation. As however this expression is employed

by some writers to denote a limiting point, it is better avoided. The set of

all such points P (belonging to G or not) is closed, for any limiting point

clearly belongs to the set. It is obvious that, if G be enumerable, it contains

no points of unenumerable degree in G, for every part of an enumerable set

is enumerable (finite or infinite).

Conversely it may be shewn that :

If no point of G is a point of unenumerability in G, the set G is enumerable.

Let a system of nets be fitted on to the finite, or indefinitely great, cell in

which G is contained. Any point P, of G, is defined by a unique sequence of

meshes of the successive nets of the system. There must be a value np of n,

from and after which all the meshes [dn ]
of the sequence which defines P

contain only an enumerable set of points of G. Thus, to each point P of G,

we can correlate one mesh dn ; but the same mesh may be correlated with

more than one point P. Taking all the meshes dn t ,
for all the points P of G,

these form an enumerable set, being part of the enumerable set of all the

meshes of the system of nets. Since each mesh dn contains only an enumerable

set of points of G, it folloivs ( 58) that G is an enumerable set.

89. Every set G, not enumerable, is the sum of an enumerable set (possibly

absent) and a set in which each point is of unenumerable degree in the set, and

I which is therefore dense in itself.

Thus G = H+K, where H is enumerable, and K is such that each point
is a point of unenumerable degree in G. Since every point of K has in its

neighbourhood an unenumerable set of points of G, and therefore of K, the

set K is dense in itself. To prove the theorem, let // be that part of G, each

^u k
, point of which is a point of zero, or of enumerable, degree in G

;
it is then

clear that H must be a set in which every point is of zero, or of enumerable,

degree in H; therefore H is enumerable. The set K=G H is then un

enumerable because each point of it contains in its neighbourhood an un

enumerable set of points of G, and therefore of K.

* See Comptes Eendus, Paris, November 2, 1903.
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It is clear that every limiting point of a set of points of unenumerability
is itself such a point. Since K is dense in itself, it is contained in its derivative

K
;
and as K has no isolated points, it is perfect.

If G is a closed set, it must contain all the points which are of unenumerable

degree in it
;
thus K and K are identical, and therefore K is perfect. There

fore we have the theorem :

A closed set is the sum of an enumerable set and a perfect set, either of 1 1

which may be absent.

The proof of the theorem here given is due to Lindelof (loc. cit).

For the special case of linear closed sets this theorem has already been

proved in 81. But the following theorem may here be added* :

A linear closed set is the sum of an enumerable set and a set which is dense

in itself, such that each point of the latter set is a limiting point on both sides.

For, a point of K that is a limiting point only on one side is also a point
of K which can only be a limiting point of K on one side

;
moreover the set

of all such points of K
,
viz. the extremities of the intervals contiguous to it,

is enumerable. Therefore those points of K that are limiting points of K on

one side only form an enumerable set
;
and if these be removed from K we

have a set ^ the points of which are limiting points of K, and therefore also

of Kl ,
on both sides.

It is asserted in the first theorem given above that every unenumerable set

contains a component that is dense in itself. An enumerable set may contain

such a component, and if it does, its derivative contains a perfect set, and thus

the enumerable set is irreducible.

90. If G is an unenumerable set, those points of G which are of the same

degree x
(&amp;gt; a) in G form a set which is dense in itself, and of which the cardinal

number does not exceed x.

Let us fit on a system of nets to the unbounded space in which G is con

tained. Consider those points P that are of degree x in G
;
P is in a mesh

dn (x) in which the set of points of G is of degree x
;
n may have the smallest

value for which this is the case. When all such points P are taken, the

meshes dn (x) corresponding to them form an enumerable (or finite) set, a part
of the enumerable set of all the meshes of the system of nets. In each of

these meshes dn (x) there is a set of points of G of cardinal number x. It will

be shewn in Chapter IV, in connection with the general theory of cardinal

numbers, that an enumerable set of aggregates of points, each of cardinal

number x, has the cardinal numbers. Since all those points of G that are of

degree x in the set are contained in the enumerable set of meshes so obtained,

it follows that the set of such points of G cannot have a cardinal number

greater than x.

* W. H. Young, Quart. Journ. of Math., vol. xxxix, p. 76.
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To shew that the set is dense in itself, we observe that, in a sufficiently

small neighbourhood (a, /3) of Px ,
there is a set of points of 0, of cardinal

number x
;
and that none of these points can be of degree in G higher than x.

For if there were such a point Q of degree higher than x, in some interval

( , /3 ) contained in (a, /8) and containing Q in its interior, there would be a

set of points of G of cardinal number higher than x
;
but this is impossible, as

all these points would be in (a, /3). Again, the points of G in (a, /3), other than

P
x&amp;gt;

cannot be all of degree lower than x\ for if they were so, their cardinal

number would be lower than x, since they could be enclosed in an enumerable

set of non-overlapping intervals with Px as sole external point. Moreover,

since in any arbitrarily small neighbourhood of Px there are points of the same

degree x in G, Px is a limiting point for such points. Therefore the set of

points such as Px is dense in itself.

The set of points of degree c is dense in itself, and of cardinal number c.

91. Any set G consists of isolated points which form an enumerable set

called the adherence of G, and of limiting points which form a set called the

coherence of G. Denoting the adherence and the coherence of G by Ga, Gc

respectively, we have G Ga + Gc.

The set Gc can in a similar manner be split up into its adherence and its

coherence, which we denote by Gca and Gc2

respectively ;
thus

Gc = Gca + Gc2
.

The set Gca is an isolated set, and therefore enumerable
;
and if we proceed

to resolve 6rc
2 in a similar manner into its adherence Gc~a, and its coherence

Gc3
,
and then to resolve Gc3

,
it is clear that the process may be continued

any number n of times. We thus obtain

G = Ga + Gca + Gc*a + . . . 4- Gcn
~

la + Gcn .

The set (TC a may be named the adherence of G of order n, and Gcn may be

denominated the coherence of G of order n.

It may happen that, for some value of n, Gcn vanishes
;
in that case G has

been split up into a finite number of enumerable sets, and is consequently

itself enumerable. If this be not the case, the process may be continued

indefinitely, and Gcn then exists for every value of n. We then define

D(G, Gc, Gc\... Gcn,...\

the set of points common to all the coherences of G, to be the coherence of

order
&&amp;gt;,

and denote it by Gc&quot;. It is clear that every point of G which does

not belong to one of the sets Gcn
~l

a, belongs to Gca
,
hence we have

G = 2Gcn-l a + Gc&quot;,

the summation being taken for all values of n belonging to the first class.

We now split up Gc&quot; into its adherence Go&quot; a, and its coherence Gcu+l,
and

proceed further to obtain the adherences and coherences of G of the orders
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of the various numbers of the second class. If alf a2 , ... an ,
... is a sequence

of numbers of the second class, which has ft for its limit, the coherence of

order ft is denned by
Gc? = D(Gc

a
&amp;gt;,

Gca
&amp;gt;,...

c- ...).

We now obtain a resolution of G of the form

G =

where 7 is any number of the first or second class, and the summation refers

to all values of p which are less than 7. Each adherence Gcpa is an isolated

set, and therefore enumerable
;
and if G contains a component which is dense

in itself, this component is contained in Gcy
.

First suppose G to be an enumerable set
;
the process of analysis must

then cease for some number 7 of the first or second class. For if Gcpa existed

for every number 7 of the second class,we should have obtained an unenumerable

set of adherences containing no points in common, and all belonging to G :

thus G could not be enumerable.

The cessation of the process may take place in two different manners :

(1) if for some number 7 of the first or second class, Go? = 0, G has been

resolved into an enumerable set of adherences, and it contains no component
which is dense in itself:

(2) if for some number 7,

in which case Gc* = Gci+1
,
the set G& then contains no adherence, and every

point of it is a limiting point, and G& is therefore dense in itself. The set G
has consequently been resolved into an enumerable component which contains

no part that is dense in itself, and into a set which is enumerable and dense

in itself.

Next, let us suppose that G is an unenumerable set. Then it has been shewn
that those points of G which are of unenumerable degree in G form a set that

is dense in itself; and those points which belong to the adherences of all orders

are points of zero, or of enumerable, degree, and thus form an enumerable set.

It follows, since all points that do not belong to that part of Or which is

dense in itself belong to the adherences, that the number of adherences must
be enumerable

;
and thus that, for some number 7 of the first or second class,

Gey is dense in itself. The set G& may consist of an enumerable set dense in

itself, and of sets of higher cardinal numbers dense in themselves.

It has thus been shewn that any set G may be represented by

where U is an enumerable set which contains no component that is dense in itself,

Va is an enumerable set ofpoints of degree a dense in itself, Ve is a set, of cardinal
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number c, consisting ofpoints of degree c, dense in, itself; Vx is a set dense in itself

consisting ofpoints of degree x, where a&amp;lt;x&amp;lt;c.

If, as is probable, no cardinal numbers exist between a and c, the sets Vx

can be omitted. A set such as Va ,
Vx ,

Vc is denominated a homogeneous set

of degree a, x, c, in the set G.

If G is a closed set, then, as has been shewn in 89, Vc is perfect, and ^Vx

cannot exist.

INNER AND OUTER LIMITING SETS.

92. Let $!, $2 ,
... Sn ,

... be a sequence of sets of points, in one or more
dimensional space, such that each set Sn+1 of the sequence is contained in the

preceding one Sn ,
then the set S, or D(S1} S2 ,

... Sn , ...), consisting of points
each of which belongs to all the sets of the sequence, is said, when such set

exists, to be the inner limiting set of the sequence of sets. A point of the

inner limiting set which does not belong to Sn ,
Sn + 1 ,

... but belongs to $_!
is said to be shed at the index n.

When $!, $2 ,
... S

n&amp;gt;
... is a sequence of sets, each one of which Sn is

contained in the next Sn+1 ,
the set S^, or M(S1} S2 ,

... Sn ,
...

), which consists

of the set of those points each of which belongs to all the sets, from and after

some value of n dependent on the particular point, is said to be the outer

limiting set of the sequence.

If any sequence S1} 2 2 ,
... SM ,

... of sets be given, and we take ^ = 21;

& =
/)($!, 2 a ), S3

= D(21} 22 , 23),
and in general 8m = D(2 l , 2,, ... 2m ), the

inner limiting set Sa ,
when it exists, also defines D (S1; 2 2 ,

... Sm ,
...

), and

may be regarded as defined by the given sets S1( 2 2 ,
....

For a point that belongs to all the sets 21? 2 2 ,
... 2 re ,

... belongs to all the

sets $1, $2 ,
$3 , ... Sn , ...; and a point that belongs to all the latter sets

belongs to all the former sets.

Thus it has been shewn that the set ofpoints common to all the sets of any
given sequence of sets is an inner limiting set.

Again, if we take
,
= S lt S2

= M(21} 22), S3
=M (2j, 2 2 , 28 ), ... the outer

limiting set $w also defines MQ, 2S ,
... 2n , ...

),
and thus the set of all points

that belong to one at least of the sets of any given sequence of sets is an outer

limiting set.

If S be the inner limiting set of the sequence S1} S2 ,
S3 ,

... of sets,

each of which contains the next, the sequence 0(8^, C (S2), C (S3),
... of the

sets complementary to the first sequence with respect to a cell (or interval),

whether finite or not, which contains them all, is such that each set is

contained in the next, and their outer limiting set is
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It has been shown in 67 that, when the sets $. S2 ,
... are all closed sets,

the inner limiting set always exists, and is a closed set.

Every set of points can be exhibited as the inner limiting set of a sequence
of sets each of which contains the next; and also as the outer limiting set of a
sequence of sets each of which is contained in the next.

Let a set be contained in the interior of a cell (a
(1

&amp;gt;,

a 2
, ... a* bw 6 2

... 6*); and let G9 be the component of G that is contained in the cell

(a
1

,
a&amp;lt;

2
, ... a

; 06, 6&amp;gt;6&amp;lt;

2
&amp;gt;,

... W), where
&amp;lt; &amp;lt; 1.

If 0i, 8 , ... B ,
... be an increasing sequence of values of that converges

to 1, the sets G^, ,,... will be such that each one is contained in the next,
and their outer limiting set is the given set G.

Also G is the inner limiting set of the sequence of those sets which are

complementary to the sets of a sequence for which C(G) is the outer
limiting set.

In case G is unbounded, it may be placed in correspondence with a set
interior to the cell (-1, 1), and the theorem therefore holds for G, since it

holds for the set that corresponds to G.

SETS OF THE FIRST, AND OF THE SECOND, CATEGORY.

93. The outer limiting set of a sequence of non-dense sets G,, G2 ,
... Gn , ...

each of which contains the preceding one is said to be a set of the first category.

This is equivalent to the definition given* by Baire, that, ifP1( P2 , Pnj
be any sequence of sets, non-dense in the fundamental interval or cell&quot; in
which they are all contained, the set M(Plt P2 , ... Pn ,

...
), consisting of

all the points that belong to any of the given sets, is of the first category
For we have only to take Gn =M(Pl ,

P2 , ... Pn); and ^, is non-dense. The
set P,, P2) ... pn) ... can always be replaced by non-dense sets, Qlt Q2 , Q3 ,

...

no two of which have a point in common
; for we may take

Any set which is not a set of the first category is said to be of the second
category.

It is clear that a set of the first category is enumerable if the sets
GL G2 ,

... Gn , ... are all enumerable, and that every enumerable set is of the
first category.

An enumerable set of the first category may be everywhere dense. For
example, the set of rational points in a given cell, or interval, (a, 6) is of
the first category, and is everywhere dense.

A set of the first category may have the cardinal number of the continuum,
and may then be everywhere dense, or non-dense.

*
Annali di Mat. (3), vol. in, p. 65, where the distinction between sets of the first and second

categories was first introduced.

9



130 Sets of Points ; descriptive properties [OH. n
\

A set of the first category is not necessarily closed. As an illustration of

this fact, let us consider a set of cells P.Q,, P2Q 2 ,
... PnQn ,--- each of which

contains the next, and such that the sequence converges to a single point p
interior to all the cells of the sequence. Let G l

consist of a set of points on

the boundary ofP& ; let G.2 consist of 6?i together with a set of points on the

boundary of P2 Q2 ;
and generally, let Gn consist of Gn -i together with a set

of points on the boundary of PH Qn - The point p does not belong to Gn for

any value of n, and therefore does not belong to Gu ,
but it is clearly a limiting

point of Gw ;
and therefore Gu is not a closed set.

To illustrate the fact that an unenumerable set of the first category may

be everywhere dense, fit on to the cell, or interval, (a, b) a system of closed

nets. Let Gl be a non-dense perfect set in (a, b) ;
in each mesh of D l place a

non-dense perfect set, and let G2 be the perfect set made up of all such non-

dense perfect sets, together with G^ Let G3 consist of G2 together with

non-dense perfect sets placed in all the meshes of Dz ;
and so on.

The set of the first category defined by G l} G2 ,
... is clearly everywhere

dense; for any sub-cell contains a mesh of Dn ,
for some sufficiently large

value of w, and thus contains points of Gn ,
and therefore of Gu .

In case GM is closed, it must be non-dense, for it will be shewn that C(G^)

is everywhere dense, and therefore Gv cannot contain a cell, or interval.

94. A set of points which is complementary to a set of the first category is

a set of the second category.

In particular, a cell, or an interval, is not the sum of two sets of the first

category.

To prove this theorem, we shew, in the first place, that the set comple

mentary to a set of the first category is everywhere dense. For let (a, ) be

any cell, or interval, in the fundamental cell, or interval, in which the set of

the first category is contained. There exists a cell, or interval, (alt ft) interior

to (a, /3), in which there is no point of the non-dense set G!

1 . Again (ot1( ft)

contains in its interior a cell, or interval, (cr2 , ft) containing no points of G, ;

and so on.

There exists then a point interior to all the cells, or intervals,

(a, ft) (!, ft) ( 2 , ft) (, ft)

which is not a point of G . Hence the set complementary to Gn is everywhere

dense. It follows from this that a set of the first category cannot contain all

the points of any interval, or cell, and is thus a diffuse set. Next, let us

assume, if possible, that C (Gu ) is itself the limit of a sequence Q1} Q2 ,
... Qn ,

of non-dense sets, each of which is contained in the next. The sets

1 + Qi, G2 + Q2J ... are all non-dense, and each one of them is contained in

the next ;
their limit, which is of the first category, is identical with the

fundamental cell, and this has been shewn to be impossible. Hence the

complement of a set of the first category is not of the first category.
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The converse of the above theorem does not hold good. It is not true that

every set of the second category is the complement of a set of the first

category. Thus there are two kinds of sets of the second category; those
which are complementary to a set of the first category, and those for which
this is not the case. If, for example, in a linear interval (a, b) the points of a
sub-interval (a,, &) be taken, these make up a set of the second category, and
the complementary set is also of the second category. It has been shewn* by
Mahlo that the points of a linear interval (a, 6) can be divided into two sets,
each of which is everywhere dense, and of the cardinal number ofthe continuum,
and neither of which is of the first category.

95. A set of the second category which is complementary to a set of the
first category is saidf to be a residual set.

A residual set can be obtained by the successive removal from a fundamental
cell, or interval, of non-dense sets of points belonging to a sequence of such
sets. It has been shewn in 94 that a residual set is everywhere dense. It will

now be shewn that :

A residual set has the cardinal number of the continuum.

Let (? be a set of the first category, and (Ga ) the corresponding residual
set. Let a system of nets be fitted on to the fundamental cell, or interval, in
which Gu is contained. If n be sufficiently large, there is a mesh of the net Dn
that contains no point of G, ;

the smallest value of n, say %, for which this is

the case may be chosen. Let this mesh be denoted by d. There is some
smallest value of n, say n

2&amp;gt;

such that d contains in its interior two (or more)
meshes d ,dlt of the net D

nz&amp;gt;

neither of which contains a point of G2 . In case
there are more than two such meshes, d

,
d1 are those of lowest rank. Again,

there is some smallest value of n, say n,, such that both d and d
l contain

within them two or more meshes of D^. Let the two meshes in &amp;lt;/ be
denoted by dw , dol ; and the two meshes in d

l by d10 , du . Proceeding in this

way, we can define a sequence of meshes dp . dpq ,
dpqr ,

... each of which
contains the next in its interior; where each of the indices p, q, r, ... is either

or 1
;
and where the sequence p, q, r, ... is defined in accordance with some

set of rules. The point interior to all the meshes of this sequence does not

belong to G^.and is therefore a point of the residual. But such a sequence
can be defined corresponding to each number of the continuum; leaving out
those sequences in which all the indices, from and after a fixed one, are all 1,

the correspondence is unique. Hence the residual must have the cardinal
number c, of the continuum. Further, it can be proved that:

Any finite, or enumerably infinite, set of residuals have in common a set

which is also a residual set.

* See Leipz. Ber., vol. LXV, p. 283.

t See Deujoy, Journal de Math. (7), vol. i, p. 123, who has introduced this terminology.

92



132 Sets of Points ; descriptive properties [GH. n

Let H (l}
, H, ... be residuals obtained by removing successively the sets of

sequences {Gn
{l}

}, [Gn
{2}

],
... of non-dense sets from an interval, or a cell; the

non-dense sets can be arranged in enumerable order

If these sets be removed successively from the interval, or cell, we obtain the

residual D
(#&amp;lt;),

#0
#&amp;lt;&amp;gt;, ...).

96. It is often of importance to consider the properties of sets that are

contained in a given perfect set H, which may be non-dense in the

continuum.

If PI, P2 ,
Pn ,

- be a sequence of sets all of which are non-dense in the

perfect set H, the set M (P: ,
P2 ,

. ..) is said to be of the first category relatively

to H. A set which is not of the first category relatively to H is said to be of the

second category relatively to H. A set whose complement relatively to H is of

the first category relatively to H is said to be a residual set relatively to H.

It can be shewn that :

A set of points which is the complement, relatively to the perfect set H, of a

set of the first category, relatively to H, is of the second category relatively to H.

In particular H cannot be the sum of two sets both of the first category

relatively to H.

This is proved in a manner precisely similar to that in which the theorem

for the case in which H is a continuous cell, or interval, was proved in 94. Thus

it is first shewn that a residual relatively to H is dense in H, and then the

proof of the theorem is completed as in 94.

It follows that a set of the first category relatively to H is diffused in H.

It can be proved, as in 95, that a residual with respect to H has the cardinal

number of the continuum.

It has been shewn by Denjoy* that a residual relatively to a perfect set

H itself contains a perfect set.

It will appear, from the theory of order-types developed in Chapter IV,

that the points of a perfect linear set can be made to correspond uniquely

with points of a continuous interval (a, b), in such a manner that the relative

order of two points of the perfect set is the same as that of the corresponding

points in (a, b) ;
the end-points of an interval contiguous to the perfect set

corresponding to one point of (a, b). To a closed set H, non-dense in the

perfect set, there corresponds a closed set, non-dense in the continuum; and

sets of the first, or the second, category relatively to the perfect set correspond

respectively to sets of the first, or of the second, category in (a, b). It thus

appears that the properties of sets of the first, and second, categories in the

continuum can be immediately extended to sets of the first, and second,

categories relatively to a perfect set.

* Journal de Math. (7J, vol. i, p. 232.
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This is a particular case of the general property of any perfect set
;

viz.

that all descriptive properties of sets of points in the continuum correspond
to identical properties of sets of points in a perfect set, even if the perfect set

be itself non-dense in the continuum.

EXAMPLES.

1. Let P1? P%, P3 ,
... Pn ,

... be an enumerable set of points in an interval (a, 6); the

set may be everywhere dense in (a, 6). The finite sets

(I\\ (/&amp;gt;
P2), (P,, P2 ,

P3), ... (/ P2 , -. Pn ], ...

are each closed, and the given set is the limiting set, which is therefore of the first category.
The remaining points of (a, b) form a set of the second category, which is a residual.

2. Denoting the points of the interval (0, 1), as in Ex. 5, 83, by

Ci Co Cn~. 1
I

*
I I &quot;

I

I ~*~
le Ic

~*~ &quot;

Ir le~ /
~r

&quot;&amp;gt;

A.J KI/C^ KiK^...Kn

where cn &amp;lt;kn ;
let the fixed integers x , 2 ,

... kn , ... form a sequence which increases

without limit. If* a l5 a2 , ... an ,
... is any sequence of positive integers which increase

without limit, let On denote the set of those numbers x, which are such that the integers

Ci, c2 , ... cn , ... are all &amp;lt; an . The sets Git (?2 ,
G3 ,

... Gn , ... are a sequence of perfect sets,

each one of which contains the preceding ones ; the set
Gu&amp;gt; is then a set of the first category.

3. The numbers of the continuum (0, 1) may be divided into sets, of the first, and of the

second category, in the following manner: All the numbers in (0, 1) may be expressed as

endless decimals; the finite decimals being therefore not used. Lett the set H consist of

all those numbers in which the digit 9 occurs only a finite number of times, and of those

numbers also in which, from and after some place, all the figures are 9. The complementary
set K consists of all those numbers in which 9 occurs an infinite number of times, except
those in which every figure is 9, from and after some place. The set H is the limit of a

sequence of non-dense closed sets HI, If2 , ... Hn , ... each of which is of cardinal number c.

For, let HI consist of the numbers of the form -abc ... 999 ..., in which every figure is 9,

after some fixed place, and in which none of the figures a, 6, c, ... is 9
; together with those

decimals in which no figure is 9. No number of the set H^ can lie within the interval

(abc... 899 ..., abc...k999 ...) which is therefore a complementary interval of the set.

The set Hn may be taken to consist of the numbers of the form ~abc ... M999 ..., in which
k is not 9, and not more than n- 1 of the figures a, b, c, ... h, are 9; together with those

decimals in which 9 does not occur. That each of the sets Hn is of cardinal number c,

follows from the fact that it contains all the decimals in which 9 does not occur; and these,
if interpreted in the scale of 8, represent all the numbers of the continuum (0, 1). The set

H is everywhere dense, since it contains that everywhere dense set of numbers in which

every figure is 9, after some place. The set K, being of the second category, is also every
where dense, and of cardinal number c.

4. The following method of dividing the continuum (0, 1) into two portions, each of

which is everywhere dense, and of cardinal number c, has been given by BrodenJ: Let

... + ln + ... denote a divergent series of positive numbers, such that the limit

*
Broden, Math. Annalen, vol. LI, p. 299.

t See Schoentiies, Bericht, vol. i, p. 106.

Crelle s Journal, vol. cxvnr, p. 29.
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of In, as n is indefinitely increased, is zero. Let a be a positive number &amp;lt; 1, and let

i, ttj, ... ft
( ,

... be a sequence of increasing positive integers. It is possible to choose the

divergent series so that each of the ratios lnjlni , Injln^ ... is &amp;lt;a : if this be done, the

series 2 l
Hi

is convergent, its sum being &amp;lt;

-^-
. Each of the series obtained from 2 ln , by

1=1 1 a t=1

leaving out a finite number of terms, is also convergent. The convergent series, so obtained,

form an unenumerable set : for they are obtained by multiplying the terms of the series 2 lni ,

1=1
each either by 0, or by 1

; and thus there is a series corresponding to each fractional number

expressed in the dyad scale. Corresponding to each convergent series, there is a divergent
series which consists of 1 + ^ + . . . + ln+ . . .

,
with the convergent series removed from it.

We obtain in this manner an unenumerable set of divergent series. The convergent and

divergent series, each of which consists of terms of I + li + ... +ln + ..., may now be corre

lated with the numbers of the continuum (0, 1). Let these numbers be expressed in the

dyad scale, in the form a 1a2 s
&amp;gt;

where every a is 0, or 1, and the case in which every

figure is zero, after some place, is excluded. To one of the series lp+ lq+ lr + ..., we may
take that number to correspond in which ap ,

aq ,
ar ,

... are all 1, and the remaining digits 0.

The points of (0, 1) are thus divided into two classes; one of these consisting of all the

numbers which correspond to convergent series, and the other of those corresponding to

divergent series.

ORDINARY INNER LIMITING SETS.

97. The inner limiting set* of a sequence of open sets, each one of which

contains the next, is said to be an ordinary inner limiting set.

The outer limiting set of a sequence of closed sets, each of which is con

tained in the next, is said to be an ordinary outer limiting set.

Thus an ordinary inner limiting set is the complement of an ordinary outer

limiting set.

In the case of a linear set of points contained in a given interval (a, b),

to which the case of a linear set in an unbounded interval may be reduced by
the method of correspondence, an ordinary inner limiting set is the set of

points common to a sequence {An |,
where An is, for each value of n, a set of

open intervals contained in (a, b).

In the particular case in which all the sets A n are everywhere dense in

(a, b), the complementary closed sets 0(An ) are all non-dense. In this case

the ordinary inner limiting set is of the second category, and is of that species
which is termed ( 95) a residual set.

The case of linear sets will here be considered in detail.

The following theorem will be established :

Every ordinary (linear) limiting set is either enumerable, or it has the

power of the continuum.

* The term inner limiting set is due to W. H. Young, who has investigated the properties of

such sets; see Leipz. Ber., 1903; for further properties see also his papers in the Proc. Land.

Math. Soc. (2), vol. i, p. 212, and (2) vol. in, p. 372, where the theory is extended to ^-dimen
sional sets.
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If the sets An are all everywhere dense in (a, 6), the inner limiting set,

being a residual set (see 100), has the cardinal number of the continuum,

in accordance with the theorem of 95.

Next, let us suppose that the sets {An }
are not all of them everywhere

dense in (a, 6) ;
and let us suppose further that the inner limiting set contains

a part H which is dense in itself, so that H is perfect. The set H may be

placed in correspondence with points of the interval (0, 1), so that the order

of corresponding points in H and in the interval (0, 1) is always the same.

To each point in (0, 1) there corresponds a single point of H
, except that the

end-points of an interval contiguous to H correspond to a single point in

(0, 1). The points of H correspond to the points of a set Hl everywhere

dense in (0, 1) ;
and those intervals of An that contain points of H corre

spond to a set of intervals Aw everywhere dense in the interval (0, 1). The

set H therefore corresponds to a residual set in (0, 1); and therefore H
has the cardinal number of the continuum.

The only sets of points which contain no components that are dense in

themselves are enumerable sets, and therefore the cardinal number of an

ordinary inner limiting set is c or a.

It has thus been established that :

An ordinary inner limiting set has the power of the continuum if it

contains a set that is dense in itself; and if it contains no such component it is

enumerable.

An enumerable set which contains a component that is dense in itself cannot

be an ordinary inner limiting set.

98. If any linear set G is given, we may suppose a point x, of G, to be in the

interior of each interval of a sequence S, (x), 8a O)&amp;gt;
s O )&amp;gt;

of intervals, each

one of which contains the next; and this will be the case for each point x in

G. Let dn be the upper boundary of the lengths of the intervals 8n (x), taken

for every point x in G
;
and suppose the intervals so determined that the

numbers dlf d2 ,
... dn ,

... form a sequence which converges to zero. Let A,,

be the set of open non-overlapping intervals which have the same interior

points as the set of intervals {(#)} We nave then a sequence of sets

A t ,
A2 ,

... An ,
... of open intervals, which will define an ordinary inner limiting

set, to which all the points of G must belong; but it may also include

limiting poults of G that do not belong to G. For it is clear that any point

of the inner limiting set is at a distance from some point of Gn that does not

exceed dn ;
hence any point of the inner limiting set which is not a point of

Gn is the limiting point of a sequence of points of Gn ,
since dn ~ 0, as n ~ oo .

The set of points of G which do not belong to G, but which belong to the

inner limiting set defined by the sequence {A n },
will depend in general on
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the mode in which the intervals of the sets An are defined. In order that the

given set G may be an ordinary inner limiting set it must be possible so to

define the sets An that no point G that does not belong to G is in An for

every value of n.

Some criteria will be here given for deciding in respect of a given set

whether this is possible or not, that is, whether the set is an ordinary inner

limiting set or not.

A point which is in Am ,
but not in the sets Am+1 , A,n+2 , ..., is said to be

shed from the sequence {An }
at the index m.

If all the intervals {Sm (#)} be taken to be of equal length 2cn ,
with the

point x in the centre of Sn (x), where cn ~ 0, as n~ oo
,
then every limiting

point of G belongs to the ordinary inner limiting set defined by the sequence
of intervals.

For, however small cn may be, there are points of G whose distance from
a limiting point p is less than CH .

EXAMPLE.

The following example, given by Borel*, drew attention to the fact that a sequence of

sets of intervals constructed as above may define an inner limiting set that contains points
other than those of the given set.

Let us suppose that each rational point
^ in the interval (0, 1) is enclosed in the interval

(a
~

a*
~
3
)

wnere X has tne same value for all the points. In this manner the

rational points are enclosed in a set of overlapping intervals, whose sum is less than
2 1

X2 (q
-

1) -3 ,
or than 2X2 -

2 ,
which can be made as small as we please by choosing X small

enough. The equivalent set of non-overlapping intervals defines, by means of the end-points

and their limits, a closed set {q^, such that for any point of the set - - a, &amp;gt; for all
q

* =
q3

points .

Now consider the set of points defined by

__a, 2
,

s
,

.
an

~10 102!
~
l

&quot;l03!~
l
~

&quot; +
To^!

+ &amp;gt; &quot;

where each a is &amp;lt; 9,-and the a s are such that an infinite number of them are different from
zero. It has been shewn by Liouville that these numbers x are transcendental. Let

P
.

then

*
Legons sur la theorie des fonctions, p. 44.
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It follows that, if x is one of the above transcendental numbers, whatever value X

may have, it is interior to an interval (- -- ,

- + -
;). For suppose g=10n!

;
then

\q g* q f)

&amp;lt;,

q
n

q
3

- - x &amp;lt;&amp;lt;,, provided X &amp;gt;

-. ^. and, however small X may be, values of n can be
n 3 L ~

10(n
~ J

) n!

found for which this inequality is satisfied. Therefore rational points
- can be found, how

ever small X may be, such that x lies within the intervals (- --3,
-

-f } . It thus
\q q* q f)

nr\

appears that, besides the original points
- which the intervals are drawn to enclose, there

are other points which lie inside the intervals, for all values of X, when X is diminished in

definitely.

99. Those limiting points of an enumerable set of points P that do not

belong to Pform an ordinary inner limiting set.

Letpj, p.2 , ...pn ,
... denote the points of P, and let H denote the set of

those limiting points of P which do not belong to P.

The points of H can be enclosed in a set Ax of open intervals that do

not include the point plf Interior to A 1; a set of open intervals A 2 can be

defined which include all the points of H, but not the point p2 ,
and so on.

The sequence A
t ,
A 2 ,

... has for its inner limiting set all the points of H,
but none of the points plt p2 ,

...
;
and H can have no limiting points

that do not belong either to itself or to P. Hence H is an ordinary inner

limiting set.

Every isolated set is an ordinary inner limiting set.

For each point x, of an isolated set, may be enclosed in an interval of a

sequence 8 l (x), 82 (x), ... Bn (x), ..., each interval containing the next, and so

that $(#) converges to zero
;
and such that Sj (x) contains no point of the given

set other than x. The set An may then consist of the intervals 8n (x) for every

point x of the set. It is then clear that the only points interior to A,,, for

every value of n, are the points of the given isolated set, which is therefore

an ordinary inner limiting set.

Every closed set is an ordinary inner limiting set.

Enclose each point P, of a closed set G, in an interval of length 2/a,
with P

as its middle point ; any part of such an interval that is not in (a, b) may be

disregarded. We have thus a set of overlapping intervals which contain

all the points of G within them. Consider the equivalent set of non-

overlapping intervals ( 71). We have thus a set A, of non- overlapping

intervals, each of which is of length ^ p ;
and therefore A must be a finite set,

which contains all the points of G. Let p have all the values in a sequence of

diminishing numbers that converges to zero
;
the corresponding sequence of

finite sets of intervals A1( A2 ,
... An ,

...is such that each contains the next, and

every interval includes points of G. The inner limiting set which they define

must be the set G, since G contains all its limiting points.
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100. The necessary and sufficient condition that an enumerable set P should

be an ordinary inner limiting set is that P contains no component that is dense

in
itself.

That the condition is necessary has been shewn above, since every inner

limiting set that has a component that is dense in itself has the power of the

continuum.

To prove the sufficiency of the theorem, we employ the mode of analysis

of a set, given in 91, into adherences and coherences.

Any enumerable set P can be resolved into a sum of sets

where P1} P2 , ... P^ are all isolated sets, and Qp is a component of a perfect

set Gp; (3 denotes a number of the first, or of the second, class. When P
contains no component that is dense in itself, the decomposition of P ceases

at, or before, some definite number a of the first, or of the second, class,

when there is no set Ga .

It has thus been shewn that, when P contains no component that is dense

in itself, it can be resolved into a finite, or enumerably infinite, set of inner

limiting sets, of which there may, or may not, be a last set. Let PY be one

of the components into which P has been resolved, 7 denoting a number of

the first or second class. We now fix on a sequence of sets of intervals enclosing

the points of Py ,
such that all the intervals are interior to the intervals

complementary to Gy \
then the set PY+1 + Py+2 + ..., which is contained in Gy ,

has no limiting points in any of the intervals which enclose the points of PY ,

for all its limiting points must be in Gy . The sequence of sets of intervals

having thus been fixed for every Py ,
we can now shew that each limiting point

p, of P, which does not belong to P, is shed from the whole sequence of sets of

intervals, at a definite index. The point p is either a limiting point of Pn
belonging to Ll} the set of the isolated points of P

, or is contained in G^. In

the former case it is shed from the intervals enclosing Pl at a definite index;

and, not being a limiting point of P.2 + P3 + . . .
,
it is shed from the&quot; intervals

enclosing the points of that set, at a definite index
; consequently it is shed

from the intervals enclosing P, at a definite index, the greater of the two former

ones. In the latter case, unless p is in G2 or in P2 ,
it is not a limiting point of

P2 + P3 + . . .
,
and does not come into any of the intervals enclosing the points of

Pl ;
it is therefore shed at a definite index. If p belongs to Grl5 G2 ,

... and to

every G before Ga ,
but is not in Ga ,

it may be a point of Pa . In that case it is

not a limiting point of the set Pa+i + Pa+2 + ..., and does not come into the

interior of any of the intervals which enclose the points of PI, P 2 , , or any
P with index less than a. It is therefore shed, at a definite index, from the

sequence of sets of intervals enclosing the points of P. The theorem has

thus been established.
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A corollary to the above proof is that every enumerable set is the sum of

an ordinary inner limiting set, and of a set which is dense in itself.

In particular* it follows that :

Every reducible set is an ordinary inner limiting set.

For the derivative of a reducible set being enumerable, the given set can

contain no component that is dense in itself, since the derivative of such

component would be perfect, which is impossible when the derivative is

enumerable.

Since an ordinary inner limiting set that is everywhere dense consists of the

points that are common to a sequence {An }
of sets AB ,

of non-overlapping open

intervals which are everywhere dense, and since the points that do not belong

to An form a non-dense closed set, it follows that an everywhere dense ordinary

inner limiting set is a residual set ( 95); the complementary set, of the first

category, being the outer limiting set of a sequence of non-dense closed sets.

101. Any unenurnerable set can, in accordance with the result of 91, be

expressed in the form P = U+ Va + 2VX + Ve ;
and we observe that, if Vc is

absent, the necessary and sufficient conditions that P may be an inner limiting

set are that Va and 2F* should both be absent ;
this follows from the preceding

results.

If Vc exists, we observe that no point of U + Va + $VX can be a limiting

point of Vc ;
for any limiting point of Vc must be a point of degree c in the

set P. If Vc is everywhere dense in (a, b), it follows that U + Va + 2VX is

absent. The set Vc may be non-dense in (a, 6), or it may be dense in some

parts of (a, b), and non-dense in other parts.

It will be shewn that Vc is in general made up of a part which is non-dense

in (a, b), and of a finite, or indefinitely great, number of parts each of which

is everywhere dense in a particular interval in which it lies. Suppose that an

interval (a, /9) can be found in which Vc is everywhere dense ;
and let x be a

point in (a, 6) such that x ^ ft Then those values of x for which Vc is every

where dense in (a, x\ together with those values for which this is not the case,

define a section of all the numbers of the continuum (0, b) ;
and this section

defines a number ft ^ ft Similarly, we may assign a number a, ^ a, so that

(a,, ft) is the greatest interval containing (a, /3) which is such that Vc is

everywhere dense in it. If, in the parts of (a, 6) external to (o1} ft), the set

Vc is dense in any interval, then we proceed to fix the greatest interval for

which it is everywhere dense. In this manner we obtain a finite, or enumer-

ably infinite, set of detached intervals contained in (a, b), in each of which Vc

is everywhere dense
;
and the remainder of (a, b) may consist of a set of

detached intervals and a set of points. In this remainder the points of Vc

form a non-dense set.

* See Hobson, Proc. Lond. Math. Soc. (2), vol. n, p. 316. Another proof of the general theorem,

applicable to any number of dimensions, has been given by Brouwer, Proc. Roy. Soc. Amsterdam,

vol. XVIH, p. 48. See also vol. xx for further information on the subject.
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No point of U + Va + 2,VX can be in an interval ( a , &) in which Fc is

everywhere dense. If Vc is the part of Vc which is non-dense in (a, b), every

point of U +^Va + ^Vx must lie in one of the intervals complementary to the

perfect set Fc . It is to be observed that in Vc are included the end-points of

the intervals (a1 , ^ 1 ),
in case those end-points belong to Fc .

In order that P may be an inner limiting set, it is necessary that the part
of U -f Va + S Vx which is in each interval complementary to Vc should be an

inner limiting set
;
and this cannot be the case unless Va and % Vx are absent.

It has thus been shewn that :

In order that nn unenumerable set ofpoints may be an inner limiting set, it

is necessary that the set should contain no points whose degrees in the set are

other than 0, a, or c, and that it should contain no component which is dense

in itself, and whose points are of degree a in the set.

The determination of the necessary and sufficient conditions that any given
unenumerable set of points, however defined, may be an ordinary inner limiting

set, has now been reduced to the problem of determining the criteria for the

case of a set which is dense in itself, and all the points of which are of degree c

in the set. The case in which the latter set is non-dense in its domain may
be reduced, by the method of correspondence, to that in which it is everywhere
dense

;
and the problem is therefore reducible to that of determining the

conditions under which a given everywhere dense set of points, all of degree c

in the set, is a residual set, of the kind described in 100. No investigation
of all the possible types of such sets has yet been carried out, and there

fore the problem remains as yet unsolved.

PLANE SETS OF POINTS.

102. It has already been shewn in 85, in the case of closed sets, that the

descriptive properties of sets of points in two or more dimensions are in some

respects less simple than those of linear sets. The properties of plane sets of

points are of special importance in the theory of functions of a complex variable,

but they do not differ in any essential respect from the properties of sets in

three or more dimensions. The definitions of closed sets, open sets, frontiers,

etc., given in 55, for such sets, are identical with those for linear sets, but an

account will here be given of the most important descriptive properties of sets

in more dimensions than one. Although the proofs of the theorems are, for

simplicity of language, given for plane sets only, they may be extended to the

case of sets in more dimensions than two, without material alteration.

Each point (x, y\ of a plane set, is defined by the two real numbers which

are the rectangular Cartesian coordinates of the point. As has already been

pointed out in 53, a correspondence may be established between the points
in a finite cell, or rectangle, and the points in unbounded space, of such a
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character that the descriptive properties of sets of points are unaltered by the

transformation ;
a special convention being introduced concerning the points

on the boundary of the finite rectangle, or cell. It makes no essential difference,

in the properties which will here be considered, whether the closed or open

sets are considered as bounded, that is as contained in a finite open, or

closed, rectangle, or whether they are in the unbounded plane space; provided

that, when necessary, an adjunct boundary at infinity is postulated which

corresponds to the boundary of a finite rectangle.

103. The frontier of a set of points G has been defined, in 55, as the set

of points each of which belongs to one of the sets G, C (G), and is a limiting

point of the other set. It will be shewn* that:

If the complementary set ofG exists, then the frontier of G andC(G) exists,

and is a closed set.

Let P be any point of G, and P a point of C(G), and consider those points

of G that are on the linear segment PP ,
i.e. those points whose coordinates

x + kx y + ky ,
r&amp;gt; / \ j / / /\ 3 j

are ^ T-, = r-, where P is (x, y), and P is (x , y ),
and A; is a positive

1 -f~ K -I T K

number, or zero. The linear set of points of G, on PP, has, in accordance with

the theorem of 47, an upper boundary Q. This point Q, which may coincide

with P, is a point of the frontier of G and C(G) ,
for if Q is a point of G, it is

also a limiting point of C (G), and if it is a point of C (G), it is a limiting point

of G. Therefore, if C(G) exists, there is always a frontier of G and C (G).

Moreover, let Qlt Q2 ,
... Qn ,

... be a convergent sequence of points of this

frontier. Denoting by Q the limiting point of the sequence, Q is itself a point

of the frontier; for in the set {Qn }
there is contained a convergent sequence

of points all of which belong to G, or else such a sequence of which all points

belong to C(G). If these points all belong to C (G), and consequently to G
,

then Q belongs to the closed sets G and {C ((?)} ;
if they all belong to G, and

consequently to [C(G)} , then Q belongs to G and to {C(G)} . In either case Q
is a point of the frontier

;
and thus, since every limiting point of the frontier

belongs to it, the frontier is a closed set.

If all points of G belong to its frontier, G has no interior points.

104. The distancef of two points P, or (x, y}, and Q, or (x , y ),
has been

defined in 50 to be the number {(x x )* + (y 2/ )
2

} ;
an(^ this may be de

noted by PP.

If P is a point of a set G l ,
and P a point of another set G2 ,

the distances

PP
,
when every such pair of points is contemplated, form an aggregate of

*
Jordan, Cours d Analyse, vol. i, p. 20.

t Instead of the distance so defined, Jordan employs in this connection the &quot;

ecart,&quot; defined

by !

x - x
|
+

| (/
-
y \

. This makes no difference in the developments.
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numbers which have a lower boundary. In case this lower boundary is a

positive number d(G1} G2)(&amp;gt;0),
the sets GI and G2 are said to be detached

from one another. The number d(G1} 6r2) is said to be the distance between

the two sets G1} G2 .

If one set G2 consists of a single point p, d (p, Gj), or simply d, is said to

be the distance of the point p from the set G l .

If two closed sets Glt G2 are detached from one another, there exists at least

one pair of points P, P , belonging respectively to the two sets, such that the

distance PP is equal to the distance of the sets from one another.

Let d denote the distance d(Glt G2 ), of the closed sets from one another;

and let e1? e2 , ... en ,
... be a sequence of decreasing positive numbers that

converges to zero. For each value of n, a pair of points Pn ,
or (xn , yn), and Pn ,

or (x^, yn}, belonging to Glt G2 respectively, can be determined such that

PnPn *&amp;lt;d
2 + en . A unique point pn ,

or (xn , yn ,
xn , yn ), exists in the four-

dimensional continuum, corresponding to each pair of points Pn ,
Pn . The set

of points plt p2 ,
... pn ,

... has at least one limiting point (x, y, x, y ) ;
let P, P

denote the two points (x, y), (x, y ) in the plane space. It will be shewn that

P and P belong to Gl , G2 respectively, and that PP is equal to d. An integer

m can be so determined that x x
n&amp;gt; y yn ,

x xn , y yn are all numerically

less than an arbitrarily chosen positive number r?, provided n ^ m. It follows

that P is a limiting point of the sequence {Pn },
and that P is a limiting point

of the sequence {Pn }&amp;gt;

and thus that P and P belong to Gl} Gz respectively,

since these sets are closed. We have, further,

SB X = Xn \+

and similarly y y ^ 2?? + yn yn ,
for n ^ m. From these inequalities we

see that (x # )
2 + (y y )

2
&amp;lt; 8?f + Arj + PnPn

2
, where A is some fixed number;

hence PP 2
&amp;lt; &rf + Ay + d2 + en . Since 77 and eM are both arbitrarily small, it

follows that PP 2 ^ d2
,
and thus that PP 2

, which is certainly not less than d2
,

must be equal to d2
. The theorem has now been established. For the choice * of

the infinite set of pairs of points Pn ,
Pn ,

the multiplicative axiom is required.

105. A closed set of points is said to be connex, or single sheeted, when it

is not the sum of two or more closed sets.

It should be observed that the expression
&quot; connex

&quot;

has been employed
in 41 in a somewhat different sense.

A connex closed set which does not consist of a single point is a perfect set.

For an isolated point of a closed set G can be considered as a set detached

from the closed set consisting of all the remaining points of G
;
and hence, if

an isolated point existed, G could not be connex.

If P, P are any two points of a connex perfect set G, and e be any assigned

positive number, a finite number of points pl} p.2 , ...pn , of the set, can be so de-
* See Chap, iv, 197 et seq.
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termined that Pplt p^, p2p3 , pn-ipn , pnP are all ^ e. Conversely, if this

condition holds for each pair of points P, P of 0, and for every positive number

e (n depending on e), then G is connex.

The condition stated in the theorem is sufficient to ensure the connexity

of G. For if G be the sum of two closed sets Glt G2 ,
the distance between

which is d
(&amp;gt; 0), we may choose e to be &amp;lt; d. If P is a point of Glt and pl is a

point of G such that Pp l
^ e, the point pl belongs to G1 ; again if p2 be a point

of G such thatp } p2 e, the point pz belongs to GI ;
and so on. Since pn belongs

to G1} whatever finite value n may have, it is impossible that pnP ^ e, because

pnP = d. Again, the condition is a necessary one. For, let us suppose that,

for some value of e, the condition is not satisfied for every pair of points. If

P belong to such a pair, the set G may be divided into two parts G 1
and G2 ;

where G l is such that, for each point P belonging to it, a definite set of points

of (?!, viz. pi,pa,...pn , exists, such that Pp,, p^, ... pnF are all ^ e; and G2

is such that, for each point of it, this condition is not satisfied. It can be

shewn that G 1} G2 are both closed sets, and that the distance between them

is &amp;gt; e. For, if p is a limiting point of GI, it belongs either to Gl
or to Gz \

and

since there are points pn ,
of G1} such that ppn &amp;lt; e, the point p clearly belongs

to G l ;
therefore G l

is a closed set. Again, if q is a limiting point of 6r2 ,
it

cannot belong to GV, for a point P
,
of G.2 ,

can be found such that qP &amp;lt;e;

hence, if q belonged to G^ so also would P ;
thus G2 is closed. It is clear that

no pair of points of Glt G2 can exist, of which the distance is ^ e; hence, for

these sets, d &amp;gt; e. It has thus been shewn that, if for any value of e the con

dition in the theorem is not satisfied, G can be divided into two detached

closed sets, and it is therefore not connex.

106. An open set, defined in 55, as one such that every point is an

interior point, is also frequently called an open domain.

When the open domain is such that any two points P, P of it may be

joined by means of a finite set of linear intervals Ppl} p^, ... pnP ,
such that

all the points of all these closed intervals belong to the domain, it is said to

be a connex open domain.

A connex orJen domain is also called a Weierstrassian domain, or a continuum.

It may be either bounded or unbounded. The terms domain and region are

also used to denote a connex open domain together with some, or all, of its

frontier points.

If, to a connex open domain, all its frontier points be added, it becomes a

closed set, connex in accordance with the definition of 105. But a closed

connex set does not necessarily become a single connex open domain when all

its frontier points are removed from it. Thus, for example, the set of all the

points interior to, or on the circumferences of, two circles that touch each

other externally, is a closed set, but the interior points of the circles do not

form a single connex open set, but two such sets.
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Each point of an open domain is such that a circle exists with the point
as centre, and with all its interior points in the domain, but with one or more

points of the frontier on its circumference.

For the point P has a definite distance dp from the closed frontier of the

open domain, and in virtue of the theorem of 104 there is one point at least

of the frontier on the circumference of the circle with centre P and radius dp .

Every open set ofpoints is the sum of a finite, or an enumerably infinite, set

of connex open domains.

If P be any point of the given open set 0, let the component 1} of 0, be

such that every point Q, of O lt satisfies the condition that P and Q can be

joined by a set Pp1} p^2 , ...,pnQ of straight lines of which all the points are

points of 0. The set Ol is clearly an open set, for a point Q of it has a neigh

bourhood, of which every point q can be joined in the above manner to

P; and thus Q is an interior point of Ol
. Therefore any point P, of 0, is a

point of a connex open domain which is a component of 0. It will be shewn
that the number of such connex domains contained in is enumerably infinite,

or finite. Apply to the finite, or infinite, rectangle, in which G is contained, a

system of closed nets {Dn }.
There is a smallest integer nl} such that D

)lt
has

one or more meshes interior to 0; there is a smallest integer n2 (&amp;gt;nj),

such that those meshes of D
Hi

which are not interior to contain one or

more meshes of D
n&amp;lt;i

that are interior to 0; and so on. We obtain in this

manner a sequence of sets of meshes d
ni ,

d
n&amp;lt;i

, ... such that each mesh of the

sequence is interior to 0, and such that no mesh of the sequence contains any
other such mesh. Every such component of 0, as I} contains meshes of the

sequence ;
and since the set of meshes in the sequence is enumerable, it

follows that the aggregate of all components of that consist of connex open
sets is enumerable, whether finite or not. It follows from this theorem that

every closed set ofpoints has for its complement, relatively to a finite, or infinite,

cell, a finite, or an enumerably infinite, set of connex open domains. If the set

of connex open domains is everywhere dense in a closed domain, the closed set

is non-dense in that domain.

These connex open domains are the true analogues, for plane closed sets, of

the open intervals contiguous to a linear closed set of points
1

,
and they may

therefore be said to be the open connex domains contiguous to the closed set.

In 86, attention has been confined to domains of a particular type, viz. cells,

and it has there been shewn that there exists, in general, no unique set of

cells which have properties in relation to a given closed set fully analogous to

the properties of the open intervals contiguous to a linear closed set. If, to a

non-dense closed set, there be added all the interior points of some of the

contiguous domains, we obtain a closed set of the most general type. A closed

set will be perfect, if no two of the contiguous domains abut on one another,

or also if they abut on one another in such a way that the points common
to the two boundaries form a perfect set.
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107. A bounded connex domain together with its frontier points forms a
connex closed set.

Since the frontier is closed, it is easily seen that the set formed by adding
all the points on the frontier of the bounded connex domain is closed.

If P, Q are both interior points of the closed set, they are both points of
the bounded connex domain, and thus satisfy the requisite conditions as to
the mode in which they may be joined. If P, Q are points on the frontier
interior points P , Q may be so determined that PP

, QQ are both less than
e

;
and then P

, Q may be joined by a series ofstraight lines P p, , Plp2 , ...,pnQ
f

each of length less than e, and such that every point of all of them is an interior
point of the connex domain. It thus follows that P, Q may be joined so that
the requisite condition is satisfied. The theorem will also hold good for an
unbounded domain, provided those points at infinity which are boundary points
are adjoined.

The boundary of a connex domain, although closed, is not
necessarily itself

connex. For example, if the connex domain consists of the points between two
concentric circles, the boundary consists of the two circumferences, and is not
r*r\~m-mvconnex.

The Heine-Borel theorem in its generalized form, proved in 74 has
already been emancipated, in 75, from the condition that the set to which the
points of the closed set are interior is necessarily a set of cells. It has in fact
been shewn in 75 that a set of open domains may be employed instead of a
set of cells. The theorem may then be stated in the following form :

// every point of a closed set G belongs to one or more of the connex opendomains of a set D (not necessarily enumerable) of such domains, there exists
a finite set of connex open domains belonging to D such that every point of G
belongs to one at least of the domains of the finite set.

In a similar manner it is shewn that, in the last theorem of 75, applicable
to any set of points G, open connex domains may be employed instead of cells.We thus have the following theorem :

// each point of a given set ofpoints belongs to a definite connex open domain
corresponding to that point, an enumerable set of these connex open domains can
be so determined that all the points of the set belong to one or more of the
domains of that enumerable set.

If the enumerable set of connex open domains be {Dn },
it may be shewn

that, if H be any closed set contained in G, all the points of H belong to one
or more of the domains of a finite set which is a component of {}.

For, since each point of the closed set is interior to one or more of the
domains {Dn },

the result follows from the generalized Heine-Borel theorem.

10
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108. The case when G is an open set 0, in which, to each point of

0, there corresponds a domain which consists of the interior of a circle with

the point as centre, is of special importance in connection with the theory of

a complex variable.

Let dp be the distance of the point P, of an open set 0, from the frontier

of the set. To the point P, the interior of the circle of radius dp ,
and centre P,

may be taken to correspond. In accordance with the theorem of 107, every

point of the open set is interior to one at least of an enumerable set {Gn}
of

these circles. Each of the circles has on its circumference one or more points

of the frontier of the open set. If the radius of the circle with centre P be

6dP ,
instead of dp ,

where is some fixed number
(&amp;lt; 1), an enumerable set of

these circles {Cn} exists, such that each point of the open set is interior to one

or more of the circles {Cn },
and all the points on the circumferences of these

circles are points of the open set 0.

The results may thus be stated as follows :

// be any open set, there exists (1) an. enumerable set of circles [Cn],
such

that each point of is an interior point of one at least of the circles, and such

that every interior point of the circles is a point of 0, and the circumference

of each of the circles contains one or more points on the frontier of ; and

(2) there exists an enumerable set of circles \Cn],
such that each point of is

interior to one or more of the circles, and every point on the circumference, or

interior to, any of the circles, is a point of 0.

If consist of a single connex open domain, any two points P, Q, of 0, can

be joined by means of a finite number of the circles of the set {Cn },
or also by

a finite number of the circles of {Gn } ;
so that P, Q are interior to circles of the

finite set, and each circle overlaps the next.

For P and Q may be joined by a finite set of segments of straight lines

all of which segments are points of 0. This broken line joining P and Q

constitutes a closed set H, which, in accordance with the last remark in 107,

is such that each point of H is interior to a finite set of circles belonging

either to {Cn},
or to {Gn }.

Whichever of these sets of circles be employed, we

have a chain of circles such that P and Q are each interior to one of them, and

such that each circle of the chain overlaps the next one.

109. The following theorem is the analogue, for a plane set of points, of the

theorem proved in 71 for an open linear set.

Having given a set ofoverlapping open domains, there exists a set ofnon-over

lapping open domains such that an interior point of a domain of either set is an

interior point of a domain of the other set.

The proof of the theorem is the same as that in 71; it being shewn that

every point interior to one or more of the given domains is an interior point
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of the set of all such points. The set of all points interior to one or more of

the given domains is open, and consequently consists of a finite, or an enu

merable set of connex open domains.

Every open domain is the sum of an enumerable set of closed cells which

do not overlap, though any two of them may have a portion of their boundaries

in common.

We may prove the theorem for the case in which the open domain is

bounded, as it can then be extended to the case of an unbounded open domain,

by the method of correspondence.

Apply a system of nets, with closed meshes, to a fundamental cell which

contains the open domain. There is a smallest value n 1} of n, such that D
Hl

has

one or more meshes which, being completely closed, are interior to 0. Let these

meshes, arranged in order of rank, be denoted by DHl
. There is a smallest

value n 2 ,
of n, (&amp;gt;n^)

so that Z)
ng

contains meshes not contained in D
ni ,

each of

which is interior to 0. Proceeding in this manner, we have a sequence of

finite sets of meshes D
ni , -Di 2 , , arranged in order, such that each mesh is

interior to 0, and no two of the meshes overlap one another.

Any point of iscontained in each of a unique sequence ofmeshes c^c^.ds, ...

belonging to Dl} Z)2 ,
... respectively. These are the meshes in which the

point would have been contained if the nets had been half closed instead of

completely closed. For all sufficiently large values of n, dn is interior to 0.

The smallest such value of n must be one of the numbers nl} n2 , ...; say n
Pl

.

Thus the point P, of 0, is in a mesh dn which belongs to Dn . It is thus

proved that all the points of are points of the sequence DHl , Dnz ,

An open set is the outer limiting set of a sequence of closed sets.

First let the open set be bounded, and let H be its boundary. Let d be

a fixed number, and consider the set of points Gd which consists of all points
of at a distance from H that is = d. This set Gd ,

which certainly exists

provided d be sufficiently small, is a closed set. For let {Pn }
be a convergent

sequence of sets of points of Gd that has P for its limiting point.

The distance of P from H cannot be less than d, for if it were, for a

sufficiently great value of n, Pn would be at a distance from H less than d,

which is not the case. If d have the values in a sequence dl ,d.2) ... dn ,
... which

steadily converges to zero, the closed sets Q
dl , Gdi , ... G^, ... are such that

each is contained in the next, and any point of belongs to all of the closed

sets, from and after some value of n. Thus is the outer limiting set of the

sequence {Gdn }
of closed sets.

In case the open set is unbounded, the theorem may be deduced from the

case in which it is bounded. In this case the closed sets may have parts
of their frontiers at infinity.

102
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The theorem may also be proved by considering the set of circles {Cn}
such

that every point of is an interior point of one or more of the circles, and

that every point in, or on the circumference of,_each
circle belongs to 0. For

we may consider the closed set M (C,, G2 ,
... Cn)=Gn ]

then is the outer

limiting set of the sequence {Gn }
of closed sets.

A closed set is the inner limiting set of a sequence of open sets.

This is at once deduced from the last theorem by considering the com

plementary sets.

110. Having given a non-finite family of sets of points, there exists at least

one point such that, in its arbitrarily small neighbourhood, there are points

belonging to an infinite number of sets of the given family. Such a point may

be an adjoined point at infinity.

In the case in which each of the sets of points consists of a single point

this theorem reduces to that of the existence of the limiting point of a set of

points ;
and thus the theorem may be considered to be a generalization of the

fundamental theorem of 52.

In case all the sets of the family are contained in a finite fundamental

cell, the theorem is proved exactly as that in 52. A system of nets being

applied to the fundamental cell, a sequence of meshes dly d2 , ... each containing

the next, and belonging to the successive nets, is obtained, and each of which

contains points belonging to an infinite number of the sets of the given family.

The point defined by the sequence [dn ]
is a point which satisfies the condition

of the theorem. In case there is no finite fundamental cell, the theorem is

proved by the method of correspondence with a family of sets in a finite cell.

In this case the point determined may be an adjoined point at infinity.

It is easily seen that all the points that satisfy the condition of the theorem

form a closed set
;
the points at infinity, if any, being included in the set.

In case all the sets are open domains, we have the following theorem :

Having given a non-finite (enumerable or unenumerable) family of open

domains, there exists at least one point such that, in its arbitrarily small neigh

bourhood, there are contained domains ivhich are portions of an infinite number

of the domains of the given family. Such a point may be an adjoined point at

infinity. The set of all such points is a closed set.

111. The theorems in 82 can be extended to the case of a set of two (or

more) dimensions.

Instead of intervals Sl} 82 ,
...$

n&amp;gt; ..., each containing the next,and converging

to the point p, we take a convergent set of cells. Instead of intervals con

tiguous to the perfect, or the closed, set Pn ,
we take the set of contiguous

domains. The procedure in the proofs is then otherwise unaltered.
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In case the sets P2 ,
P3 , ... P

,
consist of the successive derivatives of a

closed set Ply if a set Pp does not exist, the previous set P _j consists of

a finite set of points, and in case there is a number /3 such that Pp = P/s+i, the

set Pp is perfect. We thus obtain a proof of the theorem already established

in 89, that every ^-dimensional set is the sum of a perfect set and an

enumerable set. A proof has been* given by de la Vallee Poussin of the

second theorem of 82, applicable to closed sets in any number of dimensions,

in which the theorems of 75 are employed.

112. Every set of points can be expressed as the sum of a set which is

dense in itself, and of an enumerable set which is non-dense in every

perfect set.

In the first place, if a set is non-dense with respect to every perfect set,

it is enumerable. For, if a set is not enumerable, there is a set of points of

unenumerability which is perfect, and contains points of the set and, in

general, others not in the set. The given set would be everywhere dense

in this perfect set, contrary to the hypothesis that it is non-dense in every

perfect set.

Let E be a given set
;
and consider a point p, whether belonging to E or

not, which is such that, in every neighbourhood of p, there is a perfect set

with respect to which E is everywhere dense.

Let P be the set of all such points p. Any perfect set in which E is

everywhere dense must be contained in P
;
hence P has no isolated points ;

moreover P is clearly a closed set, and therefore it is perfect. It will be

shewn that E is everywhere dense in P. If a perfect set be contained in any
interval, or domain, contiguous to P, and E were dense with respect to such

perfect set, it would be everywhere dense with respect to some perfect

portion of such set, and this portion would therefore belong to P, which is

impossible ;
hence E is non-dense in any perfect set contained in a domain

contiguous to P. If E were not everywhere dense in P, the part of P in some

interval, or cell, would contain no points of E. Any point of P belonging
to this part would have a neighbourhood free from points of E, which is

contrary to the definition of P. Hence E is everywhere dense in P. Let

E=D(E,P) + E2 ;

so that E2 consists of those points of E which do not belong to P. It will be

shewn that E.2 is non-dense with respect to every perfect set, and con

sequently enumerable. If there were a perfect set in which E2 were not non-

dense, it would be everywhere dense in a perfect set R, a portion of the former

one. If R have points not belonging to P, E, and therefore Ez ,
is not every

where dense in R. If R is contained in P, Ez has no points in R. Therefore

Ev is non-dense with respect to every perfect set.

*
Intlgrales de Lebesgue, p. 113.
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In the case of a closed set, the part that is dense in itself is the perfect
set which is a part of the closed set, the other part, which is irreducible in

every interval, or domain, contiguous to the perfect set, is non-dense in every

perfect set.

Denjoy*, to whom the above theorem is due, has indicated a method, in

the general case, of obtaining by a successive process the enumerable set that

is non-dense with respect to every perfect set.

113. If G be any plane set of points, and, corresponding to each point P,
of G, a cell with centre P, and sides all equal to 2A, be contemplated, the set of

all points which belong to one or more such cells, when the cells for all the

points P, of G, are considered, is said to be a neighbourhood (A) of the set G.

The neighbourhood (A) of the set G is said to be complete, or incomplete,

according as the cells are taken to be closed, or open.

Every point of the incomplete neighbourhood (A), denoted by H, of a given
set G, is an interior point of H. For any point Q, of the set H, is an interior

point of a cell, all the interior points of which belong to H
;

hence a

neighbourhood h
(&amp;lt;li)

of Q can be determined so that all its points belong
to H. Thus the incomplete neighbourhood (h) of any given set G is an

open set.

(a) The complete neighbourhood (h), denoted by H, of a closed (bounded) set

G, is a closed set.

For, if Q1} Q z&amp;gt;

... be a sequence of points of H which converges to a

point Q (x
w

, x}, and if Qn be denoted by (#/&amp;gt;,
#M

2

&amp;lt;),

there exists a point
p (

(1) (2)

), of G, such that
iV11 -

fw
(1)

|, V2)

-j
(2)

j
are both &amp;lt; A. The set

of points {Pn }
has at least one limiting point P( (1)

, ff
(2)

), which is necessarily
a point of G. A sequence of increasing integers m ly m.2 ,

ms ,
. . . can be so chosen

that the sequence Pmi ,
Pm2 ,

Pmz ,
... converges to P as its sole limiting

point.

Since xm -As m
/&amp;gt;

* xm w + h, and xm^ -h
&,/&amp;gt;

xm + h,

for every value of s, we have

# (1) -h f
&amp;lt;&quot; ^ #w + h, and x -h ^ &amp;lt;

2
&amp;gt; x + h.

It now follows that Q is in the complete neighbourhood of G. Therefore the
set H is closed.

(6) If G1} G2 be two (bounded) closed sets which have no point in common,
a neighbourhood of G^ can be determined which contains no points of G2 .

If d be the distance between the sets Q1} G2 , the complete, or the

incomplete, neighbourhood (A), where
h&amp;lt;d/^/ 2, of Glt contains no points

of 2 .

* See his memoir &quot; Sur les nombres derives,&quot; Journ. de Math., ser. 7, vol. i, 1915, p. 235.
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The following theorem can be deduced :

(c) If the (bounded) closed set G consists entirely of interior points of a

set H, a neighbourhood (h) of G, complete, or incomplete, can be so determined

that it consists entirely of interior points of H.

The points of G have a maximum distance p from the point (0, 0).

Choose a number p (&amp;gt; p), and let H^ be that part ofH that consists of points

at a distance ^ p from the point (0, 0).

It is clear that every point of G is an interior point of //,. Let L be the

set of points on the boundary of JET, ;
L is then a closed set. A neighbour

hood (h) of G can be determined which, whether complete or incomplete,

contains no points of L. Every point of this neighbourhood (h) is an interior

point of Hl ,
and therefore of//. For any such point Q is in the neighbour

hood (h) of some point P, of G. If the neighbourhood (h) of P does not

consist entirely of interior points of H1} it must contain one or more points

of L
;
and this is not the case. Therefore Q is an interior point of Hf.

THE CLASSIFICATION OF A FAMILY OF SETS OF POINTS.

114. It has been shewn, in 56, that the setM (Ol , 2 ,
... On , ...), of points

each of which belongs to one at least of the open sets 1? 2 ,
... On , ..., is

itself an open set.

Let us consider a set D(0l , 2 ,
... O n , ...) which, when it exists, consists

of all the points common to the open sets of the sequence. This set belongs
to a class of sets which may be denoted by

(d)
;
so that each set of the class

is obtained from some sequence of open sets. A set which can be exhibited

as M (Of
d
\ 2

(d)
, ...) belongs to a class of sets which may be denoted by Odm .

In the same way, a set which can be exhibited as D(0-^
dm]

, 2
(dm

\ ...) belongs
to a class which may be denoted by O dind

. By continuing this process we can

obtain an indefinite number of classes of sets
;
of these, the first is the class

of open sets, the second is the class of sets (d
\ the third is the class of sets

(dm
\ the fourth the class of sets Wmrf)

;
and so on. The class o&amp;gt; maybe

defined as the class of sets, each of which consists of the points common to

all the sets of a sequence, each member of which belongs to one of the classes

1, 2, 3, The class w + I consists of sets each of which consists of the points

belonging to one or more of the sets belonging to a sequence of sets of

class a)
;
the class w 4- 2 &quot;consists of sets each of which consists of the points

common to all the sets of a sequence of sets belonging to class &&amp;gt; + 1.

Proceeding in this manner, we may contemplate the existence of a class

corresponding to any ordinal number of the second class.

* See Hobson, Proc.Lond. Math. Soc., (2), vol. xiv. The theorem (c) was first proved by Bolza

in a different manner
;
see Vorlesungen ilber Variationsrechnung, p. 155.
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This classification has been given by Hausdorff*, who applies the term
Borel-set to denote any member of any of these classes, all of which he shews
exist. He has proved that every Borel-set is either enumerable (or finite),
or has the cardinal number of the continuum. This is a generalization of the
theorem that every closed set, which is an (d

\ has one of the cardinal

numbers a and c. For the whole class (d)
,
the theorem was established by

W. H. Young (see 97), in connection with the theory of ordinary inner

limiting sets. The result obtained by Hausdorff settles the question as to the

possible cardinal numbers of sets of points, in the case of sets belonging to a

very extensive class.

A detailed treatment of the possible peculiarities of structure of sets of

points in plane space, or in space of higher dimensions, is of the highest

importance in- relation to the application of the principles of the theory of sets

of points to abstract geometry. As a development of this character is beyond
the scope of the present work, reference is here made to the account given by
Schoenfliesf, where references to the literature of the subject will be found.

A memoir! b7 w - H. and G. C. Young,
&quot; On the internal structure of a set

of points in space of any number of dimensions,&quot; may also be here referred

to. Information on the subject will also be found in W. H. Young s treatise
&quot; On the theory of sets of

points.&quot; Reference may also be made to W. N.
Watson s tract,

&quot;

Complex integration and Cauchy s theorem,&quot; where a proof
will be found of Jordan s fundamental theorem, that a plane is divided into

two distinct open connex domains, by means of a closed Jordan curve.

Another proof jj
has been given by Brouwer.

SETS OF SEQUENCES OF INTEGERS.

115. A theory of sets of sequences of integers, of which the formal character

is similar to the theory of sets of points in any number of dimensions, has
been developed by Baire, with a view to application to the Theory of Functions.

A group of integers (a1} 2 ,
... ap\ of order p, consists of a system of p

positive integers arranged in a definite order.

The group ( 1} or2 ,
... ap ),

of order p, is said to be contained in each of the

groups (!&amp;gt;, ( 1: 8), (a1} a2 ,
os ), ... (a 1} o2 ,

... a^) of orders 1, 2, 3, ... p - 1,

respectively.

A sequence of integers (a1; 2 ,
... ap , ...) consists of an infinite number of

integers, defined in any manner, and arranged in an order similar to the

sequence 1, 2, 3, .... This sequence is said to be contained in each of the

groups (x), (!, Oj), ... (!, 2 ,
... Op), .... Let P be a set of such sequences of

integers, and let A be any other sequence of integers ;
then if, for every n,

* Math. Annalen, vol. LXXVII (1910), p. 430.

t See his Entwickelung dcr Lehrevon den Punktmannigfaltigkeiten, vol. n, chap. iv.

J Proc. Lond. Math. Soc., (2), vol. xvi, p. 337. Comptes Rendus, vol. cxxix, 1899, p. 946.

||
Math. Annalen, vol. LXIX, p. 169, and vol. LXXI, p. 314.
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there are sequences in P, other than A itself, which are contained in

the same group, of order n, as A itself, that is sequences having their first

n integers the same as the first n integers in A, then the sequence A is said

to be a limit of the set of sequences P. The sequence A may, or may not, itself

belong to P.

The set P is said to be closed, in case all its limits belong to it. The set

is said to be perfect when it is closed, and also every sequence in the set is a

limit of the set.

A set E, of groups of integers, is said to be complete if, when g is any group
of order p, belonging to E, the groups of orders 1, 2, 3, ... p 1, which contain

g, also belong to E.

A complete set E, of groups of integers, is said to be closed, if every group

g, belonging to E, contains at least one group of higher order than itself, which

is also contained in E.

Having given a complete set of groups E, a sequence A may exist such

that all the groups containing A belong to E. The set F, of all sequences such

as A, is said to be determined by the set of groups E. The set F, if it exists,

is closed.

Every closed set of groups E determines a closed set of sequences F, and

conversely, every closed set of sequences F is determined by a unique closed

set of groups E. In case F is perfect, E is also said to be perfect. In order

that E may be perfect, it is necessary and sufficient that every group belonging
to E should contain at least two groups of one and the same order superior to

its own order, and belonging to E.

If P is a set of sequences, then the set P of those sequences which are

limits of the set P is said to be the derived set of P, and may be denoted by
P . The derived set P is closed.

The successive derivatives P&quot;,
P

&quot;,
... PM

,
... P (0)

,
of finite or transfinite

orders, are then defined as in the theory of sets of points. If P is a closed

set of sequences, there exists a number a of the first or the second class, such

that P (ot)
=P&amp;lt;

a+1
&amp;gt;. Unless P is an enumerable set, it can be resolved into the

sum of an enumerable set and a perfect set.

Let us consider a perfect set of groups E determining a perfect set of

sequences F. A set P, of sequences all belonging to F, is said to be non-dense

in F, or in E, provided that every group of E contains at least one group of E
which contains no sequence of P.

A set of sequences P, all belonging to F, is said to be of the first category,

relative to F, if there exists an enumerable sequence of sets P,, P2 ,
... Pn ,

... ,

each of which is non-dense in F, and such that each sequence of P is part of

one at least of the sets P
l ,
P2 ,

... Pn ,
The set obtained by removing the

set P from F is said to be of the second category relative to F. The same

generic distinction between sets of the first and of the second categories holds,

as in the theory of sets of points.



THE METRIC PROPERTIES OF SETS OF POINTS

116. IN Chapter II an account has been given of those properties of sets

of points which are called descriptive, in order to distinguish them from the

metric properties which we now proceed to discuss. In the investigation of

descriptive properties the notion of the distance between a pair of points

x, x , denned arithmetically by -1 2 (x # )
2
r &amp;gt;

has been employed, but, although

the descriptive properties of a set are invariant for a large class of trans

formations, the distance between a pair of points x, x is not invariant in such

transformations.

The earliest theory of the metric properties of sets was originated, for the

case of linear sets, by Hankel*, and was further developed by Harnackf,

StolzJ, and by Cantor
,
who extended the conception of the content of a set

to the case of sets of points in a domain of any number of dimensions.

Although this theory of content has now been almost entirely superseded

by the later theory of measure, developed by Borel|| and Lebesgue^f, we

proceed to give an account of it, not only for historical reasons, but also in

order to point out the respects in which it has defects which are remedied in

the later theory of the measure of sets of points. A very general theory of

measure has been given by Caratheodory**.

THE CONTENT OF A SET OF POINTS.

117. Suppose a linear set of points G to be contained in the finite interval

(a, b}. Let a system of nets be fitted on to the interval (a, b). In this case it

will be convenient to take the meshes of the nets to be closed at both ends.

In the net of order r, let there be nr meshes, and of these suppose vr contain

points of G within them, or at their ends. Let S
nf&amp;gt;Vr

(^ b a) denote the

sum of the breadths of the v.r meshes. It is clear that S
nttVf

^ 8
nr+l&amp;gt;Vf+1 ;

and

thus the sequence of numbers
?il&amp;gt;l/l

,
S

n2&amp;gt;Vfi
,
... S

nr&amp;gt;l

,

r ..., which are all &amp;gt;0, has

a definite limit 2, which is such that ^ 2 ^ 6 a. The number S
nfit

,r
2

may be made as small as we please, by taking r sufficiently large.

It will be shewn that the number S is the same whatever closed system
of nets is employed. Suppose two systems of nets to give the values 21( 22 ,

of

2, respectively. We may denote by $Wr (i) f(
,

r (i), SnrwtVf (z) the values of the sum

8n
ri

vr
for the two systems of nets, {Dn

(1]

}, [Dn
( 2)

\.

* Math. Annalen, vol. xx, p. 86. f Math. Aniialen, vol. xxv, p. 241.

J Math. Annalen, vol. xxin, p. 152; see also Pasch, Math. Annalen, vol. xxx, p. 142.

Math. Annalen, vol. xxui, p. 473.
j|
See Lemons sur la Theorie des Fonctiom.

IF See the memoir &quot;

Integrate, longueur, aire,&quot; Annall di Mat., (3), vol. vn, also Lee/)ns sur

V integration.
** See Gottinger Nachrichten, 1914, p. 404.
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If a net DmM of one system be superimposed on a set Dm ( - } of the other

system, we obtain a net which may be denoted by J^
m&amp;lt;m

.

If cr denote the sum of the breadths of those meshes of D
nrfu ns

d) that

contain points of G, it is clear that &amp;lt;r ^ Snrd\ Vf
&).

Let r be so large that Snr(D
&amp;gt;t

,

r
(i) Si &amp;lt; e, an arbitrarily chosen positive

number
;
and let s be so large that the greatest of the breadths of the meshes

in the nets DJ2} is &amp;lt; rj, an arbitrarily chosen positive number. Of the yg
(2)

meshes in the sum S^W r,09
the number that are not also meshes in the sum a

is at most nr 1
;
hence $%(2)

Vg
(2) &amp;lt; a- + r) r ij. Therefore

22 &amp;lt; *SW2W 2) &amp;lt; Snrwt
,r

(i) + nr r) &amp;lt; Sj + e + nr n.

Now e and 77 are arbitrarily small, and it therefore follows that S 2 ^ Sj.

It can similarly be proved that 2^ ^ S2 ;
and from the two relations it is

inferred that 2j = 22 . Therefore 2 is a definite number, independent of

the particular system of nets employed in defining it.

We have now established the following theorem :

If G be any given set of points in the interval (a, b), there corresponds to G
a definite number S, which is such that all the points of G are interior points of
a definite number of intervals whose sum exceeds 2 by less than an arbitrarily
chosen positive number e, the number of the intervals depending on e.

The number 2) is called the content of the set G, and the content may have

any value in the closed interval (0, b a).

Those sets of points for which the content is zero are of special importance
in the Theory of Functions. A set of zero content is said to be an unextended,

or a discrete, or an integrable set of points.

It is clear that the definition, and the proof of existence given above, are

applicable in the case of a bounded set of points in space of any number of

dimensions, provided intervals are replaced by cells, and the breadth of an

interval is replaced by the product of the lengths of the sides of a cell, which

is regarded as the content of the cell. A point of the set that is on the

boundary of a cell is also in one adjacent cell at least.

118. The content of a set of points is the same as the content of its derivative.

Let X be the content of the derivative of a set G
;
then the points of G

may be included in a finite set of intervals, or cells, the sum of whose contents

is less than S + 8, where B is an arbitrarily chosen positive number. There

can be only a finite number of points of G which do not fall within the intervals,

orinthecells, that include the points of G
;
and this finite number of points may

be included in intervals, or cells, the sum of the contents of which is arbitrarily

small, say e. All the points of G are now included in a finite numberof intervals,

or cells, of total content less than S + S + e
;
and a series of diminishing values

may be assigned to 8 and e
;
each sequence having the limit zero. Therefore

both 2 + 8 + e and 2 + S converge to the value S ;
which proves the theorem.
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It follows, from this theorem, that the content of any set is the same as

that of any of its successive derivatives. In the case of a set which is of the

first species, one of the derivatives contains only a finite number of points,

and consequently the set must be of zero content.

119. A definition of the content of a linear set of points has been given by
Cantor* which, though differing in form from that of Hankel and Harnack, is

in reality equivalent to it. Instead of enclosing the points of the set in a

finite number of intervals, Cantor encloses each point of G in an interval 2p,

of which the point is the middle point, the number p being the same for each

point of the set, those parts of intervals 2p which do not lie within (a, b) being

disregarded. We have in this manner obtained an infinite number of overlap

ping intervals which contain all the points of G, and, as is clear, all the points
of G

,
which is a closed set. If we replace this set of intervals by the set of

non-overlapping intervals with the same interior points, each interval of this

latter set is = p. The set, which is non-overlapping, and equivalent to the

infinite set, is consequently a finite_set, the sum of whose lengths may be

denoted by Ft
(p, G). When p is diminished indefinitely, the number H (p, G),

which cannot increase as p is diminished, must have a definite lower limit,
;

which defines the content of either of the sets G and G. Since the infinite

set of intervals which has been employed only covers a finite number of

detached lengths, this definition is equivalent to that of Hankel and Harnack.

Cantor applies this definition to the case of a set of points in a ^-dimensional

continuum, by enclosing each point in a &quot;

sphere
&quot;

of radius p, with its centre

\ at the point ;
the content is then the lower limit of the volume of the continuum

i
contained within the spheres.

The essential point in the above definition of the content of a set of points
is that all the points are contained in a finite number of intervals, or cells, which

, therefore contain all the limiting points^ ;
and the lower limit of the sum of

the contents of these intervals, or cells, is taken as defining the content of the

set. Ifthe points are contained, from the commencement, in an infinite number

of intervals, or cells, which are of unequal span, in accordance with some pre
scribed law, and the spans of these intervals, or cells, are then diminished, each

one in a prescribed manner tending to the limit zero, then the limit of the sum
of those parts of the fundamental interval, or cell, which are included in the

infinite set of intervals, or cells, is not necessarily equal to the content, as above

defined. For example, let us consider the set of rational points in the interval

(0, 1). These points can be arranged in enumerable order P1 ,
P2 , Ps ,

... : now
enclose Pj in an interval of length e/2, P2 in an interval e/2

2
, etc., Pn in an

interval of length e/2
1

, and so on
;

the total content of these intervals

cannot exceed eS l/2
n

,
or e

;
and this has the limit zero, as e is diminished

* Math. Aniialen, vol. xxm, p. 473.

f See Harnack, Math. Annalen, vol. xxm, p. 241.
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towards zero. On the other hand, the content of the set of rational points is
]

the same as that of the derived set
;
but this consists of all the points of the !

interval (0, 1), and is therefore unity. In general, any enumerable set of points

can be contained in an infinite number of intervals, or cells, which have a total

content that is arbitrarily small, and has the limit zero
;
whereas the content

of the set is not in general zero.

A completely satisfactory definition of the content of a set of points of the

most general character should satisfy the condition of affording a consistent

generalization of the notion of the length of a continuous linear set of points,

or of the notions of area and volume, in the case of sets of points in two, or of

three, dimensions. In the case of closed sets, the definition given above leaves

nothing to be desired in this respect ;
but in the. case of unclosed sets, the

definition leads to consequences which are at variance with line fundamental

properties of lengths, areas, and volumes, as understood for the case of con

tinuous domains. If G1} G2 are two complementary sets of points in the con

tinuous interval (0, 1), then, in order that the contents of the sets Glt G2 may
accord with a generalization of the notion of length, their sum should be

unity ; however, when Gl and G2 are unclosed, this condition is in general not

satisfied by the definition given above. For example, if G! consists of the

rational points, and G2 of the irrational points, each of the two sets G lt G2 has

its content unity, the same as that of the interval (0, 1) itself. Again, let us

consider an everywhere dense set of non-overlapping intervals contained in

(0, 1); then the internal points of these intervals form an open set Gly of

which the derivative consists of all the points of the interval (0, 1 ) ; the external

and the end-points of the intervals forming a non-dense closed set Gz . It will

be shewn subsequently that the everywhere dense set of non-overlapping \

intervals can be so chosen that the limit of the sum of their lengths is an
j

arbitrary number /, where I is subject to the condition &amp;lt; I 1
; whereas the

content of the set Gl is, in accordance with the definition given above, always

unity, and therefore may differ from the sum of the contents of the sets of

points contained in the separate intervals. To obtain the content of the closed

set Gr2 ,
cut off, from each of the intervals which define Glt the l/2wth part of

its length at each end; the limiting sum of the intervals, so restricted, is

I (1 1/w). Of these restricted intervals, a finite number can be so taken that

their sum is &amp;gt; / (1 1/w) e, and &amp;lt; / (1 1/ri), where e is an arbitrarily chosen

positive number. All the points of G2 are now enclosed in the finite set of

intervals which is complementary to the finite set of restricted intervals. The

sum of these complementary intervals is &amp;lt;! (! l/n) + e, and &amp;gt;1 /(I 1/n);

the sum has for its lower limit the number 1 I, which is therefore the content

of G.,. The sum of the contents of Glt G2 is therefore not equal to unity, which

is nevertheless the content of

&amp;lt;?,
+ 0,9(0.1).

!&amp;gt;

, .,;, J .1 S t
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THE PROBLEM OF MEASURE.

120. The problem of assigning definite numerical measures to sets of

points defined in linear, plane, solid, or ^-dimensional, space is taken to

require that the measure of a set shall satisfy the following conditions :

(1) The measure of a set shall be in accord with the usual notions of

length, area, volume, of an interval, a rectangle, or a cell in three or more
dimensions.

Accordingly there must exist separate systems of measures for linear,

plane, or p-dimensional, sets of points, corresponding to generalizations of the

measures of length, area, or volume.

(2) The linear measure of the set of points in a linear interval (a, 6) is

taken to be 6 a, whether the set includes neither, one, or both, of the end-

points a and 6, of the interval.

The ^-dimensional measure of the set of points in the cell

(a
(l)

,
a (a

\...a (*; b (l

\ 6 (2)
,
...6 (^

)

is taken to be the product

(6
(1) - a (l)

) (6
(2

&amp;gt; - a (2)

) ...(&&amp;lt;*&amp;gt;-
a

&amp;lt;*&amp;gt;),

whether the set of points includes none, some, or all, of the points on the

boundary of the cell.

Thus, when p = 2, the measure of the set of points in the rectangle is in

agreement with the ordinary measure of its area
;
when p = 3, the measure of

the set of points in the rectangular parallelepiped is in agreement with the

ordinary measure of its volume. .

It will be observed that, in accordance with this postulation, the ^-dimen
sional measure of a ^-dimensional cell, when

q&amp;lt;p,
is zero. Thus a linear

interval has the plane measure zero
;
and a plane rectangle has the three-

dimensional measure zero.

(3) The measure of a set of points is to be a number dependent on the

set, such that the measure of the sum of two sets, which have no point in

common, is the sum of the measures of the two sets. It then follows that the

measure of the sum of any finite number of sets, no two of which have a

point in common, is the sum of the measures of the sets. The measure of

a set being regarded as a function of the set, is thus required to be an

additive function, i.e. a function such that its value for the set El -f Ez is the

sum of its values for El and E%.

It follows that, if a set F be a component of a set E, the measure of

the set E F is to be the excess of the measure of E over that of F. In

case E and F have the same measures, the set E F is to have the measure

zero.
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In particular, the p-dimensional measure of a (p l)-dimensional set is

zero. For such a set may be taken to be on the boundary of a p-dimensional
cell

; and, in accordance with (1), the measure of the set of points interior to

the /^-dimensional cell is unaltered by addition of the (p l)-dimensional set

on its boundary ; consequently the p-dimensional measure of this last set must
be zero.

(4) The measure of the sum of an enumerably infinite sequence of sets,

no two of which have a point in common, is to be the limiting sum of the

measures of the sets, whenever that limiting sum exists. This may be

expressed as the postulation that the measure of a set shall be a completely
additive function of the set.

(5) The measures of two sets such as are obtained from one another by a

congruent transformation are to be identical.

Congruent sets are such that, to each pair of points P, Q, of one of the sets

there corresponds a unique pair of points P , Q , of the other set, such that the

distance of P from Q is the same as that of P from Q.

In order that a system of measurement of sets may be set up, for each

number of dimensions, which shall satisfy the above postulates, definitions

will be introduced which will apply to a certain category of sets, called

measurable sets, and which, for sets of this category, will be shewn to provide
a function of the set that satisfies the above postulates. It will appear that

the class of measurable sets, in linear, plane, or higher dimensional, space
includes all the sets which are defined by certain prescribed methods. The

possibility of extending the theory to cases of non-measurable sets will be left

out of account*.

THE MEASURES OF OPEN AND CLOSED SETS.

121. A linear set of points 0, open relatively to a linear interval (a, b)
which contains the set, is the sum of a unique enumerable set of open
intervals.

In accordance with (8), the measure of must be taken to be the limiting
sum of the measures of the intervals of this set. That this limiting sum is

finite, and cannot exceed I, the measure of (a, 6), is seen by considering the

first n of the intervals, as arranged in order
;
the sum of these n intervals is

less than I by the sum of the lengths of the finite set of intervals comple
mentary to them

;
and this holds good however large n may be.

Every open interval may be regarded as consisting of the points of an

enumerable set of closed intervals, no two of which overlap one another,

* A definition of a non-measurable set ha been given by Van Vleck, Trail*. Amer. Math. Soc.
t

vol. xxxv, p. 209, but this definition requires an infinite number of arbitrary acts of choice. Such
sets have also been defined by Lebesgue, Bull, dc la Soc. Math, de France, vol. ix, p. 237.
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although they may have an end-point in common

; therefore any open set may
be regarded as consisting of the points of an enumerable set of non-overlapping
closed intervals. The measure of the open set can then be regarded as the

limiting sum of the measures of such a system of non -overlapping closed

intervals.

In accordance with (1), it makes no difference that pairs of the intervals

may have an end-point in common.

If G be any closed linear set in (a, b), the complementary set C(G) is open
relatively to (a, b), and in accordance with (2), the measure of G must be given
by m(G) = I - m (C(G)} ;

where the measures of G and C(G) are denoted bym (G) and m [0(6)} respectively.

122. It has been shewn in 109 that, in space of any number of dimensions,
an open set 0, in a cell (a, b), is constituted by the points of an enumerable
set of closed cells. In accordance with (3), the measure of must be the

limiting sum of the measures of these closed cells. That this limiting sum is

finite, and does not exceed the measure I, of the cell (a, b), is proved as in the
case of a linear set.

If G be a closed set, in the cell (a, b), the measure of G must, in accordance
with (2), be given by m(G) = I -m

{&amp;lt;?()} ; the set G(G) being open rela

tively to (a, b).

Since the set of closed cells, or intervals, which constitutes a given open
set is not unique, it must be shewn that the measure of 0, denned as the

limiting sum of the measures of the closed cells, or intervals, is independent
of the particular sets of such cells, or intervals. In order to shew this, the

following theorem, somewhat more general than is required for this particular

purpose, will be proved :

If an open set consist of all the points of an enumerable set {An }, of non-

overlapping closed cells, and if |An }
be any other set of non-overlapping closed

cells such that every point of belongs to at least one of the closed cells (An {, the

limiting sum of the measures of |An }
cannot be less than that of the measures

Assume, if possible, that the limiting sum of the measures of the cells of

{An }
exceeds that of the measures of {An*|.

A finite set A 1; A 2 ,
... Am ,

of the

cells |AW }, may then be so determined that 2 m(A r) is greater than the
r= l

limiting sum of the measures of the cells
{
An }.

A cell An containing An in its interior, and with the same centre, can be
defined such that m (AB )

- m (A,/) = e/2
n

;
where e is any chosen positive

number; and this can be done for each of the cells (An }.
The limiting sum of the
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measures of the cells (An }
exceeds that for the cells {A n f by e. If e be

r -m

sufficiently small, 2 m
(Ar) is greater than the limiting sum of the measures

_ r-l
of the cells {A/}. The set of points in A 1} A 2 ,

. .

._Am is a closed set Gm ;
and

since each point of Qm is interior to a cell of {An J,
from the Heine-Borel

theorem ( 74) it follows that a finite set of the cells |A n }
can be determined

so as to contain all the points of Gm . The total measure of the cells of this

finite set cannot be less than 2 m (Ar) ;
and this is contrary to the supposition

made above.

It follows from this theorem that, if {An }, [A,/} be two sets of closed non-

overlapping cells, each of which constitutes a given open set 0, the limiting sums
of the measures of the cells of each set must be the same; for, by the theorem,
it is impossible that either of these should be less than the other.

The unique measure of an open bounded set is thus defined* as the limiting
sum of the measures of the closed cells, or intervals, of a set, all the points of
which constitute the set 0.

The measure of a bounded closed set G is then defined to be the excess of the

measure of the fundamental cell, or interval, in which G is contained, over the
measure of the open set G(G), which is the complement of G with regard to

the fundamental cell, or interval.

All the points of the closed set G are in the finite set of cells, or intervals,

complementary to the cells, or intervals, A 1; A 2 , .,. An . Thus m(G) is the
lower limit of the sum of the measures of this finite set, as n is

indefinitely
increased. It is thus seen that the measure of a closed set as here defined is

identical with the content of such a set as defined in 117. It has been seen
that any open set contains a closed set whose measure is arbitrarily little

less than m (0).

123. It follows, as a particular case of the theorem proved in 122, that,
if 8 be an open set which contains another open set Olt m (02) ^ m (OJ. For,
if 0, is constituted by a set of closed cells {An},

and 2 by a set of closed cells

{An j,
the limiting sum of the measures of the cells A,/ cannot be less than

that of the measures of the cells An ;
and thus m (02) cannot be less

than m (Oj).

If0l,0z ,...0n ,...bea sequence of open sets, all contained in a finite cell,
or interval, then

1 , 2&amp;gt;
... On , ...)].

It has been shewn in 56 that M(0lt 2 , ... O
n&amp;gt; ...) is an open set; let

{Am }
be a sequence of closed cells which constitute it. Let On be constituted

by a set of closed cells {Anm },
where m =

1, 2, 3, ....

* De la Valise Poussin, Integrates de Lebesyue, p. 22.

H.
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The set of cells {Anm |,
where n and m have all integral values, is an

enumerable set of cells, the limiting sum of whose measures is

m(01 ) + m(02)+ ... +m(0n)+ ....

By the theorem proved in 122, this cannot be less than the limiting sum

of the measures of A 1; A2) ... Am ,
...

;
or than the measure of

M(0lf 2&amp;gt;

...0n , ...).

It has here been assumed that if {cnm \
is a double sequence of positive

oo oo

numbers, 2 2 cnm is unaltered by changing the order of the terms.

If Olt 2 ,
... O

n&amp;gt;
... be a sequence of open sets, all contained in a finite cell,

or interval, and such that no two of them have a point in common, then

In this case, no two of the cells Anm overlap one another, and the set

is constituted by the enumerable set of cells Anm ,
where

n = l, 2, 3,...; m=l, 2, 3,....

00

Both 2 m(0n ) and m[M (Olt Oa , ...)] are equal to the limiting sum of the
M = l

measures of the cells Anm .

It has thus been shewn that, for open sets, the measure is a completely

additive function; thus satisfying the postulates (3) and (4), of 120.

THE CONTENT OR MEASURE OF A CLOSED SET.

124. In a linear interval, of length I, there can be defined a set of non-

overlapping intervals, everywhere dense in the interval, and such that the

sum of the lengths of the intervals is less than an arbitrarily chosen number e.

\ To establish this apparently paradoxical theorem, let us consider an enumerable
&quot;

set of points x1} x2 ,
... xn ,

... everywhere dense in the interval; for example,

the rational points of the interval. With each point xn as centre, an interval

of length e/2
n
may be defined

; any part of the interval which is not in the

fundamental interval may be omitted. The overlapping set of open intervals

obtained by taking all the values of n is equivalent to a non-overlapping set

of open intervals A, of total measure less than e, which is everywhere dense

in the fundamental interval. The points of that interval complementary to

the set A form a non-dense closed set of content, or measure, greater than

I e. This can be made arbitrarily near to I, by taking e small enough.

The following general theorem will be established :

The content of a non-dense linear closed set is zero, in case the set is

enumerable; and, in case the set is unenumerable, its content may be zero, or may
have any value less than the length of the interval in which the set is contained.
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The content, or measure, of a closed set is the sum of the measures of its

perfect component and of its enumerable component; and this last is zero.
If the set is enumerable, it has no perfect component, and therefore its content
is zero.

Let Slt 82 , B3 ,
... denote the lengths of the intervals contiguous to a non-

dense closed set G, in a fundamental interval of length I.

Let S = S

and generally, 8n = Xn (I
-

B,
-

8,
-

. . .
- 8n^ ;

where the numbers \, \2 , ... \n , ... are all between and 1.

We find at once

Sn = Xn (1
- XO (1

- X2) ... (1
- xn-1) I

and hence I - (8, + 82 + ... + 8n)
=

(1
- \) (1

- X2) ... (1
_ xn) I.

The content of the set G is therefore* I multiplied by the limit of the product
(l-X,)(l-X2)...(l-Xn ).

The values of Xlf Xg, ... X, ... can be so chosen that the content of the set
is zero

;
for example if Xj = A^ = X3

=
. . . .

If \ = e\ X2
=

6&amp;gt;

2

/2
2
,

. . . Xn = 6*\n\ . . .
;
where &amp;lt; 6 &amp;lt; 1, the content of the set

is I sin (7r0)/7r0. By choosing a sufficiently small value of 6, this may be
made as near as we please to 1. By proper choice of 6, the content may have
any value less than I.

125. Any linear closed set G that has interior points contains a non-dense
closed set H, such that m (G)-m (H) is less than an arbitrarily chosen number e.

The set G may contain a finite, or an enumerable, set of closed intervals,
Si, SB, ... Sn ,

.... Remove from G all the interior points of 8n , except those

belonging to a non-dense closed set gn) of content greater than m (8n)- /2
n

.

The set which consists of G, with the interior points of all the intervals {8n }

removed, except the points of glt gz ,
... gn&amp;gt; ..., is a non-dense closed set H,

such that m(G)- m (H) &amp;lt; e.

Similar results hold for plane closed sets, or for closed sets in space of any
number of dimensions. It will be sufficient to consider the case of plane closed
sets.

In a cell (a
(1)

, a(2)
;
b(l

\ 6&amp;lt;

2
&amp;gt;)

an everywhere dense set of cells can be defined, of
which the total measure is either that of the given cell, or has any less value &amp;gt; 0.

In the linear interval (a
(u

,
i(1)

) an everywhere dense set of intervals {$}
can be defined, as in 124, of which the total measure has a prescribed value
&amp;gt; 0, and not exceeding 6(1) - a(1)

. Similarly a set of intervals [8n } may be de
fined in the linear interval (a

(2)
, 6(2)

),
of total measure &amp;gt; 0, and not exceeding

) a(2)
.

*
See Harnack, Math. Annalen, vol. xix, p. 239.

112
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Consider a cell for which the projections of the sides on the two axes of

coordinates are 8n ,
S n &amp;lt;;

where n and ri is any pair of integers. The set of all

such cells is everywhere dense in the fundamental cell, and the sum of their

measures has a value &amp;gt; 0, and not exceeding the measure of the fundamental

cell. The set of cells may clearly be chosen so that the total measure has any

such prescribed value. The set of points which is complementary to the set

of open cells so denned is a closed non-dense set, of which the measure

may be zero, or may have any prescribed value less than the measure of the

fundamental cell.

A dosed plane set G, that has interior points, contains a non-dense closed

component H, such that m (G)
- m (H) is less than an arbitrarily prescribed

number e.

It has been shewn, in 106, that such a set as G contains a finite, or an

enumerable, set of closed connex domains {Dn}.
The interior points of Dn are

constituted by an enumerable set of closed cells. Hence the interior points of

all the domains {Dn} together consist of an enumerable set of closed cells
{
AM}.

We can remove from AM all its points except those of a non-dense closed set

of measure &amp;gt; m (Aw)
-

e/2
n

. When this has been done for all the cells (An|,
we

have remaining a part H, of G, such that m(G)-m(H)is less than e; for

the sets of points removed have a total measure &amp;lt; 2e/2
n

,
or e. The set H is

non-dense in the fundamental cell.

EXAMPLES.

1. The perfect set of points defined by^=| + ||+...+^
+ ..., where the numbers

G!, c2 ,
... have each one of the values 0, 2 (see Ex. 1, 83), has the content zero. For the

limit of the sum of the lengths of the complementary intervals is unity.

2. The non-dense closed set considered in Ex. 3, 83, has the content zero. For, after

operations, the sum of the exempted segments is

4.-,- 4-
i

or 1

m m2 m3 mk \ m

When k is increased indefinitely, the limit of the sum of the free intervals is 1.

3. The non-dense closed set considered in Ex. 4, 83, has a content between and 1.

After k operations, the sum of the exempted segments is

1 OT-I (m-l)(m
a -l)

,

m + ~f m6

co / l \

The limit of the sum of the exempted intervals is 1 - n ( 1 -
}J ,

and therefore the con

tent of the set of points is n ( 1
-

.^ ,
which is between and 1, depending upon the value

k=i\ r/
of m. By taking m sufficiently great, the content of the set may be made arbitrarily near

to unity.
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THE EXTERIOR AND INTERIOR MEASURES OF A SET.

4 i
126. Let G be any linear set of points in a given interval (a, b), and

let a finite, or an infinite, set of non-overlapping open intervals be defined,

such that every point of G is in one of these intervals. The point a is ta

regarded as an interior point of any interval of which it is an end-point ;
and

a similar remark applies to b. The set of intervals constitutes an open^set S**-

which contains G. The sum, or limiting sum, of the lengths of the intervals Un l*&amp;gt;

has a definite value, not greater than I. The lower boundary of this sum or

limiting sum, for all possible such sets of intervals, is a number which is called

the exterior measure of the set G; and this may be denoted by me (G).

Alternatively, the exterior measure me (G), of the set G, may be defined as

the lower boundary of the sum, or limiting sum, of the lengths of the intervals

of a set of non-overlapping closed intervals such that every point of P is in a

closed interval of the set, being either an interior point, or an end-point, when
all such systems of closed intervals are taken into account.

To shew the equivalence of the two definitions, let L1} L2 denote the lower

boundaries defined in accordance with the first, and the second definitions re

spectively. A set of non-overlapping open intervals containing G can be

defined, such that the sum, or limiting sum, of their lengths is &amp;lt; LI + e
;
where

e is an arbitrarily chosen positive number. Since each open interval is con

stituted by an enumerable set of non-overlapping closed intervals
;
the set of

open intervals can be replaced by a set of closed intervals which contain G;
and the limiting sum of the lengths of the intervals is the same in the two

cases. This shews that L2 Llt since we have a set of closed intervals satisfying
the requisite condition, the limiting sum of whose lengths is &amp;lt; L 1 4- e. Again,
it is impossible that L2 &amp;lt; L 1 ;

for if a set of non-overlapping closed intervals

containing all the points of G existed, the limiting sum ofwhose lengths is &amp;lt; L1}

we could enclose each of these intervals in an open interval, of length exceeding
that of the closed interval by less than an arbitrarily chosen number, and in

this way we could obtain an overlapping set of open intervals containing G,

and such that the limiting sum of their lengths would be &amp;lt; L^. This over

lapping set might be replaced by the equivalent set ofnon-overlapping intervals,

and the limiting sum of the latter intervals cannot exceed that of the former,

as has been shewn in the first theorem of 123. We should therefore have a

set of non-overlapping open intervals, enclosing G, the limiting sum of whose

lengths would be &amp;lt; Llt contrary to the fact that L
l

is the lower boundary
of all such limiting sums.

Let C(G) be the complementary set of G, relatively to the interval (a, b)

of length I, in which G is contained. If me {C(G)\ denote the exterior measure

of C(G), the number l me [C (G)} is taken to define the interior measure of

the set G; and this interior measure may be denoted by nii(G).
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127. In the case of a set G contained in a finite cell of any number of

dimensions, a connex open domain takes the place of an open interval
;
and

thus the exterior measure me (G) is defined as the lower boundary of the

limiting sums of the measures of connex open domains which form a finite, or an

infinite, sequence containing all the points of G, when all such sets of connex

open domains are taken into account. Again, since any open set is constituted

by a sequence of closed cells, the exterior measure me (G) may also be defined as

the lower boundary of the limiting sums of the measures of sequences of closed

cells, each sequence containing all the points of G in the interior and on the

boundaries of the cells, when all such sequences are taken into account. That
this second form of the definition is equivalent with the first may be shewn in

exactly the same manner as in the case of a linear set
;
for every sequence of

closed cells forms part of a sequence of open cells, such that the difference of

the sums of the measures of the cells in the latter sequence and in the

former is arbitrarily small.

As before, the interior measure m^ (G) of G is defined by

where I is the measure of the cell in which G is contained.

The above definitions of the exterior and interior measures of a bounded
set of points in any number of dimensions are equivalent to the following
statements :

The exterior* measure me (G) of a bounded set G is the lower boundary of
the measures of open sets which contain G. The interior^ measure mt (G) of a
bounded set G is the upper boundary of the measures of closed sets contained in G.

For, as the exterior measure me {C (G)} is the lower boundary of open sets

which contain C (G), it follows that l me {C(G)} is the upper boundary of

the measures of the closed sets complementary to these open sets.

If a set G! contains a set G2 ,
it is clear from the definition that

MEASURABLE SETS OF POINTS.

128. It appears from the above definitions that every bounded set of

points has definite exterior and interior measures.

When the exterior and interior measures of a set G, ofpoints inp dimensions,

are equal to one another, the set G is said to be measurable, and the number
me (G)

= m{ (G) is defined to be the measure of G. When G is measurable its

measure is denoted by m (G).

It is clear from this definition that, if G is measurable, so also is C(G).
* This form of the definition is due to De la Vallee Poussin, see Integrates de Lebesgite, p. 22.

t See W. H. Young, Proc. Lend. Math. Soc. (2), vol. n, p. 28.
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It will be shewn that this definition satisfies the conditions stated in 120,

whenever it is applicable. If a is a set of non-overlapping cells, or intervals,

enclosing a set of points G, measurable, or not, and /3 is a similar set for C(G),

then all the points of the fundamental cell, or interval, are enclosed in the set

made up of a and ft. It follows that m(a) + m(@)^l; and since me (G),

me {C(G)} are the lower boundaries of m(a), m(@), respectively, we have

me (G) + me {C (G)} ^ I, and therefore me (G) ^ mt
-

(G).

The condition that a set G is measurable, in the sense above defined, may
be stated in either of the following forms :

A set ofpoints G is measurable if an open set 0, containing G, and a closed

set H, contained in G, can be so determined that m (0) m (H) is less than an

arbitrarily prescribed positive number e.

A set ofpoints G is measurable if its points can be enclosed in a finite, or an

infinite, set a, of open intervals (in the case of linear sets),-or of open connex

domains (in the case of sets in space of higher dimensions), and if C(G) can be

similarly contained in a set /3, such that the sum, or limiting sum, of the measures

of the open intervals, or connex domains, which contain all those points which are

common to a. and /3 is arbitrarily small.

The set of points D (a, 0) forms an open set ( 56) which, if the condition

be satisfied, may be taken to have its measure &amp;lt; e. As is easily seen by con

sidering the three sets a, /3, D (a, /3), we have m (a) + m (/3)
= m {D (a, j3)} + I

;

where I is the measure of the cell, or interval, in which the given set is

contained. It then follows that

Since m(a)-mi(G), m(/3) me [C(G)] are not negative, it follows that each

of them is &amp;lt; e
;
also m (a) ^ me (G) ^ m { (G), hence me (G) -mi (G) &amp;lt; e. Since

this holds for every value of e, we have m e (G) = m^ (G) ;
and thus the condition

stated is sufficient that the set G may be measurable. If G be assumed to be

measurable, a and /3 can be so chosen that m (a) m (G) &amp;lt; |e, and

w09)-w[C?)]&amp;lt;e;
we then have m (a) + m (/3) &amp;lt; e + l, which is equivalent to the condition that

m {D (a, /3)} &amp;lt; e
;
and thus the condition is necessary.

129. It must be shewn that the definitions, given in 120 and 122, of the

measures of open, closed, or partly closed, cells or intervals, and ofopen and closed

sets, are consistent with the definition of a measurable set given in 1 28, that is,

that these sets have their exterior and interior measures equal to one another.

The cell (a
(1)

,
a(2)

,
... a(J))

;
bw , b(2

\ ...
&&amp;lt;*&quot;)

is contained in the cell

LID _ 1.
(O
w _

ttd)) )
a(2) _ jL

(#*)
_ aw) }

...
;

2w Ln
1 1 1

fed) + -
(fed)

_ a(1)
), 6(2) + s- (b

(2) - aw ), ...

2?i 2n

and contains the cell obtained by writing n instead of n.
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/ ]\p / \\P
The measures of these cells are

(

1 + -
)

I, (1 -- I, respectively, and
V n/ \ nj

thus differ from one another by &amp;lt; e, if n be chosen sufficiently large. There

fore the exterior and interior measures of a cell are identical with I, the

measure of the cell, as defined in 120.

It is clear that the exterior measure of an open set is identical with the

measure of the set, as defined in 121, for it has been shewn that no open set

of measure less than that of the set can contain 0. Also contains the closed

set formed by a finite number of the closed cells, or intervals, which constitute

0, and the sum of the measures of these cells, or intervals, converges to the

measure of
;
thus is contained in an open set, consisting of itself, and

contains a closed set, such that the difference of the measures of the open and

closed sets is arbitrarily small
;

therefore both the exterior and interior

measures of are identical with the measure of 0, as defined in 121. Since a

closed set is the complement of an open set 0, it follows that the closed set is

measurable. It has thus been proved that :

Every bounded open set, and every bounded closed set, is measurable.

It will now be shewn that :

Every enumerable set of points is measurable, and its measure is zero.

Let PD P2 ,
... Pr

&amp;gt;

denote the points of the set. Each point Pr can be

enclosed in-an open cell, or interval, with Pr as centre, and of measure e/2
r

.

In accordance with a theorem proved in 123, the open set of points con

sisting of all the points belonging to one or more of these cells, or intervals,
00

has its measure ^ 2 e/2
r

,
or ^ e. It follows that the exterior measure of the

r=l

set is zero, and thus that the interior measure is also zero, and that the set is

measurable, with measure equal to zero.

.

130. IfGl ,G2,...Gn ,...isan enumerable (or afinite) sequen ce of measurable

sets, all contained in a finite cell, or interval, the set M (Gl} G2 ,
... Gn , ...), which

consists of all points that belong to one or more of the sets, is measurable.

Let G! and C(G 1) be contained in open connex domains, or open intervals,

of sets !, ft, of such domains, or intervals, so defined that the measure of

D (i, ft) is &amp;lt; |e. Let az , (32 be similar sets of connex open domains, or intervals,

which contain 6r2 and C(G2) respectively, and are such that m [D ( 2 , ft)] &amp;lt; e/2
2
.

Let o, = Z)(a,,ft), and ft = D(ft, ft). For G3 and C (G3) we similarly con

sider sets a3 , ft, of open domains, or intervals, such that m[D(a 3&amp;gt; ft)] &amp;lt; e/2
3

;

and let a3
= D(a 3&amp;gt; ft ), 0=D(@, ft ); and so on, for all the sets G4 , G5 ....

The points of M (Glt Gz ,
G3 , ...) are all contained in the sets of domains, or

intervals, alt or./, s , ;
and C{M(G1} G2 , ...)} is contained in ft , whatever

value i may have.
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The two sets of domains, or intervals, which enclose M (Glt G 2&amp;gt; ...) and its

complement, have in common a set of points of which the measure is less than

e/2 + e/2
2 + . . . + e/2* + m ( i+1 ) + m (a i+2) +

The series 2m (a) is convergent, since each term is positive, and the sum of

any number of terms is less than a fixed finite number. Therefore the number

i can be so chosen that m (Vi) + m (a/i+2) + is less than e.

Now M (Gi, G.2 , ...) and its complement have been enclosed in sets of

intervals, or cells, such that the set common to both seta has measure &amp;lt; 2e.

Since e is arbitrary, it has been proved that M(Glt G2 , ...) satisfies the criterion

that it is measurable.

If (TI, G2 ,
. . . Gn ,

...be measurable sets in linear or higher dimensional space,

all contained in a bounded domain, and no two of the sets have a point in common,

the measure of Gi + G2 + ... is the limiting sum of the measures of the sets.

That Gl + G2 + . . . is measurable is a particular case of the last theorem.

In accordance with what has been shewn above m(Gi+ G2 + ...) differs

from the measure of the set consisting of all the sets alt a2 ,
as ,

... by less than

e. Also G2 , G 3&amp;gt;

... are all parts of C(G l ); so that Gl is enclosed in al , G2 in

a/, G3 in a3 ,
. . .

;
hence m (6rx) differs from m (j) by less than ^e, m (6r2) differs

from m (a/) by less than ^ e, and in general m (Gi) differs from m (a/) by less

00

than e/2 . Therefore S m (Gi) differs from m (a^ + m (or/) + . . . + m (a/) + . . .

i = l

00

by less than e. It follows that S m(Gi) and m(G1 + G2 + ...) differ from one
i = l

another by less than 2e; and, since e is arbitrarily small, the theorem is

established.

It should be observed that although, for each set Gi, a pair of sets of

intervals a t-, fti can be so determined that the measure of D (ai} &) is less than

the prescribed number e/2*, there are an infinite number of such pairs a f , &
which satisfy this condition, and one such pair is selected out of this infinite

number. It is however assumed, in the above proof, that an indefinite number of

such selections is made, namely one for each value of i. It may not be possible to

give a law which determines how this selection is to be made for every value

oft, unless the given sets are of some particular nature such that we are able to

assign such a law. Consequently, the existence has been assumed of the sets

ffi, fa, for i= 1, 2, 3, ..., independently of whether we are able to define these

sets or not. This assumption is a particular case of an axiom which will be

discussed in Chapter iv, and which is known as Zermelo s axiom, or as the

general principle of selection. A corresponding remark is applicable to another

proof of the above theorem which has been given* by de la Vallee Poussin.

This proof depends upon the fact that a measurable set Gn is the sum of a

* See Integrates de Lebesgue, pp. 22 25.
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closed set Fn and of a set en ,
of which the exterior measure is less than an

arbitrarily small number en . For an enumerable sequence of sets, the choice

of the sets Fn requires the use of Zermelo s axiom (see 197).

131. If a measurable set Gl contains another measurable set G2 , the set

GI G-2 is measurable, and its measure is m (G^ m (G2).

The complement of 6^ G2 consists of Gz together with C (Gi), hence

GI G2 is measurable. Further, since GI = (Gl G2) + G2 ,
we have

m(G 1 )
= m(G1 -G2) + m(G,).

If GI, Gz ,
... Gn ,

... are all measurable sets, the set D(Gl ,
G2 ,

... Gn , ...) of

points common to all the given sets is also measurable.

For the complement of D(Glt G2 , ...) is M{C(G1), C(G,), ...}; and since

C (TI), C (G2 ), ... are all measurable, it follows that the complement of

D((TI, Gz , ...) is measurable, and therefore that the set itself is measurable.

If* H is the set ofpoints each of which belongs to an infinite number of the

measurable sets G1} 6r2 ,
G3 , ..., the set H is measurable.

For the set C(H} consists of those points which belong to none, or only to

a finite number, of the sets Gl , G2 ,
...

;
and hence C(H) consists of the points

belonging to one or more of the sets L1} L2 , ... Ln , ..., where Ln denotes the

set D [C(Gn\ C(Gn+1 ), ...}.
The sets Ln are all measurable, and hence C(H)

is measurable
;
and therefore H is measurable.

If* K is the set of points each of which belongs to all the measurable sets

Gn , Gn+1 , ..., where n has a definite value for each point of K, the set K is

measurable.

For the set C (K) is the set of points each of which belongs to an infinite

number of the measurable sets C(G l ),
C (G2 ), ..., and hence, by the last theorem,

C (K} is measurable. Therefore K is a measurable set.

If Gw is the inner limiting set of a sequence {Gn } of measurable sets G
n&amp;gt;

each ofwhich contains the next, m(Gta )
= \im m(Gn }.

n~&amp;lt;

For (G,- G2) + (G,- 0.) -f ... = G1 -GM

and m(Gn -Gn+i)=m(Gn )
- m (Gn+1),

hence m (,) - lim m (Gn) = m(G l -Gta)
= m (GJ - m(GM\

n~&amp;lt;x&amp;gt;

and therefore m (Gu) = lim m (Gn).
&amp;lt;w0

If Gu is the outer limiting set of a sequence {Gn } of measurable sets Gn , each

of which is contained in the next, and if Gu is a bounded set, m ((?,)
= lim m (Gn).

n~at&amp;gt;

* See Borel s Lemons sur les fonctions de variables rdelles, p. 18. The set H is named by Borel the
&quot; ensemble limite complet,&quot; and the set K the &quot; ensemble limite restraint

&quot;

of the given sequence
of sets.
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For G, + (Gt
- G,) + ( 8

- Gs) + =

and therefore m ((?) = Hm m (Gn).

n~tx&amp;gt;

If* Gj, G2 ,
... Gn , ... is a sequence of sets such that

\imM(Gn , Gn+l , ...)
= \imD(Gn ,

G
n+1&amp;gt; ...).

-w ao n~&amp;lt;x&amp;gt;

then, if either of these limits be denoted by Gu , m(Gu )
= lim m(Gn).

n~x

The sets if (Crn ,
(rn+1 ,

. . .) are such that each contains the next, and therefore

m(Gu)
= \imm[M(Gn , &amp;lt;?+ ...)] = lim m (G*)&amp;gt;

and the sets

n~x&amp;gt; n~&quot;*&amp;gt;

are such that each is contained in the next, and therefore

we thus conclude that m (G
f

(0)
= lim m (Gn).

In general lim M (Gn ,
Gn+l , ...) is called the upper limit of GH ,

and may
n~ oo

be denoted by lim Gn ,
and lim D (Gn , Gn+1 ,

. . .) is called the lower limit of Gn ,

and may be denoted by lim Gn . In the case contemplated in the theorem, Gn

n ~&quot; QO

has a unique limit denoted by lim Gn ,
or Gu .

SETS THAT ARE MEASURABLE (B).

132. All the sets which have been shewn to be measurable, in accordance

with the definition of a measurable set given in 128, are obtained from the

single point, the single interval, or cell, open or closed, by taking a finite, or

enumerably infinite, set of such fundamental sets, and by taking the set common

to a finite, oran enumerably infinite, number of the sets so obtained, or by taking

&quot;the complements of the sets so obtained. All sets defined in this manner are

said to be measurable (B), since they were the only kind of measurable sets

contemplated by Borel in his original treatment of metric properties. Thus

the complement of any set that is measurable (B) is so also
;
the set which is

common to any finite, or enumerably infinite, number of sets all measurable (B)

is also measurable (B) ;
also closed and completely open sets are all measurable

(B). It can be shewn however that measurable sets may exist which are not&quot;

measurable (B). For example, any component whatever of a perfect set, of

measure zero, has its external measure zero, and is therefore measurable. The

question whether a valid definition can be given of a set which is not measurable

will not be here discussed, as the question of the validity of such definitions

depends upon debateable questions in the abstract theory of aggregates. The

relation of measurable sets in general to those which are measurable (B) is

contained in the following theorem :

* See de la Vallde Poussin, Amer, Journal of Math., vol. xvr, p. 437.
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Any measurable set G is contained in a set Gl which is measurable (B), and

such that m (G^ = m (G) ; and G contains a set G2 which is measurable (B), and

such that m ((?2)
= m(G).

If (en |
denote a sequence of decreasing positive numbers converging to zero,

the set G can be enclosed in a set of non-overlapping intervals, or open domains,

{ttn}
of total measure &amp;lt; m (G) + en .

The inner limiting set GI of the sequence of sets of intervals, or domains, is

measurable (B), and its measure is m(G}, as has been shewn in 131; also GI

contains G as a component. The set Gl G has measure zero, and its points
can be enclosed in a set of intervals, or domains, /3n , contained in an ,

and there

fore of measure &amp;lt; en . The inner limiting set H, of all the set f-tn ,
is measurable

(B), and its measure is zero
;
and the set GI H = G2 is measurable (B), and

has m (G) for its measure. Moreover G2 is contained in G.

A classification of sets of measure zero has, on account of the fundamental

importance of such sets in the theory of functions, been undertaken* by Borel.

CONGRUENT SETS.

133. The definition of the measure of a set, given in 128, having been

shewn to apply to the class of measurable sets, it has been shewn that, so far

as such measurable sets are concerned,wehavea metric system which satisfiesthe

postulates (1), (2), (3), (4), of 120, namely that the measure of such a set is a

completely additive system, and that it is in agreement with the elementary

theory of the measure of lengths, areas, and volumes, of intervals and cells. It

only remains to be shewn that (5), of 120, is satisfied by the definition which

has been introduced and developed.

A congruent transformation of a set of points is, expressed in geometrical

language, equivalent to a translation together with a rotation. That a trans

lation does not affect the metric properties is obvious from the fact that it

only consists of an addition of fixed numbers A1? A 2 ,
... hp to the numbers

scl , #2 ,
xp which represent a point; and in all the definitions and proofs

connected with the metric properties of a set, only the differences x-[ icl}

2 -2, for pairs of points are involved. So far as a transformation by rotation

is concerned, it is only necessary to shew that a cell when rotated has a measure

which is equal to that of the original cell. It will be observed that all the

cells employed in the descriptive properties of sets, and so far in the metric

theory, are orientated alike. We cannot therefore, ab initio, consider the set

of points of a cell, as having its measure unaltered when the cell is rotated, and

when it is therefore no longer a cell in the original sense of the term. For

simplicity the case of the rectangle, or plane cell, will here be considered,

* See Bull, de la soc. math, de France, vol. XLI, p. 1.
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The original cell may be taken to be the set of points (x, y} for which

a^x^a, b^y^.b.

Corresponding to (x, y) we have in the congruent set, obtained by rotation

through an angle a,x = x cos a + y sin a, y = x sin a + y cos a. Thus the points

of the cell correspond to the points of the three sets defined by

sec a(a + y sin a) ^ x ^ cosec a(b + y cos a)

a sin a + b cos a ^ y &amp;lt; a sin a b cos a,

sec a (a + y sin a) ^ x . sec a(a y sin a)

a sin a b cos a.-y&amp;lt;b cos a a sin a,

6 cos a a sin a ^ y ^ a sin a + 6 cos a

cosec a.(b y cos a) ^ x sec a(a y sin a),

provided tan a &amp;lt; b/a.

In the first of the above sets, divide the interval of y into n equal parts ;

and consider the part for which y is in one of these parts ( cr ,
cr+1 ),

where

cr &amp;lt; cr+l . The corresponding part of the set includes the rectangle of which the

measure is

(cr+1 cr) {a sec a + b cosec a cr+1 (tan a + cot a)},

and is included in the rectangle of which the area is

(cr+1 cr) {a sec a + b cosec a cr (tan a + cot a)}.

The difference of these is (cr+l cr)~ (cot a + tan a).

The sum of all such differences is less than n~ 2

(cot a + tan a) 4a
2 sin2

a, which

can be made arbitrarily small by sufficiently increasing n. The measure of the

set is then easily shewn to be 2a -! tan a. Similarly it can be shewn that the

measures of the other two sets are (6 cos a a sin a) 4a sec a, and 2a2 tan a
;
thus

ihe sum of the measures of the three parts is
4&amp;gt;ab,

which is the measure of

the original cell.

The cases in which tan a has values &amp;gt; b/a may be considered in a similar

manner. The method here adopted is clearly capable of extension to the case

of a cell in any number of dimensions.

THE MEASURE OF UNBOUNDED SETS.

134. Let G be an unbounded set of p dimensions, and let it be such that

the component of G which is in any finite j9-dimensional cell is measurable.

Consider a sequence of such cells, each of which is contained in the next, and

such that if (an
(1)

,
an

{ 2]
,

. . . an ( ]

;
bn
w

,
bn

(

-\ . . . bn
(p)

) is the nth cell of the sequence,
an(1)

,
an(2)

,
... an(p) all have the limit - oo

,
and bn

(1
\ bn

{

-\ ... 6B
&amp;lt;&amp;gt; all have the

limit + oo
, as n is indefinitely increased. If Gn be the component of G in this

cell, the sequence of numbers m(Gn) is non-diminishing. Consequently
ra (Gn} either converges to a finite limit, or becomes indefinitely great, as n
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is indefinitely increased. If lim m (Gn ) is finite, the set G is regarded as

W~QO

measurable, and m(G) is defined to be equal to the limit. If the limit is in

definitely great, G is measurable, but of infinite measure. IfH be any bounded
measurable set of points, it is contained in the nth cell, if n be sufficiently

great. The set D (G, H) is the same as D (Gn , H), and this set is measurable.

Also m [D (G, H)~\ m (Gn ). If H be identified successively with the sets Hr

of a sequence, such that Hr is contained in Hr+1 , we have

where nr is an integer corresponding to r. The sequence of numbers
m [D (G,Hr)] is monotone, non-decreasing, and has a limit m(G). This holds

good, even if lim m (Hr ) is indefinitely great. Thus the part of G that is
r~w

contained in any measurable set H is measurable, if G be so, and its measure
does not exceed m (G).

The theorem m (G,) + m (G2) + . . . = m (G, + G2 +...), where G1} G2 ,... are

measurable sets, no two of which have a point in common, and such that

(r, -f G2 + ... has a finite measure, holds good when Glt Ga , ... are unbounded
measurable sets. For, if An denote the cell employed above, we have

m [D (AB , 0,)] + m [D (An , G,)] + . .
= m [D (An , G, + G2 + . . .)].

If r be so large that m (Gr+l ) + m (Gt+2) + . . . &amp;lt; e, we have also

m [D (An , r+0] + m [D (A B&amp;gt;
Gr+1 )] + . . . &amp;lt; e,

for every value of n.

Hence, we have

m [D (An , GJ] + m [D (An , G2)] + . . . + m [D (An , Gr)] + 6n e

where 6n is such that &amp;lt; 6n &amp;lt; 1.

It follows, by letting n increase indefinitely, that

m(G l ) + m ( a) + ... + m (Gr) + e = m (G1 + G2 + ...),

where is such that &amp;lt; 6 1. Since e is arbitrary, it follows that

m(Gl ) + m(G2)+ ...

converges to m (G1 + G^ +...).

The other theorems relating to bounded measurable sets may be extended
to unbounded measurable sets of finite measure.

THE MEASURE OF SETS RELATED TO A SYSTEM OF SETS.

135. It has been shewn in 131 that, for a sequence {Gn }
of measurable sets,

each of which contains the next, if m (Gn ) is, for every value of //, greater than
a fixed positive number C, the measure of the inner limiting set is G.
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In case the sets Glt G2 ,
. . .

,
each of which contains the next, are not assumed

to be measurable, the corresponding result holds as regards the interior measures

of the sets. We can obtain the following theorem :

If* G1} G2 ,
be a sequence of sets of points, each of which contains the

next, and if the interior measure of each set is greater than a fixed positive

number C, then the interior measure of the inner limiting set is = C.

Closed components Pl , Q2 , Q3 ,
... of the sets Glt G2 ,

G3 ,
... can be so de

termined that

m(Pl )&amp;gt;mi (G 1)-^ &amp;gt; m(Q2 )&amp;gt;m i (G,)--e, m(QA) &amp;gt;mi (G3)- ^e,
...

;

where e is an arbitrarily chosen positive number. The set Q2 has a closed

component P2 = D(Pl} Q2), ofmeasure m (P2)
= m (Pj) -I- m (Q.2) m [M(Pl} Q 2)].

Since M(Pl} Q2) is a closed set contained in GI, its measure does not exceed

mi(Gi) ,
hence we have

m (P2 ) ^ m (A) + m (Q,)
- mt (G,) m, (G2} -(1+ ~] e.

\Z L /

Next, by considering P3
= D (P2 , Q3 ), it can be shewn as before that

and so on. We have now a sequence of closed sets Plt P2 ,
P3 , ..., each of which

contains the next, and such that the measure of each of them is &amp;gt; C e.

Therefore the measure of Pu ,
their inner limiting set, is = C e; and Pw is a

component of Crw . It follows, since e is arbitrarily small, that mi (GM ) = C.

136. We are now in a position to establish the following general theorem :

If* Glt Gz ,
... Gn ,

... is a sequence of sets of points, each of which sets is a

component of a closed set, offinite content I, and if the interior measure of each

of the sets Gl} G2 ,
... Gn ,

... is greater than a fixed number C, then there exists

a set ofpoints, of interior measure ^ C, and of the power of the continuum, such

that each point of the set belongs to an infinite number of the given sets.

Choose a closed component of each of the given sets, of content &amp;gt; G
;

let these components be Qlt Q2 ,
... Qn , .... Choose an integer m such that

mC I &amp;lt; (m + 1) G, and let us consider the first n
(&amp;gt;
m + 1) of the sets

Qi, Q2 ,
.... The points common to any pair of these closed sets form a closed

set, and the set which contains all the points which belong to at least two of

the n closed sets is also a closed set Q 1&amp;gt;n

of content Iin . Those points of Q1 n
which belong to Q l

form a closed set of content ^ /m ; hence there is a set of

points of Qlt of measure ^ / (Qj)
- 7ln , which do not belong to any of the sets

Qa, Q, Qn ;
and the measure of this set is &amp;gt; C - I1H . Similarly, each of the

* W. H. Young, Proc. Lond. Math. Soc. (2), vol. n, p. 25.
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sets Q2 , Q3 ,

... Qn has a component of measure &amp;gt; C Iln , consisting of points
which do not belong to any of the other sets, or to Q1 . The measures of all

these sets added together is &amp;gt;n(G /m); and it must be less than I, since

the sets do not contain any points common to two of them, and they are all

enclosed in a set of measure L Hence

n(C-Iw)&amp;lt;(m + l)C, or Jln &amp;gt; ( 1
- 7^

\ n

It has thus been shewn that the closed set Q l&amp;gt;n

has the power of the continuum,

since its content is proved to be positive ;
and this holds for every value of n

which is &amp;gt;m + l. Considering now the next n sets Qn+i, Qn+z, Qzn&amp;gt;
there

is a closed set of content &amp;gt; f 1 --- -
i C, consisting of points each of which

belongs to two at least of the sets
;
and a similar result holds for each system

OI n Sets
(tfrn+i&amp;gt; tyrn+2&amp;gt; ty(r+i)n-

We have now an infinite sequence of closed sets Q l&amp;gt;n
, Q2,n, Qa,n, Q&amp;gt;-,,

each of which has content &amp;gt;

(
1--

) C, and the points of each of them
V n )

belong to two at least of the given sets. By applying similar reasoning, and

taking n sets at a time, we see that there are an infinite number of sets each

of content &amp;gt;(l
-- 1(1 -- } C, and such that each point of any one

V n ) \ n J

of them belongs to four at least of the given sets. Proceeding in this manner,

we obtain sets of points, each of content

and such that each point of each set belongs to at least 2S+1 of the given sets.

Now let n, ri, ... n(s) be so chosen, that

1 m + l 1 m + l 1

then the content of each of the sets which contains points belonging to 2S+1

at least of the given sets is

The process can be carried on without limit
;
and we see that the set which

consists of all points belonging to 2S+1 at least of the given sets contains closed

components of content &amp;gt; (7(1 e). Considering the sequence P1; Pa ,
. . . of sets

such that P! contains all points that belong to two at least of the given sets,

P2 contains all points that belong to 2 2 at least of the given sets, and so on, it

is clear that Pl contains P2 ,
and P2 contains P3 , etc. But the interior measure

of each set is &amp;gt; (7(1 e); hence, in accordance with the theorem of 135, there
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exists a set of points common to all the sets P1} P2 , ..., of interior measure

= (7(1 e). This set consists of points which belong each to an infinite number
of the given sets

;
and its interior measure is = C, since e is arbitrarily small.

The set has the power of the continuum, since it contains closed components
of content greater than zero. It should be observed that the employment of

the sets {Qn }
involves an infinite number of acts of choice.

The theorem that has been now established is of considerable importance
on account of the applications of it which can be made in various parts of the

theory of functions
;

it is due * to W H. Young. That particular case of the

theorem in which the sets are all measurable was first stated f, without proof,

by Borel.

An important case of the theorem arises if we suppose each of the sets to

consist of a finite, or an enumerably infinite, set of closed intervals
;
in which

case the sets are all measurable. The theorem may then be stated as follows :

Ifthere be given an infinite number ofsets of intervals, in afinite segment, each

set consisting of a finite, or an enumerably infinite, number of non-overlapping
intervals, and if the measure of each set of intervals is greater than some fixed

positive number C, then there exists a set of points, having the power of the con

tinuum, and of measure ^ G, such that each point of the set belongs to an in

finite number of the given sets of intervals.

This theorem contains the completion, and generalization, of a theorem due
to Arzela J which is stated by him as follows :

Let
2/0

be a limiting point of any set of numbers (y), and let

#0 = (2/1, 2/2, .-.)

be a sequence of numbers of (y) which converges to the limit y . Assuming
the variables to be orthogonal coordinates of a point in a plane, let the set of

straight lines y = y^ y = y*, y = ya , ..., be drawn, and let a set of intervals be
taken on the portion of each of these straight lines which is in the interval

(a, b), of as. Suppose that each set of intervals is finite in number, and that

this number is variable from one straight line to another, but increases in

definitely with the index s, of y,. Let the sum of the intervals 8M , $,,... B
n&amp;gt;8

on the line y = ya ,
be ds . If for every value of *, ds is greater than C, a

determinate positive number, there necessarily exists at least one point #
in the interval (a, b), such that the straight line oc = x intersects an infinite

number of the intervals B.

Arzela subsequently removed the condition that each set of intervals
is]

a
finite one.

*
Proc. Land. Math. Soc. (2), vol. u, p. 26.

t Comptes Rendus, December 1903.

t Rend, dell Ac. del Lincei (4) 1, (1885), p. 637 ; a second proof, which is however not rigorous,
has been given by Arzela in the Memorie della R. Ace. d. Sc. di Bologna, (5), vol. vm, 1899.

H.
12
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THE METRIC DENSITY OF A SET OF POINTS.

137. Let P be any point not necessarily belonging to a measurable set G
in linear, plane, or js-dimensional space.

Suppose the interval, or cell, D to contain the point P within it, and

let GD be the part of G contained in D. If a definite number pP (G) exists,

such that
m(GD )

&amp;lt; e, where e is an arbitrarily chosen positivem (1))

number, for all such cells D, of which the span is less than a number r) e ,dependent

on e, then the number pp(G) is said to be the metric density of the set G at the

\( point P. It is clear that, unless P is a limiting point of G, whether it belong to

)\ the set or not, the metric density at P is zero.

This definition* is equivalent to the statement that the metric density,

when it exists, at P, is the limit of the ratio m (GD)lm (D} for any sequence of

intervals, or cells, containing P within them, such that the breadth of the

intervals, or the span of the cells, converges to zero.

It may however happen that no such unique limit exists
;

it may in fact

be possible to define different sequences of the intervals, or cells, for which the

above ratio converges to different limits. In that case the limit ofm (Gj))/m (D)

is said to be indeterminate. There is then an upper and a lower limit of the

numbers to which m (GD)/m (D) converges, for all possible sequences of D for

which the breadth, or diagonal, of D, and therefore m(D), converges to zero.

These two numbers are both in the closed interval (0, 1), and the greater of them

is called the upper metric density of G, at the point P, and may be denoted

bypp (G) ,
the smaller ofthe numbers is called the lower metric density of G, at P,

and may be denoted by pp(G). Thus, at every point P, of G or G ,pP(G) = p_p(G) ,

when the sign of equality holds, there is a metric density pP (G), at P.

If C (G) be the complement of G relatively to an interval, or cell, in which

G is contained, we see that

m(GD) m{C(GD)}

m(D)
~&quot;

m(D)
and thence it follows that

and in case the metric density of G, at P, exists, that of C(G), at P, also exists,

and the sum of the two is unity. It is clear that, if p P (G) = Q, then also

pP (G) exists, and has the value zero.

A set G is said to be metrically dense at a point P, whether or not P
belongs to G, if, in every cell, or interval, according to the dimensions of the

space in which the set is defined, which contains P in its interior, there is a

set of points of G of measure &amp;gt; 0. A point at which G is metrically dense must

belong to G .

* See Lebesgue, Annales de Vecole norm. (3), vol. xxvn, p. 406.
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The metrical density of G may be zero at a point at which G is metrically

dense
;
for m(GD) may be &amp;gt; for every cell D

;
and yet the limit m (G )/m (D)

may exist, and have the value zero.

The terms metrical density, metrically dense are employed because the

terms dense, and non-dense have already been used in a descriptive sense. A set

may be everywhere dense, and yet nowhere metrically dense, as is the case,

for example, for the set of rational points in the linear interval (0, 1).

The set of all points at which a set G is metrically dense is closed.

For if, in every neighbourhood of a point P, there are points at which G is

metrically dense, it is clear that, at the point P, G is metrically dense.

138. Those points of a measurable set G at which the set is not metrically

denseform a component of G, of measure zero, provided that component exists.

Apply a system of nets to the cell, or interval, in which G is contained.

Let D
Ml

be the first of the nets which has one or more meshes each of which

contains a part of G of measure zero
;

let /)/ denote those meshes of D
ni

for

which this is the case. Let D
nz (n2 &amp;gt; n-^ be the first net which has meshes,

not contained in D
Ul ,

in each of which the component of G has measure zero
;

let D
n2

denote these meshes. Proceeding in this manner, we define a sequence
D

ni ,
D

n2 ,
. . . each of which consists of a set of meshes belonging to D

Hl ,
D

nz ,
. . .

respectively, and such that Dnr does not belong to D
nr_^, for any value of r.

Every point P, belonging to G, at which G is not metrically dense belongs to

one of the meshes of the sets D
ni ,
D

na , ..., each of which contains an enumerable

set of points of G. Since the set of all points of G contained in all these sets

of meshes is enumerable, it follows that the component of G, at each point of

which G is not metrically dense, has measure zero.

A set of points is said to be metrically dense in itself when every point of

the set is a point at which the set is metrically dense.

If, from any set G, such that m(G) &amp;gt; 0, those points at which the set is not

metrically dense be removed, there remains a set H such that m (H) = m (G),

which is metrically dense in itself. For, in the arbitrarily small neighbour
hood ofany point ofH, there is a set of points of G of measure &amp;gt; 0, and therefore

a set of points of H of measure zero. The following theorem has therefore

been established :

Any measurable set, of measure &amp;gt; 0, is the sum of a set of measure zero,

which may be non-existent, and of a set that is metrically dense in itself.

In case the set G is closed, we may add to H its limiting points, all of

which belong to G
;
we thus obtain a closed component H of G, where

m (H) = m (G). The set H has the same property as H
; for, in the neighbour

hood of a limiting point of H, there must be a set of points ofH of measure
&amp;gt; 0. It is clear that H has no isolated points, hence it is a perfect set. It has

thus been proved that :

jo 2
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A closed set G, of measure &amp;gt; 0, is the sum ofa perfect set H, ofmeasure equal

to that of G, and metrically dense in itself, and of a set of measure zero.

Any measurable set G contains a non-dense closed component, of measure

arbitrarily less than that of G (125). This non-dense closed component con

tains a perfect set, also non-dense, which is metrically dense in itself, and of

measure equal to that of the component. We have thus proved the following

theorem, due to Lusin :

Any measurable set, of measure &amp;gt; 0, contains a non-dense perfect set,

metrically dense in itself, and of measure differing by an arbitrarily small

amount from that of the given set.

139. The fundamental theorem in the theory of metrical density is that,

at every point of a measurable set, with the possible exception of the points
which belong to a component, of which the measure is zero, the metrical density
of the set exists, and is equal to unity.

Before proceeding to the proof of this theorem, it is useful to introduce the

notion of the metrical density of a set relatively to a given system of nets.

This is obtained by restricting the cells, or intervals, D, employed in the

definition given in 137, all to belong to a given system of nets.

If E and F are two measurable sets, and those points ofE at which the upper
metrical density ofF is greater than some positive number c form a component
Elt of E, such that m(E1) &amp;gt;0, then a system of nets can be so determined that

those points ofE in which the upper metric density of F relatively to the system
of nets is &amp;gt; c

(&amp;gt; 0) form a set E2 such that m (E2) &amp;gt; 0.

If p be the number of dimensions of the space in which E and F are

situated, we can define a symmetrical system of nets in which each net Dn+l
is obtained from Dn by dividing each of the meshes of Dn into 3^ equal parts.
We may suppose each mesh of Dn to have all its edges of equal length. Next
let us consider a second symmetrical system of nets such that the boundaries
of its meshes contain the centres of the meshes of the nets of the first system.
The second system of nets is thus obtained by a translationafdisplacement of

the first system, such that one of the corners of each mesh of Dn is moved to

the centre of the mesh. Two such systems of nets have been termed conjugate
nets by de la Valle&quot;e Poussin, who introduced the conception.

Every cell, of equal sides a, is contained in the interior of a mesh of one or

other of the two systems of nets, provided a be sufficiently small
;
and it may

be contained in the interior of each of two meshes, one belonging to each

system. For, in the linear case, the two sets of meshes of nets of the same
order, belonging to the conjugate systems, divide the fundamental interval into

equal parts of lengths say /3. Now consider any interval of length &amp;lt; ft ;
if it

contains an end-point of a mesh, of length 2/3, of one of the two systems, it

must be contained completely in a mesh of the other system, also of length 2/3.
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In the case of a two-dimensional system, consider a square of sides &amp;lt; /3 ;
if

this square contains a corner of a mesh, of sides 2/3. of one of the conjugate

systems, it is contained in the interior of a mesh, of sides 2/3, of the other

system. Similarly, it is seen that this holds in the case of nets of any number

of dimensions. The same result clearly holds as regards a cell with unequal

edges, the greatest of which is &amp;lt; /3.

Suppose that, at a point P, ofE, the upper metric density of ^is &amp;gt; c
;
then

a sequence of cells, each containing the next, and converging to the single

point P, exists, such that, in each cell, the ratio of the measure of the part of

F in the cell to the measure of the cell is &amp;gt; c. From and after some particular

cell of the sequence, every one of the cells is in the interior of a mesh of one

of the two conjugate symmetrical systems of cells Nl} N2 , It follows that

there must be an infinite number of the cells of the sequence interior to meshes

of one and the same of the two conjugate systems N1} N2 ,

At each point P, of E1} the upper metric density of F is &amp;gt; c, relatively to

one of the two systems of nets Nlt N2 . Since the measure of E
l
is &amp;gt; 0, there

must be a part Ez ,
of E1} of measure &amp;gt; 0, such that the upper metric density

of F relatively to one of the systems of nets NI, N2 ,
is at all points of Ez

greater than c. That one of the systems N1} N2 for which this is the case is a

system such as is required.

140. The following fundamental theorem will now be established :

The metric density of a measurable set E exists, and is equal to unity, at all

points of E, with the possible exception of the points of a component of which the

measure is zero ; and the metric density ofE exists, and is equal to zero, at all

points of C(E), with the possible exception ofpoints of a set of measure zero.

We shall first suppose that E is a bounded set. It will be shewn that the

points of E at which the upper metric density of G(E} is &amp;gt; form a set of

measure zero.

Let us suppose, if possible, that the measure of the component of E, at each

point of which the upper metric density ofC(E) is greater than a fixed positive

number a, is &amp;gt; 0. A system of nets can then be so determined that the upper
metric density of C(E), relatively to the system of nets, is &amp;gt; o, at all points of

a component Ea ,
of E, such that m (Ea)

&amp;gt; 0. Let ft be an open set of points

which contains Ea ,
and is such that m(l) m(Ea ) is less than an arbitrarily

chosen positive number 97.

Any point P, ofEa ,
is contained in a unique sequence of meshes of the nets,

one in each of the nets Dlt D2 ,
. . . Dn ,

From and after some value s, of n, all

these meshes are contained in ft. Of these meshes dg ,
ds+l , ..., there must be

one of lowest rank np such that the measure of the part of C(E) that it con

tains is &amp;gt; am (d,lp ). When d
np

has been determined, we may suppose it to

correspond to each of the points P, ofE*\, which it contains. To any other point
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P

,
of Ea , not contained in d

np , there corresponds a similar mesh d
np/

. An
enumerable set of such meshes will contain all the points of Ea , and it is con
tained in H. The measure of the part of C(E) contained in this enumerable
set of meshes is &amp;gt;am(Ea ). But the measure of the set of meshes is &amp;lt;m(Ea ) + &amp;lt;r),

and therefore the measure of the part of C (E) contained in the set of meshes
is &amp;lt; 77. Now

?; can be so chosen as to be &amp;lt; am (Ea ) ;
hence the assumption

that m (Ea ) &amp;gt; leads to contradiction. It follows that m (Ea } = 0. Taking for

a the values in a decreasing sequence of numbers that converges to zero, the

set of points of E at which the upper metric density of C (E) is &amp;gt;0 is the

outer limiting set of the sets Ea ,
all of which have measure zero. Therefore

those points of E at which the upper metric density of C (E) is &amp;gt; form a set

of measure zero. With the exception of this set, at every point of E the metric

density of C(E) is zero.

It then follows that, at every point of E not belonging to a component of

measure zero, the metric density of E is unity. Since E and C (E) can be

interchanged, we see that the density of E at all points of C (E) is zero,

except at points of a component of C(E) of measure zero.

In case the set E is unbounded, we may consider the parts of it in cells of

a sequence each of which contains the preceding one, and of which the measures
increase indefinitely. Each of the cells may contain an exceptional set of

measure zero, at which the metric density of the component of E in the cell

either does not exist, or is not equal to unity. The outer limiting set of these

exceptional sets has also the measure zero
; hence the theorem holds for the

unbounded set E.

The above theorem was first established, for the case of linear sets, by
Lebesgue, who employed the theory of integration. Other proofs, independent
of the theory of integration, have been given, for linear sets, by Denjoy*, and

by Lusin and Sierpinskif. The above proof is founded on the treatment of the

subject by de la Vallee Poussin, who established the theorem for the case of

sets of points in any number of dimensions.

THE RESOLUTION OF SETS OF POINTS IN ACCORDANCE WITH
METRICAL PROPERTIES.

141. It was shewn in 91 that every set of points can be expressed as the

sum of an enumerable (or finite) series of sets which have certain descriptive

properties. We proceed to analyse a given measurable set into the sum of

parts which have certain metrical properties.

It will be shewn that :

* Journal de Mat. (7), vol. i, p. 132.

t Rend. d. Circ. Mat. di Palermo, vol. XLH, p. 167.
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Any bounded measurable set can be expressed as the sum of an enumerable

sequence of perfect sets, together with a set of which the measure is zero. More

over, the perfect sets can be so chosen as to be all non-dense, and such that each

of them is metrically dense in itself.

If $ be a measurable set, it has been shewn in 125 that it contains a

perfect set H, such that m (S) m (//j) &amp;lt; e/4. If Hl is not non-dense it has a

non-dense perfect component Glt such that m (HJ m(Gl ) &amp;lt; e/4; therefore

m (8) m ((TJ) &amp;lt; e/2. The perfect set G l
has a perfect component ( 138) L l}

of the same measure as 6r1} and metrically dense in itself. We have now

S = Lj. + M, ;
where m(S)-m (L,) &amp;lt; e/2 ;

or m(Ml )&amp;lt; e/2. The set Ml may
be similarly resolved into L2 +M2 ;

where L2 is perfect, non-dense, and metrically

dense in itself, and where m (M2) &amp;lt; e/2
2

. This procedure may be carried on

successively, and terminates only if one of the sets Mn is either absent or has

the measure zero. In case Mn exists for every value of n, its inner limiting

set is MU, which has the measure zero, since lira m (Mn)
= 0. We have there-

tt~ 00

fore, in this case, S = L^ + L2 + ... +Ln + ... +Mm ,
where the series L1} L2 ,

...

of perfect sets, all non-dense and metrically dense in themselves, is either

finite, or forms an unending series.

It will be observed that the set M is a residual set, relatively to S,

although it has the measure zero. In particular, the set of all the points of a

cell can be resolved in this manner into a sum of sets
;
the residual $, being

everywhere dense, and of cardinal number c, although its measure is zero.

JORDAN S MEASURE OF A SET OF POINTS.

142. A definition has been employed by Jordan*, and by Peano-f*, of the

measure of a set of points, which differs from that, developed by Borel and

Lebesgue, which has been employed in the present Chapter. It is applicable

to sets of points in space of any number of dimensions, and is of utility in

the theory of quadratures.

Let a set G be in the interior of a closed cell (or interval) A
;
and let a

system of nets with closed meshes be fitted on to A. Let 2n
(1) be the sum of

the measures of those meshes of Dn which are such that every point of each

of them is an interior point of G, and let Sn
(2) be the sum of those meshes of

Dn which are such that each of them contains either an interior point of G or

a point on the frontier of G and C (G). It can be shewn that 2n
(1)

converges,

as n~ oo
,
to a number $lt and that Sw

(2)

converges to a number S.2 ;
where S:

and $2 are independent of the particular system of nets fitted on to A.

The number $x is called the interior extent of the set G, and 8.2 is called

* Journal de Mat. (4), vol. vm; also Cours d Analyse, vol. i, p. 28.

t Applicazioni geom. del. calc. infinit. (1887), p. 153.
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the exterior extent of G. When S, = Sa ,
the set is said to be measurable (/),

and the number S1
= S2 is said to be its measure (/). The exterior extent of

a set is identical with its content, as defined by Harnack and Cantor ( 118).

In accordance with this definition, any set which contains no interior

points has its interior extent zero. For example, the interior extent of the

irrational points of the linear interval (0, 1) is zero, and its exterior extent is 1.

A set G consists, in general, of interior points forming a set /, and of points
Flt all of which belong to the frontier F. The interior extent of G is identical

with the measure of the open set /, and the exterior extent of G is identical

with the measure of the closed set I + F\ the measures of these sets being
defined as in 122. It is then clear that the necessary and sufficient condition

that a set G should be measurable (J) is that its frontier, which is a closed

set, should have the measure zero. Accordingly, a set that is measurable (J)
is also measurable in accordance with the definition here adopted ( 128), but
the converse does not hold.

THE SECTIONS OF A CLOSED SET.

143. If G be any closed set of points in a rectangle A BCD, and through
the points P, of AB, straight lines PP are drawn perpendicular to AB, and

P, Q

P

FIG. 2.

if/(P) denote the linear content of the linear component of G which is on the

straight line PP
,
and which may be termed the section of G by PP , then

the set of points P, on AB, which is such that /(P) ^ a, is a closed set; a-

denoting any positive number.

Let Pl be a limiting point of the set; and if possible, let the linear content
of that component of G which is on P^/ be &amp;lt; cr

;
we can then determine a

finite number of intervals 8,, S2 ,
... 8r ,

on PjP/, whose sum is &amp;gt; AD -
&amp;lt;r,

and
which are free in their interiors and at their ends from points of G. On each
of these intervals 8 we can describe a rectangle which contains no points of G
within it or on its boundaries : this may be done on either side of PiP/ ;

for each point of 8 can be enclosed in a rectangle free from points of G
;
and

by the Heine-Borel theorem, a finite number of these rectangles, enclosing
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all the points of 8, exists. Take a point Q belonging to the set of points for

which f(Q} = cr, and let PjQ be less than the breadth of all the rectangles

described on the intervals {8} on one side of PiP/. On QQ there is a finite

number of intervals free from points of G, whose sum is &amp;gt;AD cr, by the

assumption as to PjP/ ;
hence the linear content of the component of G

which is on QQ must be &amp;lt; a-, which is contrary to the hypothesis. It follows

that /(Pj) = o-
;
hence the set of points on AB is closed.

It will now be shewn that, for a closed set ofpoints G, iffor every position

of P, on AB, the linear content of the section of G by PP is
&amp;lt;&amp;lt;r,

then the

content of G is r . AB.

P

FIG. 3.

Taking any point P, of AB; on PP
,
a finite number of intervals, whose

sum is &amp;gt; AD a-, can be found which are free from points of G
;
and on each

of these intervals a rectangle can be drawn on each side of PP
, containing

no points of G in its interior or on its boundary. We can now draw two

straight lines pp , qq, one on each side of P, so that each of them passes

through the interiors of all the rectangles so described. We have now found

an interval pq containing P, such that in pqqp there is an area

&amp;gt;pq(AD &amp;lt;r)

free from points of G. Corresponding to each point P, of AB, such an interval

pq can be found
; and, in accordance with the Heine-Borel theorem, a finite

number of these intervals can be selected, such that every point of AB is in

the interior of one at least of them. The end-points of these intervals divide

AB into a finite number of parts, such that, above any one part, of length a,

there is an area &amp;gt;a(AD &amp;lt;r)
free from points of G

;
and hence there is

altogether an area &amp;gt; AB (AD a) free from points of G. It follows therefore

that the content of G is &amp;lt; AB . a.

We shall now establish the following theorem, which is of importance in

the theory of double integration :

If G be a closed set, and if the linear content of the set of points P, on AB,
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for which the linear content of the section of G by PP is ^ cr, have the value

zero, for every positive value of a, then the set G is of zero content.

The points on AB, for which /(P) ^ cr, can be enclosed in a finite number
of intervals whose sum is &amp;lt; e, where e is an arbitrarily small number

;
and in

each of the remaining parts of AB, the value of/(P) is &amp;lt; cr; hence by the

foregoing theorem the content of G is &amp;lt; cr(AB e) + e. AD; and since this

holds for arbitrarily small values of a and e, it follows that the content of G
must be zero.

Conversely, it may be shewn that :

If G be a closed set, of plane content zero, the set of points P, on AB,for
which the linear content of the section of G by PP is = cr, has, for every positive

value of cr, content zero. The linear measure of the set of points P for which

the linear content of the section of G by PP is greater than zero is zero.

Let / denote the linear content of the set (P) for which /(P) ^ cr
;
divide

AB into n equal parts, and AD also into n equal parts, and through the end-

points of these parts draw straight lines dividing the rectangle into equal parts

each of area . AB . AD. Then the sum of those parts of AB which contain
n2

points of the set (P) is always greater than /; and in each such part there is

at least one point P, such that the sum of the parts of PP which contain

points of G is &amp;gt; cr. It follows that the sum of those rectangular portions
which contain points of G is &amp;gt; cr/, however great n may be

;
and hence that

the content of G is ^ cr/. Therefore it follows that G cannot have zero

content unless / is zero.

The second part of the theorem is proved by giving to cr the values in a

sequence {cr,,}
which converges steadily to zero. We have then only to

consider the outer limiting set of the sequence of sets which correspond bo

the values of cr in the sequence {crn }.

EXAMPLES.

1. Let a set of points (x, y) in the rectangle for which &amp;lt; a? g 1, Q^y &amp;lt;1,
be denned

as follows* : The numbers x, y are expressed in the dyad scale, and only those values of x
and y are taken which are expressed by terminating radix-fractions, the number of digits

being the same for x as for y. If x denotes a terminating radix-fraction, there is only a
finite number of points (x , y ) of the set on the straight line x=-x

; similarly if y denotes
a terminating radix-fraction, there is only a finite number of points of the set on the

straight line y=y . The two-dimensional set is however everywhere dense
; for, considering

a straight line y=x+ a, where a is a positive, or a negative, radix-fraction with a finite

number of digits, we see that, corresponding to any number x expressed by a finite number
of digits greater than the number of digits by which a is expressed, there is a point (x, y)
on the straight line belonging to the set. The component of the set on the straight line

y= x+ a, being everywhere dense, and the values of a being everywhere dense in the interval

( 1, 1), it follows that the set is everywhere dense in the rectangle.

*
Pringsheim, Sitzungsberichte d. MUnch. Akad., vol. xxix, p. 48.
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This example shews that an everywhere dense two-dimensional set may be linearly

non-dense on each straight line belonging to two parallel sets. It also shews that a two-

dimensional set may exist which is extended, but is unextended on straight lines belonging

to either of two parallel sets.

2. Let a cross* formed by two pairs of straight lines parallel to the pairs of sides of

a square be constructed, and so that the remainder of the square consists of four equal

squares at the corners. Let the interior points of the cross be removed from the square,

and then let a similar cross be removed from each of the remaining four squares. Pro

ceeding in this manner, let the crosses be so chosen that the area of each square after the

_ _

with stage of the process is ab 2wl times the area of each square after the preceding stage.

The sum of the areas of the squares which remain after the mth stage is

where Q is the area of the original square. A non-dense closed set of points is denned

as the points which remain when this process is carried on indefinitely. The limit of the

sum of the crosses is that of

and this is Q, or &amp;lt; Q, according as a ^ j ; .it follows that the closed set has content zero, if

&amp;lt; | ;
but if a J, the content is b~p Q.

*
Veltmann, Schlomilch s Zeitsch. ,

vol. xxvn, pp. 178, 314.



CHAPTER IV

TRANSFINITE NUMBERS AND ORDER-TYPES

144. A PRELIMINARY account has been given, in Chapter II, of the theory
of transfinite ordinal and cardinal numbers

;
it was shewn that the introduction

of such numbers was suggested by the exigencies of the theory of linear sets of

points, and that, in particular, the necessity for the use of transfinite ordinal

numbers arises whenever a convergent sequence of points is transcended by

adjoining to the points of the sequence their limiting point and any further

points which it may be desirable to regard as belonging to the same set as the

points of the sequence. The fundamental discovery of G. Cantor, that the

rational points of an interval form an enumerable set, whereas the set of points
of the continuum is unenumerable, by establishing the existence of a distinction

between the characters of two infinite sets, suggests the development of a

general theory of cardinal numbers of infinite aggregates. The procedure we

adopted, of introducing the fundamental notions of transfinite ordinal and

cardinal numbers in connection with the theory of sets of points, is in accord

with the historical order in which the whole theory of transfinite numbers and

order-types was developed. The account of the theory of transfinite numbers

given in Chapter II is in general agreement with Cantor s earlier presentation*
of his ideas

;
his later

j-,
and more abstract, treatment of the subject is the one

upon which the account given in the present Chapter is founded.

In order that the reader may be put into a position to form his own con

clusions as to the validity of a scheme which must be regarded as still, to some

extent at least, in the controversial stage, it has been thought best to postpone

any discussion of the difficulties of the theory, until after the conclusion of the

detailed account of the theory in its constructive aspect.

In the latter part of the Chapter, some critical remarks upon the logical

basis of the theory will be made; these must necessarily be of an incomplete

character, partly from considerations of space, and also, because any complete
criticism of such a scheme as Cantor s theory of transfinite numbers would

involve the consideration of questions of an epistemological character, which

for obvious reasons cannot be adequately dealt with in a work of a professedly

* See his &quot;

Grundlagen einer allgemeinen Mannigfaltigkeitslehre,&quot; Leipzig, 1883, or Math.

Annalen, vol. xxi
;
see also Zeitschrift fur Phil, und phil. Kritik, vols. LXXXVIII, xci and xcn.

Cantor s ideas were foreshadowed in a paradoxical form by Bolzano in his Paradoxien des

Unendlichen, Leipzig, 1851 ; and although infinite numbers had been discussed by earlier

writers, Bolzano is the only real predecessor of Cantor in this department of thought.

f This is contained in the two articles &quot;

Beitrage zur Begriindung der transfiniten Mengen-

ehre,&quot; in the Math. Annalen, vol. XLVI (1895), and vol. XLIX (1897).
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mathematical complexion. Objections which may be urged against some parts

of the theory will however be fully stated. Some consideration will also be

given to the question, whether, and how far, the theory is indispensable as a

logical basis of continuous Analysis.

THE CARDINAL NUMBER OF AN AGGREGATE.

145. A collection* of definite distinct objects which is regarded as a single

whole is called an aggregate.

An aggregate may be denoted symbolically by a large letter M, the

elements of the aggregate by small letters ra; and the constitution of the

aggregate may be denoted by the equation M =
{m}.

The consideration of questions which arise in connection with this

definition, as to the mode in which the objects of the aggregate must be

specified in order that the aggregate may be adequately defined, and as

regards the conditions, if any, which must be satisfied in order that a col

lection may be regarded as a whole, or aggregate, of such* a character that it

can be an object of mathematical thought, will be postponed. For the

present, it is sufficient to remark that an adequate definition of any par
ticular aggregate, which is not necessarily finite, must contain, as a minimum,
a set of rules or specifications by means of which it is theoretically deter

minate, in respect of any object whatever, whether such object does, or does

not, belong to the aggregate. The set of prime numbers, for example, is re

garded as an aggregate although, when a particular number is presented to

us, we may be practically unable to decide whether that number is prime or

not. In this case, however, a finite number of processes will suffice to decide

the question. If however, we take the case of the algebraical numbers, the

state of things is different; for we are not in possession of any general method
which enables us to decide whether a given number is algebraic or not.

Nevertheless, the question being regarded as having a logically determinate

answer, the algebraical numbers are regarded as forming an aggregate, in the

sense here employed.

An aggregate does not depend, for its validity as a mathematical entity,

upon the possibility of producing all its members, successively or otherwise,
but upon the sufficiency of the rules by which its elements are to be dis

tinguished, as belonging to it, in that particular kind of objects to which they

belong; that is, upon the sufficiency, in this direction, of its definition of

membership.

* This definition is given by Cantor, Math. Annalen, vol. XLVI, p. 481, as follows:&quot; Unter
einer Menge verstehen wir jede Zusammenfassung M von bestimmten wohl unterschiedenen

Objecten m imserer Anschauung oder unseres Denkens (welche die Elemente von M genannt
werden) zu einem Ganzen.&quot;
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Two aggregates M, N are said to be equivalent to one another when

they are such that a law of correspondence can be established between the

elements of one aggregate and those of the other, so that, to each element

of one of the aggregates, there corresponds one, and only one, element of the

other aggregate.

This relation of equivalence between two aggregates M and N may be

expressed symbolically by M~ N, or N~ M.

It is clear that, if each of two aggregates is equivalent to a third, the two

aggregates are equivalent to one another.

Aggregates which are equivalent to one another are said to have the same

power, or cardinal number.

A cardinal number is accordingly characteristic of a class of equivalent

aggregates.

The question whether two defined aggregates have, or have not, the same

cardinal number, is thus equivalent to the question whether it is, or is not,

possible to establish a systematic (1,1) correspondence between the elements

of the two aggregates, in accordance with the above definition of equivalence.

A particular aggregate can ordinarily be shewn to be equivalent to itself.

The law of correspondence between an element and another element which

can be set up is in general of a character which admits of a certain

arbitrariness. The cardinal number is accordingly regarded as independent
of the notion of order in the aggregate.

The power, or cardinal number, of an aggregate M has been defined by
Cantor as the concept which is obtained by abstraction when the nature

of the elements of M, and the order in which they are given, are entirely

disregarded.

Cantor regards the fact that equivalent aggregates have the same cardinal

number as a deduction from this definition.

The cardinal number of M is a characteristic of M which may be denoted

by M, to indicate that both the order of the elements, and their precise

individual nature, are irrelevant as regards the cardinal number.

The relation of equivalence M */ N, between two aggregates, implies the

equality M = N; and this equation expresses the necessary and sufficient con

dition for the equivalence ofM and N.

Since Cantor regards the cardinal number of M as independent of the

precise nature of the elements of M, we may, in accordance with this view,

substitute for each element the number unity. We have thus a new

aggregate which is a collection of elements each of which is the number 1,

and is equivalent to M; and this new aggregate is regarded by Cantor

as a symbolical representation of the cardinal number M.
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THE RELATIVE ORDER OF CARDINAL NUMBERS.

146. Every aggregate Mlt which is such that all its elements are also

elements of M, is called a part, or sub-aggregate, of M.

IfMz is a part of Ml ,
and Ml is a part of M, then Mz is a part of M.

A finite aggregate cannot be equivalent to any of its sub-aggregates; but

as will be seen in detail further on, an infinite aggregate always possesses

sub-aggregates which are equivalent to itself. This is the characteristic

distinction between finite and infinite aggregates, and has in fact been

employed by Dedekind and others to define an infinite aggregate as one

which is equivalent to one of its parts.

If two aggregates M, N, with the cardinal numbers a = M, ft
= N, are

such that, (1) there exists no part of M which is equivalent to N, and

(2) there exists a part Nl} of N, which is equivalent to M, it is clear that the

corresponding conditions are satisfied for any two aggregates which are

equivalent to M, N respectively; and thus the two conditions characterise

a relation between the cardinal numbers a, of the two aggregates. When
the above conditions are satisfied we say that a is less than ft, and that ft is

greater than a; which is expressed symbolically by a &amp;lt; ft, (3 &amp;gt; a. This is the

definition of inequality for two cardinal numbers, and of the relations greater

and less, in the purely ordinal sense in which they are here used.

The condition contained in the definition is inconsistent with the relation

of equality between a and ft being satisfied. For if a = ft, then M ~ N; hence

since Nl
~ M, we have Nl

~ N: therefore, since M~ N, there must be a part

of M, say M1} such that Ml ~M, which would involve Ml ~N; but this is

contrary to one of the conditions contained in the definition of inequality.

It is easily seen that if a &amp;lt; ft, and ft &amp;lt; 7, then a &amp;lt; 7.

147. It has been seen that the three relations a =
ft,a&amp;lt;ft,a&amp;gt;ft are

mutually exclusive; but the question arises whether any two cardinal numbers

a, ft whatever must satisfy one of these relations. An affirmative answer to

this question would be required before it could be maintained that all cardinal

numbers can be regarded as being alike capable of having relative rank

assigned to them, in a single ordered aggregate.

Two aggregates M, N, of which we may denote parts by M1} Nlt must

satisfy one, and only one, of the following four conditions:

(1) M, N have parts Mlt NJt such that M l
~ N, and Nt

~ M.

(2) M has a part Mlt such that Ml ~N\ but no part of N exists which

is equivalent to M.

(3) There is no M
l
which is equivalent to N; but there is an N! which

is equivalent to M.

(4) There exists no MI equivalent to N
,
and also no NI equivalent to M.
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It will be proved that, if the condition (1) is satisfied, then M = N. The

condition (2) expresses the relation defined as M&amp;gt; N. The condition (3)

expresses the relation defined as M &amp;lt; N.

In case M is a part of N, M is itself equivalent to a part of N, and thus

either (1) or (2) is satisfied; and therefore M ^ N.

It has not been proved that the relation (4) is an impossible one; except

that, in the case of finite aggregates, it may be easily seen that it involves

M= N. Until this point is cleared up, it cannot be maintained as an estab

lished fact that the cardinal numbers a, /9 of any two aggregates whatever

satisfy one of the three relations oc = /3, a &amp;gt; /3, a &amp;lt; /3.

Two aggregates which are such that their cardinal numbers a, /3 stand to

one another in one of the relations a. = f3, a
&amp;gt;j3,

or a &amp;lt; @, may be said to be

comparable with one another. Otherwise they are incomparable with one

another.

THE ADDITION AND MULTIPLICATION OF CARDINAL NUMBERS.

148. If M, N are two aggregates which have no element in common, then

the aggregate which has for its elements all those of M and all those of N is

called the sum of the two aggregates M, N, and may be denoted by (M, N).
A similar definition applies to the case of the sum of any number of aggre

gates, no two of which have an element in common.

If M
,
N are two other aggregates with no element in common, such

that M~M
, N~N , it is clear that (M, N)~(M ,

N ); and thus the

cardinal number of (M, N) depends only on those of M and N.

If M=a, N = ft,we define the result of the operation of addition of a and $
to be (WTN).

From the independence of cardinal numbers of the order of elements, we
deduce

thus the operation of addition of cardinal numbers obeys the commutative

and associative laws.

149. If an element m, of M, be associated with an element n, of N, so as to

form a new element (m, n), the aggregate of all possible elements which can

be formed in this way is called the product ofM and N, and may be denoted

by (M.N).

IfM~M
,
N ~ N

,
it is clear that, to each element (m, n), of (M. N), there

is a corresponding element of (M . N
),
hence (M.N) ~ (M . N ) ;

and thus

(M . JV) depends only on M and N.
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The cardinal number of the product-aggregate (M . N} defines the product of

the cardinal numbers ofM and N.

The product ofM and iV may also be defined as the cardinal number of the

aggregate which is obtained by substituting for each element ofN an aggregate

which is equivalent to M.

It is seen on reflection that this definition is equivalent to the first one.

Since, as can be shewn from the definition,

(M . N) ~ (N . M), (M . (N . ))
~ ((M . N) . R)

and (M . (N, R)) ~ ((M . N\ (M . R)\

we see that cardinal numbers satisfy the relations

a . (3
=

/3 . a
;
a . (/3 . 7) = (a . /3) 7 ;

a (ft + 7) = a/3 + ay.

It has thus been shewn that the multiplication of cardinal numbers obeys
the commutative, associative, and distributive laws.

The definition of multiplication may be extended* to the case in which

the number of factors is not necessarily finite. Let us consider a class of

aggregates J/, where the class contains either a finite, or an infinite, number
of aggregates, and suppose no two of the aggregates have an element in

common. Let a new object consist of an association of elements of the aggre

gates in the given class, one element belonging to each of those aggregates.
All such objects may be regarded as the elements of a new aggregate. This

new aggregate is said to be the product-aggregate of the given class of aggre

gates, and its cardinal number defines the product of the cardinal numbers

of all the aggregates of the given class.

CARDINAL NUMBERS AS EXPONENTS.

150. If we have two finite aggregates M, N, containing x and y elements

respectively, we may suppose that, to each of the y elements of JV, one element
of M is made to correspond, so that the same element ofM may be used any
number of times; any such particular correspondence we call a distribution

of N upon M. The total number of ways of distributing N upon M is X*.

To put the matter in a concrete form, the total number of ways of distributing

y things among x persons, where any number of the y things may be given to

one person, is x\ any particular mode of distribution is what we have called

a mode of distributing the aggregate ofy things upon the aggregate ofx persons.

The definition of distributing an aggregate N upon an aggregate M is

immediately extensible to the case of infinite aggregates. As before, the

distribution denotes any system by which, to each element of N, is made to

*
See Whitehead, American Journal of Math. vol. xxiv, p. 383, where the theory of cardinal

numbers is treated by the Peano-Russell symbolical method.

H - 13



1 94 Transfinite numbers and order-types [OH. iv

correspond a particular element of M
,
the same element of M being employed

any number of times, or not at all. Denoting by N/M each particular mode
of distributing N upon M, we thus form the new aggregate (N/M) which con

tains as its elements all such distributions.

It is seen at once that, if M~M
,
N~N

,
then (N/M)~(N /M ).

Thus

the cardinal number of (N/M) depends only on the cardinal numbers of M
and N.

The cardinal number of the aggregate (N/M), each element of which is a

distribution of N on M, and in which every possible mode of such distribution

occurs as an element, is denoted by the symbol a*
3

, where a = M, /3
= N ,

thus

It is easy to shew that

Hence if M a, N =
/3, R =

7, we see that, in accordance with the above

definition of exponentials,

a?.a? = a? +y, a* . fr = (a . /?)*, (^ =
&quot;&amp;gt;;

and thus the same laws hold as for exponents in which only finite cardinal

numbers are involved.

THE SMALLEST TRAXSFIXITE CARDIXAL XUMBER.

151. The cardinal number of the aggregate of all the finite integers

1, 2. 3, ... w, ...... is called Alef-zero, and is denoted by N ; thus K ={?!}.

The number K is identical with the number which has previously been

denoted by a.

If we add to {n} a new element e, we obtain the sum-aggregate ({n}, e),

and this is equivalent to {n}, for we may make e in the first of these aggre

gates correspond to 1 in the second, and in general n to n + 1
;
and thus

({n}, e)~ {n}. From this, we obtain K + 1 = K , a relation which differentiates

N from all the finite cardinal numbers.

The cardinal number N is greater than all the finite cardinal numbers, and

no transfinite cardinal number exists that is less than N .

Since the finite aggregate (1, 2, 3, ... k) is a part of {n}, but no part of the

finite aggregate is equivalent to {n}, we have, by the definition of inequality,

No&amp;gt;&.

Let us suppose, if possible, that a = {M} &amp;lt; &, \ then there is no part of {M}

equivalent to {n\, but there is a part of {n} equivalent to {M}. Now every part
of {n} is either finite, or else is equivalent to {n}. For, consider a part Nly of
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{n} ;
this must contain some number n

;
either n is the number of lowest rank

in NU or there are in N! numbers of lower rank than n. In either case ^
contains a part N2 which is a part of the finite aggregate 1, 2, 3, ... n. In ac

cordance with the definition in 2, N.2 has a number nl} of lower rank than

all the other numbers in 1, 2, 3, ...
;
this number HI has lower rank than all

the other numbers in Nlt Removing HI from Nlt we now have a part N2 ,
of

{n}, and it may be proved as before that there exists a number ?i2 ,
of lower rank

than all the other numbers in JV2 . Proceeding in this manner, we obtain a set

WL n.2 ,
n 3 ,

... of numbers all belonging to Nlt each one of which is of lower rank

than the next. If this sequence terminates at some number npy N! is a finite

aggregate ;
if it does not terminate, it is a sequence equivalent to {n}. Since

every element of N! must occur as one of the numbers {np},
it thus follows that

iVj is equivalent to {n}. It now follows that, either [M\ is a finite aggregate,

in which case its cardinal number is &amp;lt; N
,
or else {M }

is equivalent to
{??},

in

which case its cardinal number is N , contrary to the hypothesis that it is

&amp;lt; N . It has thus been shewn that the cardinal number of any infinite

aggregate is either ^ N ,
or else that it is incomparable with N .

The following more stringent theorem was proved by Cantor :

The cardinal number N is less than any other transfinite cardinal number.

The proof of this theorem, unlike that of the foregoing one, requires the

employment of an infinite process of choosing particular elements from an

aggregate. It is equivalent to the theorem that every non-finite aggregate

contains apart which is equivalent to {n}, the aggregate of finite numbers, that

is, a part ivhose cardinal number is N .

If M be any non-finite aggregate, the process of choosing a first, second,

. . . nth element from the aggregate can be continued indefinitely without limit.

Thus M contains a part that is equivalent to {n}, and therefore ( 147) its

cardinal number is ^ N . Thus every cardinal number that is not finite, and

is different from N
,
is &amp;gt;N .

152. It has been shewn that N + 1 = N : a similar proof would shew that

NO + n = NO, where n is any finite integer.

In accordance with the definition of addition, N + N is the cardinal number
of the aggregate (1, 3, 5, ... 2, 4, 6, ...), for N is the cardinal number of each

of the aggregates (1, 3, 5, . . .) (2, 4, 6, . . .) ; hence, since the cardinal number of

(1, 3, 5, ... 2, 4, 6, ...) is the same as that of {n}, we have N + N = N , which

we may write as

N .2 = 2.N = N .

From this relation, by repeated addition of N to both sides of the identity, we
find

132
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In order to express the product K . NOJ we form the aggregate {(n, n )}
of

which the elements (n, n ) consist of every pair of finite cardinal numbers.

Let n + n s, then s has the values 2, 3, 4, . . .
;
and for any fixed value of s

the numbers n, n have a definite number of sets of values. Let s = 2; we

then have one element (1, 1): let s = 3, we then have two elements (1, 2),

(2, 1): for s =
4&amp;gt;,

we have (1, 3), (2, 2), (3, 1), and so on. The elements of

{(n, n )} may thus be arranged in order so that the element (n, n ) is at the

pth place, where p = n + \ (n + n 1) (n + n 2); thus the aggregate {(n, n
)}

is equivalent to {p}, which has the cardinal number X .

It has now been proved that K .No = Ko, or K 2 = tf
;
and from this the

theorem N n = K follows, by repeated multiplication by K .

The theorems n . K = N
, K 2 = K express in a symbolical form the results

which have been proved in 58, that a finite, or an enumerably infinite, set

of enumerable aggregates makes an enumerable aggregate.

THE EQUIVALENCE THEOREM.

153. The proof referred to in 147 will now be given, that, if M, N are

any two aggregates such that M contains a part Ml which is equivalent to N,

and N contains a part N! equivalent to M, then M = N. This theorem, which

may be called the equivalence theorem, was first proved by Schroder* and

independently by Bernsteinf; but the form in which the proof is here given
is due to ZerrneloJ.

Lemma I. If a cardinal number a remains unaltered by the addition of

any one of the enumerable set of cardinal numbers pi,p2 ,
. . . p n&amp;gt;

. . .
,
it remains

unaltered if all these cardinal numbers p are added to it at once.

Let M, P1} P2 ,
... P

n&amp;gt;
... be aggregates of which the cardinal numbers are

&amp;gt; &amp;gt;i&amp;gt; P-2, pn , ,
and such that Pl} P2 , ... Pn ,

... are all parts of M. We
have then, M= (PJ} M^ = (P2 ,

Ma)
= . . .

= (Pn ,
Mn) ...; where M, ,

M2 ,
... are

all parts of M, and in virtue of the hypothesis made in the statement of the

theorem,

M=M1
= M,= ...=Mn ...

for pn + M = M = pn + Mn .

We may denote the (1,1) correspondence which can be set up (see 145)
between M and Mn , byMn =

(j&amp;gt;
nM ;

and this for every n. Now it is clear that

this relation of correspondence is such that

* See Jahresbericht d. Deutsch. Math. Vereinigung, vol. v, p. 81 (1896); also Nova Acta Leop.,
vol. LXXI, p. 303 (1898).

t See Borel s Lemons sur la theorie dcs fauctions, p. 103.

J Gottinger Nachrichtr.n, 1901, p. 34,
&quot; Ueber die Addition transfiniter Cardinalzablen.&quot; For

remarks upon these proofs see Korselt, Math. Annalen, vol. LXX, p. 294.
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Hence M=(P1,Ml\

M, = faM = (faP,, faM,) = (P2

f

, M, ),

where P2 ,
M2 are those aggregates which correspond to P2 ,

M2 , respectively,

in the correspondence denoted by fa.

Also, with a similar notation,

M,:=fafaM = (fafaP., fafaM,} = (P, , #, ),

Jf r_ 1
=

fafa... fa^M=(fafa . . . fa^Pr, fafa Qr-iMr) = (P/, ^/)-

From these results we deduce

/if_/p p p p M Vaa.
\j^i&amp;gt; 2 &amp;gt;

*
&amp;gt;

* r j -&quot;-&quot;r / 5

and no two of the parts Plt P./, P/, ... P/, of M, have elements in common.

This process of division of M can be continued indefinitely ;
and we then have

M _/p P P /If \* \f l&amp;gt; &amp;lt;*f
*

i
ln

&amp;lt;*
)&amp;gt;

where P/, for every r, is included, and Jfu consists of those elements which

belong to Mr for every value of r. From this we see that

where a is the cardinal number of J/w .

Let us now consider the special case of the lemma which arises when

P!,PZ , ... are all equal, say to p. In this case, we see that, from the hypothesis

a = p + a, the result a = K p + a follows, where K denotes the cardinal number

of the series of finite integers.

Now since N =2N ,
we have X p + a! = 2K &amp;gt; + = Kop + 5

it nas tnus

been shewn that, if a = a + p, then a = a + ^ ^-

Returning to the general case, we have

a = a + tfopi
= a +

N&amp;lt;rf&amp;gt;2

=
5

it now follows that a = K ^! + X0jp2 + + a&quot;,

where a&quot; is the value which a! takes when K p lt K pz ,
... are substituted for

Pi,p*, ....

Hence we have

a = 2K (^ +p.2 + . . .) + a&quot;
= a + N (^i +p* + . . )

= (N + 1) (pi +jJ, 4- . . .) + a&quot;
= a +2h +p&amp;gt;

+ :

and therefore the Lemma has been established.

Lemma II. If the sum of two cardinal numbers p and q, when added to a,

leaves a unaltered, then a is unaltered by the addition of either p or q.
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For if a = a+p + q,

we have seen that a. = a + K (p + q) ;

hence = a + (N + 1) p + K q,

and also a = a + K
j + (tfc + 1) q ;

from these equalities we have

a*=a+p, and a = a + q.

We are now in a position to prove the equivalence theorem. If

a = ft -4-
jo,

and ft
= a + q,

we have a = a + &amp;gt; +
&amp;lt;?,

and hence, by Lemma II, a = a + p = a + q = @;

therefore, ifM has a part equivalent to J\
r

,
and N has a part equivalent to M,

it follows that M = a + p = a + q = N\ where a is the cardinal number of the

part of M that is equivalent to N, and /3 is that of the part of N that is

equivalent to M.

In case M is itself equivalent to N, which will in particular happen if M
is a part of N, we have p =

0, and the theorem holds good.

In case the condition a = /3 + p holds, but there is no corresponding con

dition /3
= a + q, we have in accordance with the definition in 147, a&amp;gt; fi.

It follows that the sum of two or more cardinal numbers is greater than, or

equal to, any one of the cardinal numbers.

The following theorem may be established :

If the cardinal number a is unaltered by the addition of p, and if /3 ^ a,

the cardinal number /3 is unaltered by the addition of q, where q =p-

For let ft
= a + 7, p = q + r

; then, from a = a + p = a + q + r,vie deduce that

a = a + q. It then follows that

154. A proof has been given by Cantor* that, if an aggregate exists of
which the cardinal number is a, then an aggregate exists of which the cardinal

number is greater than a.

The proof is a generalization of the second proof, given in 60, that the
cardinal number c, of the continuum, is greater than that of the rational num
bers. The proof may be put into the following form :

Suppose M = {m} to be an aggregate, of cardinal number a
;
this aggregateM maybe supposed to be simply ordered(see 157)in any manner. InM let each

element m be replaced either by A or by B, where A, B are two given objects ;

then M is replaced by a similar aggregate (see 157), in which each element is

* See Jahresbericht d. Deutsch. Math. Vereinignng, 1897.
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either A or B. An infinity ofsuch aggregates will be obtained, differing from one

another in respect of whether A or B has been put in the place of each element

of M\ denoting the aggregate of all such possible aggregates MAB , by [MAB ],

it will be shewn that the cardinal number of [MAB ]
is greater than that of M.

In the first place, it can be seen that the cardinal number of [MAB ]
is equal to,

or greater than, that of {m} ; for, taking any one element m
,
of {m}, replace it

by A, and all the other elements by B; we have then an element of [MAB],

and there is such an element corresponding to each element mn ,
of {m} ;

thus

those elements of [MAB ]
in which there is only one A, form an aggregate

of cardinal number equal to that of {m}. Next, let us assume that, if possible,

all the elements of \MAB ]
are placed in (1, 1) correspondence with those of

{m} ;
it will then be shewn that an MAB can always be defined which is not

included in the correspondence. Each M AB ,
in [MAB ],

now corresponds to a

definite m
,
in [m] ;

form a new aggregate M AB in the following manner:

For each element M AB ,
in {MAB },

in which A takes the place of m ,
in {m},

substitute B
;
and for each element M AB ,

in [MAB ],
in which B takes the place

of mQ ,
in [m], substitute A

;
in this manner we form an aggregate M AB in

which each element is either A or B, which is similar to {m}, and which is not

identical with any MAB that occurs in the correspondence between {MAB \
and

{m}. It has thus been shewn that the cardinal number of the aggregate of

all the MAB is greater than that of M. If M is the aggregate a 1} a2 ,
a3 ,

... an ,
. . .

which is similar to the aggregate of integral numbers, and if, for A and B, we
take and 1 respectively, then the aggregate {Mol } may be interpreted as the

aggregate of all the rational and irrational numbers between and 1, in the

binary scale
;
and this aggregate is thus shewn to be unenumerable.

Instead of replacing the elements of [m] by two letters A, B, we might have

taken any finite number of letters, without altering the principle of the proof.

In 60, the ten digits 0, 1, ... 9 were taken instead of -A and B. It will be

observed that, even if {m} is normally ordered (see 165), the new aggregate

{M} is not given as a normally ordered aggregate ;
and in default of proof it

cannot be assumed that it is capable of being arranged in normal order.

To replace all the elements of an aggregate either by A, or by B, is

equivalent to taking a part* of the given aggregate. The theorem has thus

been established that, the cardinal number of the aggregate, each element of
which is a part of a given aggregate, is greater than the cardinal number of the

given aggregate, all possible parts being contained in the new aggregate.

155. An important question relating to cardinal numbers in general arises

as regards the sum, a + /8, of two transfinite cardinal numbers.

If a + /3
=

7, it may be the case that 7 is greater than both the numbers

a, /3, or that it is equal to one of them
;

it being assumed that a, /9 are com-

* See Borel, Legons sur la theorie des /auctions, p. 108.
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parable cardinal numbers. Whether the first case can arise, or not, has not been

definitely settled*, even in the case in which a = /3; thus it is not known

whether 2a is necessarily equal to a, as is the case when a = c, or when a = N .

In case a= 2a = a + a, it then follows, by applying Lemma I of 153, that

a = a + K a = (K -f 1) a; and thus that a = N a.

The special case in which a is the cardinal number of a set of points in space
of any number of dimensions has been referred to in 90, where the theorem

has been assumed that, if x be the cardinal number of such set, then ax = x.

That this holds good, involves the assumption that 2x = x
;
which is equivalent

to the assertion that, if there exists a set, of cardinal number x, in each of two

non-overlapping cells, the cardinal number of the combined set is also x.

DIVISION OF CARDINAL NUMBERS BY FINITE NUMBERS.

156. If two aggregates have the same cardinal number, and if each of the

two aggregates be divided into the same finite number n, of parts, such that

the n parts of the first aggregate all have the same cardinal number, and also

the n parts of the second all have the same cardinal number, then it can be

proved that the cardinal number of one of the parts of the first aggregate is

the same as that of one of the parts of the second aggregate. Symbolically,
the theorem may be stated in the form : if a, /3 are cardinal numbers such

that no. = n/3, then a = ft.

This theorem has been proved by Bernstein f. It will be sufficient to give
the detailed proof in the case n = 2, as the proof in the general case is obtained

by generalization of that employed in the particular case.

Since an aggregate is equivalent to itself, any special mode of exhibiting
such equivalence, by which each element is made to correspond to a definite

other element, may be called a transformation of the system into itself. As

regards all such possible transformations the following propositions may be

seen to hold:

(1) The transformations of an aggregate M into itself form a group (f&amp;gt;
M .

(2) Let 1, x\, Xs&amp;gt; Xs&amp;gt;

denote a sequence of transformations of M into

itself, 1 denoting the identical transformation, and let this sequence form a

group which is necessarily a sub-group of 3/ ;
then the condition that the

sequence forms a group is that, corresponding to any two integers m, n, there

is a third r, such that %TO%n = % Further, let us suppose that, to every %n
there corresponds a definite % n ,

such that x% = 1- If m be an element of

M, such that m x (m )&amp;gt;

for w = 1, 2, 3, . . .
,
then

-%n (m) %n -

(m), where n and
n are any unequal integers.

* See Schoenflies, Die Entwickelung... , vol. n, p. 9; also Jourdain, Phil. Mag. (7), vol. vi, p. 73.

t Inaugural Dissertation,
&quot;

Untersuchungen aus der Mengenlehre,&quot; Halle, 1901. This is

reproduced in Math. Annalen, vol. LXI, p. 117.
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(3) If m and m are any two distinct elements of M, and if m %n (ra ),

for n = 1, 2, 3, . . .
,
then %n (m) ^ ^ (m/ )- For if X (m)

= % (w/ )&amp;gt;

we should

deduce that m = xXn O) = % % (Wi/ )
=

X&amp;gt;&quot; (m )&amp;gt;

which is contrary to the

hypothesis made.

(4) If 7\, 3T,, ... are parts of M, such that each T has no element in

common with another T, we may say that the T s form a system of separate

parts of M.

If T={t] is a part of M, and if
t&amp;lt;f&amp;gt;

n (t ), for n = l, 2, 3, ..., then the

equivalent aggregates T, XT. (T), %2 (T\ . . . form a system of separate parts of M.

(5) If T is a part of M which satisfies the condition stated in (4), then

For T, Xi (T), %2 (T), ... are all parts of M having the cardinal number T
;

and if R is the part of M which remains when all these separate parts are

removed, we have

S-S + K,.?;

hence M + ? = E+ (N + 1) f

1!+ K, . ? Jf.

After these remarks we can proceed to the proof of the theorem : Let

(a) M = ij + f2
= E, + #4 ,

(&) ^1 = ^2,

(c) f3
= x4 ;

then it is required to shew that Hc
l
= ~x3 ,

which involves x2
= xi .

The three equations (a), (6), (c) may be regarded as denoting that there

are three reversible transformations of the aggregate M into itself, which may
be denoted by (f&amp;gt;

a , fa, &amp;lt; c respectively ;
the reversibility of these transformations

is expressed by fa
2 =

fa&quot;

=
C
2 = 1 .

The transformation tba involves x
1 (xn ,

au ), where #13 are those elements

of #! which are transformed into elements of x3 ,
and #u those which are trans

formed into elements of a;4 ;
on the whole we have

(6) where xik
= xki .

If ^ is any part of xly and 7^ an equivalent part of #.,, we may denote by

a?!*, .2
* the aggregates obtained by interchanging those elements of xl which

belong to 7\ with those of x.2 which belong to T2 ;
we have then a similar set

of equations to (6) for the new starred aggregates, and x
i

* = x
l&amp;gt;

x.2
* = x2 ,

%* = ^3, ^4* = ^4- Thus if the theorem be proved for the starred aggregates,

it holds for the original ones.
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We have to shew that, after suitable transformations, a system of division
of the aggregates into parts, of the form in (6), can be found, such that
* + j4^u, and #3i + #32 = #32- For, from these equations, we deduce

#i = #2 = #i4&amp;gt; #3 = #4 = #23, and then the aggregates #2 , #4 are such that each
has a part which is equivalent to the other

;
and consequently, in accordance

with the equivalence theorem, a?2 ,
xt are equivalent to one another; or Hc2

= xi .

It has in fact to be shewn that #13 can be so chosen that it is negligible with

respect to cardinal number, in comparison both with #14 and with x^.

We form the systems of transformations

each transformation ^ in this system has one inverse, given by the scheme

XinXin-i
=

1, x+*X*n+z = 1&amp;gt; X^n+sX^+s = 1
, thus the transformations ^ form a

group of reversible transformations of M (= (x1} #,)) into itself.

An element el3 ,
of x13 ,

is either, (i) transformed into an element of a^ by a

transformation ^, with finite index, or else, (ii) el3 is not transformed into an
element of #24 by any of the transformations %. Suppose then that, for every
element e18 ,

of xl3 , the second of these cases arises, then %2r , ^2r+1 transform
the elements of #13 into aggregates which are respectively in x& and ar14 ,

and
in them these aggregates form an enumerable system of separate parts of each.

For, in the case contemplated, ^.2 transforms a?13 into a part of x23 ; by ^4 , the
elements of xl3 become elements of ara or arM , consequently, in accordance with

(ii), Xi(x ) is a part of ^23. In this manner it is seen that xw is transformed,

by every Xan , into a part of x,z ,
and by every X2B+1 ,

into a part of a?14 . It then

follows, by proposition (5), that xw + f14
= I14 ,

f13 + E,3
= E3 ,

and the theorem is

thus completely established. The remainder of the proof consists in shewing
that, by an exchange of elements of 18 with elements of #24 ,

it is possible to

arrange so that the case just considered always arises.

Suppose xl3 are those elements of x13 which are transformed by %2 into

elements of x^; let #&quot; denote those elements, different from #, ,
which are

transformed, by %3 ,
into elements of #Q4 which were not affected by %2 ,

and so
on

;
we thus obtain the scheme

Xzfaa) inx24 ,

s XK Xs OiO * Xz (XK&quot;) in #24 ,

^ ^is&quot; ^ a^is

&quot;

%2 (aris ) ^ %3 (^ 3 &quot;) ^ %4 (^&quot;) in ^ ,

,r13 . . . %n ar]3 n

We take now the equivalent sums
00 OC

[] = 2 ^3 &amp;lt;&amp;gt;,

and
[arM]

= 2 ^n+i (* i3
(n)

),
n=l n=l

and we carry out an exchange of
|&amp;gt;13] with [#24] ; we then have

#:3 = [#1 3] + [()], #24 = [#24] + [(#24)]-
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When the exchange has been made, of the elements of [#]3] with those of

[#24], we denote the new aggregates by starring the original ones
;
we have

then, in accordance with the formulae (6), expressions for xf, xz*, xz*, xf,

and we can, as has been shewn above, attend to these, instead of to the

original xl} xz ,
xs ,

#4 . Now no element of n\3
*

is transformed into an element

of tf-24* by any of the transformations %, it being understood that the trans

formations x are not to affect the substituted elements; and thus, by the

reasoning which has been given above, for the case in which no element of

xl3 is transformed into an element of #24 , the theorem is established. Bernstein

has also proved that, if 2a = a + @, where a, (3 are cardinal numbers, then a = .

THE ORDER-TYPE OF SIMPLY ORDERED AGGREGATES.

157. An aggregate M is said to be a simply ordered aggregate when each

element m has a definite rank relatively to the other elements of M, so that, of

any two elements m, m whatever, it is known which has the higher and which

has the lower rank.

If m has a lower rank than m
,
the fact is denoted symbolically by m &amp;lt; m

,

and if a higher rank, by m &amp;gt; m .

If an aggregate is given, at first unordered, it may be possible to order the

aggregate in a variety of essentially distinct ways. If the aggregate is finite,

the ordering of it may be accomplished by arbitrarily assigning to each element

its rank relatively to the others. In case the aggregate is an infinite one, the

ordering of it consists in the setting up of some general rule which suffices

logically to assign the relative order of any two elements.

Besides simply ordered aggregates there exist also doubly, or trebly, ordered

aggregates, or also aggregates with higher degrees of multiplicity
* of order.

Each element of suqh an aggregate possesses two, three, or more distinct

characteristics of an ordinal character. Only simply ordered aggregates will

be considered here.

Two simply ordered aggregates M, N are said to be similar, when a (1, 1)

correspondence can be established, in accordance with some law, such that, to any
two definite elements m, m, of M, there correspond two definite elements n, n , of

N, in such a manner that the relative order of m, m ,
in M, is the same as that

of the corresponding elements n, n
,
in N.

This relation of similarity may be represented symbolically by MN.
Every simply ordered aggregate is similar to itself.

Two simply ordered aggregates which are similar to a third are similar to

one another.

All simply ordered aggregates which are similar to one another are said to

have the same order-type.

An order-type is accordingly characteristic of a class of similar aggregates.
*

Multiple order-types have been considered by F. Riesz, Math. Annalcn, vol. LXI, p. 406.
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The order-type of a simply ordered aggregate M is defined by Cantor as

the concept which is obtained by abstraction when the nature of the elements

of M is disregarded, their order being alone retained. The order-type ofM is

then denoted by M. This definition will be further discussed in 191. That

similar aggregates have the same order-type is regarded by Cantor as a de

duction from this definition.

If, in M, we further disregard the order of the elements, we obtain M, the

cardinal number of M.

The order-type of M is, from Cantor s point of view, regarded as a simply
ordered aggregate similar to M, such that each element is the number 1. If

any order-type be denoted by a, the corresponding cardinal number is denoted

by a.

Corresponding to any given transfinite cardinal number, there is a multi

plicity of order-types which form a class; each such class of order-types is

characterised by the common cardinal number of all the order-types of the

class.

The order-types which belong to the class corresponding to a cardinal number
a form an aggregate which has a cardinal number a . It will appear that a is

always greater than a.

If the order of every pair of elements in a simply ordered aggregate M be

reversed, the aggregate in the new order is denoted by *M.

If M =
a, then the order-type

*M is denoted by *a.

The order-type of the aggregate of all the finite integers, in their natural

order (1, 2, 3, ...), is denoted by a&amp;gt;. This is therefore the order-type of every

aggregate (a1} a 2 ,
... an ...) which is similar to (1, 2, 3, ...).

The aggregate (... an ... &amp;lt;7 3 ,
a 2 , i) has the order-type *&&amp;gt;.

THE ADDITION AND MULTIPLICATION OF ORDER-TYPES.

158. If M, N denote two simply ordered aggregates, and if the aggregate

(M, N) be formed, in which all the elements of both M and N occur, and which

is such that any two elements of M have the same relative order as in M, and

that any two elements of N have the same relative order as in N, and further

that each element of M has a lower rank than all the elements of N, then

the new simply ordered aggregate (M, N) is said to be the sum of the two

simply ordered aggregates M and N. It is clear that if M M
,
N N

,
then

(M, N) - (M
f

,
N

),
and thus that the order-type of (M, N) depends only on the

order-types of M and N.

If M=a, N=/3, the sum a+/3 is defined to be the order-type of the sum

(M, N) of the two simply ordered aggregates, as defined above.
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This defines the operation of addition of order-types. It will be seen that

the addition of order-types does not obey the commutative law. For if a = M,

/3
= JV

l

, then a + /3
= (M, N): but + a = (N,M); and the two order-types

(M, iV), (N, M} are in general different from one another.

If n denotes a finite integer, 03 + n is the order-type of the ordered

aggregate (el ,
e2 ,

es ,
... f1} f.2 ,

... fn ),
whereas n + co is the order-type of

(fiy/2, fn, e\&amp;gt;
e2 ,es , ...). It is clear that the first of these aggregates is not

similar to (glt g, g3 , ...), but if we make/I,/2 , .../ correspond toc/i,ga ,gs, ... gn ,

then e-i to gn+1 ,
ez to gn+z ,

and in general em to gn+m &amp;gt;

it is seen that the

second of the above order-types is similar to (g1 , g2 , gs , ...). It thus appears
that n + w = a), but &&amp;gt; -f n ^ &amp;lt;a.

159. In the simply ordered aggregate N, let us suppose that, in the place of

each element, there is substituted a simply ordered aggregate similar to M,

whereby a new simply ordered aggregate is formed; this may be denoted

by M.N. It is clear that if M^M,N-Nf

,
then M.N-M .N

;
thus the

order-type of M . N depends only on the order-types ofM and N.

If a = M, fi
= N, the product a.@ is defined to be M.N, the order-type of

M . N, as just defined.

It will be seen that the product a . /9 is in general different from @ . a, and
thus that the multiplication of order-types does not obey the commutative
law. For example, u&amp;gt; . 2 is the order-type of the aggregate formed by sub

stituting in ((/!, a2) for each of the two elements an aggregate of type w ;

&&amp;gt; .2 is therefore the order-type of (bl} b,, b
3&amp;gt;

... c1} c2 ,
C3 , ...), in which there

is no last element, and no element immediately preceding d. On the other

hand, 2 . w is the order-type obtained by substituting for each element in

(a l} a, 3 , ...), an aggregate consisting of two elements; and 2 . &amp;lt;o is thus

the order-type of the enumerable aggregate (an ,
a12 ,

a21 , a^, a 3l ,
a3

.2 , ...), which
is similar to (6^ 62 , bs , ...), as may be seen by making anl correspond to bm_l

and am to b2n . It has thus been shewn that 2 . w =
o&amp;gt;,

but &&amp;gt; . 2 ^= w.

THE STRUCTURE OF SIMPLY ORDERED AGGREGATES.

160. An examination of the structure of a simply ordered aggregate M can.

in general, only be attempted by considering the nature of those aggregates
which are its parts, and in each of which parts the order of the elements is the

same as that of the same elements in the whole aggregate. The simplest
transfimte part of an ordered aggregate is that which has one of the types
w, *&amp;lt;y. Such parts we speak of as ascending sequences, and descending sequences,

respectively, contained in M.

Two ascending sequences (an ), (an j, contained in M, are said to be related

to one another, provided that, corresponding to any element a,,, of the first,
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there are elements a n -, of the second, such that an &amp;lt;a n &amp;gt;\

and provided also

that, corresponding to any element an ,
of the second, there are elements an -,

of the first sequence, such that an &amp;lt; an &amp;gt;.

Two descending sequences {bn }, {bn },
contained in M, are said to be related

to one another, provided that, corresponding to any element bn of the first

sequence, there are elements b H ,
of the second, such that bn &amp;gt; b n &amp;gt;

;
and

provided also that, corresponding to any element bn ,
of the second, there

are elements bn &amp;gt;,

of the first sequence, such that bn &amp;gt; bn &amp;gt;.

An ascending sequence [an \
and a descending sequence {bn } ,

contained in

M, are said to be related to one another, if an &amp;lt; bn-, for every n and n
;
and

further, provided there exists in M no element, or only one element m, which

is such that an &amp;lt; m &amp;lt; bn ,
for every n.

Two sequences contained in an ordered aggregate, which are both related

to a third sequence, are related to one another.

Two sequences in an ordered aggregate, which are both ascending, or

both descending, and of which one is a part of the other, are related to one

another.

161. Suppose that, in an ordered aggregate M, there is an element m
which satisfies the following conditions, with respect to an ascending sequence
contained in M:

(1) for every n, an &amp;lt; m ;

(2) for every element m, of M, which is &amp;lt; m
,
there exists a number n

such that an ,
an+1 ,

an+2 ,
... are all &amp;gt;m; then the element m is said to be

the limiting element, or limit of {an}
in M

;
and m is said to be a principal

element of M.

Similarly, if we suppose that, in M, there is an element ?n
,
which satisfies

with reference to a descending sequence [an \,
contained in M, the following

conditions :

(1) for every n, an &amp;gt; m
;

(2) for every element m, of M, which is &amp;gt; m , there exists a number n

such that an ,
an+1 ,

an+2 ,
... are all &amp;lt; m

;
then the element m is said to be the

limiting element, or limit of [an \
in M\ and m is said to be a principal

element of M.

A sequence contained in M can never have more than one limiting
element in M.

If a sequence in M has a limiting element m , in M, then m is the

limiting element of every sequence in M which is related to the first one.

Two sequences which have the same limiting element, in M, must be

related to one another.
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It is clear that, if M, M are similar ordered aggregates, an ascending, or

a descending, sequence in M corresponds to a sequence of the same kind in M .

To every principal element in M there corresponds a principal element in M .

An ordered aggregate which is such that every element is a principal
element is said to be dense in itself.

If, in an ordered aggregate, every sequence which is contained therein has

a limiting element in the aggregate, then the ordered aggregate is said to be a

closed aggregate.

An ordered aggregate which is dense in itself, and also closed, is said to be

perfect.

A n ordered aggregate which is such that, between any two whatever of its

elements, there are other elements of the aggregate, is said to be everywhere
dense.

The properties of an ordered aggregate, thus defined, are also properties of

any similar aggregate ;
hence the terms may be applied to the order- types

which are symbolised by replacing the elements of the ordered aggregates

by 1
;
there can exist therefore an order-type which is dense in itself, or

closed, or perfect, or everywhere dense.

The terms which have been here employed for the purpose of describing
certain peculiarities which may exist in an ordered aggregate, or in the

corresponding order-type, are identical with those which we have, employed
in analogous senses in Chapter n, in the case of sets of points, or numbers.

There is however a distinction which must be noticed between the use of the

terms in the two cases. To illustrate this distinction, let (P1} P2 ,
P3 ,

... Pn , ...}

be a sequence of points on a straight line, which sequence has a limiting

point Pu ,
on the right of the points Pn ; then if Q be any point of the

straight line on the right of P
,
the two ordered aggregates (Plt P2 , P3 , ...

Pn , Pw ),
and (P1; P2 ,

P3 ,
... P

n&amp;gt;
... Q), are similar, and have the same

order-type m + l. In the first of these aggregates, PM is the limiting element
of the sequence (Plf P2 ,

... Pn , ...); and, in the second aggregate, Q is the

limiting element of the same sequence; and therefore both the ordered

aggregates are closed, in the sense explained above. The first of these

aggregates forms a closed set of points, in the sense of the term defined in

Chapter n
;
but the second does not, since Q is not a limiting point of the

set of points {Pn }.
The distinction rests upon the different use of the terms

limiting element and limiting point, in the two cases of an ordered aggregate
of elements in general, and that of a set of points in the continuum. The
question whether an element is a limiting element of an aggregate to which
it belongs, or not, in the sense defined above, is answered by examining the
structure of the ordered aggregate itself. In the case of a set of points in

the continuum, a particular point may be a limiting element of the aggregate
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of points considered merely as an aggregate of elements with a particular

order-type ;
but the question as to whether the same point is a limiting point

of the set of points, considered as chosen out of the continuum, can only be

answered after an examination of the ordinal relation of the point to other

points of the continuum which do not belong to the set ;
in fact, the set must

be regarded, for this purpose, as an aggregate which is only a part of another

aggregate, the continuum. It is now clear that a set of points, considered solely

as an ordered aggregate of elements, without reference to the fact that it is

essentially a part of the continuum, may be closed, or perfect ;
and yet that

the same set of points need be neither closed nor perfect, in the sense of the

terms employed in the theory of sets of points, which has been dealt with in

Chapter II.

THE ORDER-TYPES T], 6, 7T.

162. Certain order-types which are of special importance will be now

examined.

The first of these is the order-type 77, of the set R, of rational numbers

between and 1 (both exclusive), in their order, as defined in Chapter I.

It will be shewn that the order-type 77 is exhaustively characterised by
the following properties :

(1) J7
= K = a.

(2) There is in ?? no lowest, and no highest, element.

(3) 77 is everywhere dense.

In fact, every simply ordered aggregate M, which has these three

characteristics, is similar to the aggregate R.

To prove this, we first observe that, on account of the condition (1), the

order of the elements in both M and R can be so altered that each of them

is reduced to the order-type tw. Let this be done
;
and denote by M ,

R the

new ordered aggregates
M

()

= (m 1 ,
mz ,

m 3 , ...),

-Ro
= (n, r2 ,

rs , ...).

We have to shew that M R\ and to do this we have to shew how to establish

the requisite correspondence between the elements m, of M, and r, of R. Let

nii be made to correspond to i\ ;
then there are an indefinitely great number

of elements of M, which have the same relation, as regards order, to m
} ,

as r.2

has, in R, relatively to i\ ;
of all these elements choose that one m

(2 ,
which

has the smallest index as it appears in M
;
and let m

(2
be made to correspond

to ?v Of all the elements of M, which are related to mx and /n
62 ,

in the same

manner, as regards order in M, as r3 is related to r
}
and rz ,

as regards order in

R, choose that one m
ta ,

which has the smallest index as it appears inM ;
and

make mf correspond to rs .
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Proceeding in this manner, we make the elements r1; rz ,
r3 ... rn ,

of R,

correspond to the elements m^, mf2 ,
m

(3 ,
... m

fn ,
of M; and so far as these

elements are concerned the relations of rank are preserved in the corre

spondence : we proceed then to choose, in the same manner as before, the

element m
en+1 ,

which is to be made to correspond to rn+1 ,
and thus we obtain,

for every rn ,
the corresponding mtn

. It must however be shewn that this

process exhausts all the elements m, of M, that is to say, that in the sequence

1, e2 , e3 , ... en ,
... every integral number^ occurs in some definite place. This

can be proved by the method of induction. Let us assume that the elements

m
l ,

ra2 ,
m 3 , ... mn all occur in the correspondence that has been set up between

the whole of R and at least a part of M; then we shall prove that mn+1 also

occurs. Upon this assumption, let \ be so great that, among the elements

m
i&amp;gt; Wejj wi

ez ,
... w

ex ,
all the elements m1} m2 ,

ni 3 , ... mn occur. Then, if mn+1

is not also among those elements, choose out of rA+1 ,
rA+2 ,

rA+3 ,
... that element

r\+s , with the smallest index, which has the same relation to i\, r2 , ... rA ,
as

regards order in R, that mn+l has relatively to mlt m fl ,
m

t2 ,
... m

ex ,
as regards

order in M. Then the element mn+l has the same relation to ?n1; mtl ,
m

62 , ...

W A+-I as regards order in M, as i\+8 has to i\, r2 ,
... rA+ .s_i, as regards order

in R. It thus appears that mn+l is the element with the smallest index as

it appears in M . which has, in M, the same relation as regards order to

m
i&amp;gt;

me2 &amp;gt;

inf^ g_jj
that r\+s has, relatively to rlt r2 ,

... rA+ .s.-i, in R; hence

?ft
fA

= mn+l ;
that is, the element m n+l occurs in the correspondence which

has been established between M and R. It has now been shewn that M and

R are similarly ordered aggregates.

Examples of the order-type rj
are the following :

(1) The aggregate of all negative and positive rational numbers, including

zero, in their natural order.

(2) The aggregate of all rational numbers which are greater than a, and

less than b, where a, b are two real numbers such that a &amp;lt; b.

(3) The aggregate of all real algebraical numbers in their natural order

in the continuum, or of all such of these numbers as lie between two real

numbers a, b.

(4) The aggregate of a set of non-abutting linear intervals which are

such that their end-points and the limiting points of these end-points form a

non-dense perfect set of points in a linear interval.

The rational numbers of the interval (0, 1), including and 1, form an

aggregate of the order-type 1+77 + 1.

163. We now proceed to the consideration of the order-type 6, of points

forming a linear closed continuum.

It will be shewn that any simply ordered aggregate M is similar to the

aggregate X of all real numbers of the continuum (0, 1), in their natural

H.
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order, provided (1) M is perfect, and (2) in M, an aggregate S, with the

cardinal number N ,
is contained, which is so related to M, that, between any

two elements m
, n^, of M

,
there are elements of S.

If $ has a lowest and a highest element, these can be removed without

affecting its relation to M
;
and thus we may suppose S to be of the type rj,

of the aggregate R of rational numbers which lie between and 1, both

exclusive, in their natural order.

Since S R, we may suppose the elements of S to be made to correspond

in order to the elements of R
;
and it will be shewn that this correspondence

enables us to establish a correspondence between the elements ofM and X.

We suppose that each element of M, which belongs to S, corresponds to

that element of X which belongs to R, just as in the correspondence of S
with R already established. Any element m, of M, which does not belong to

S, is the limiting element of a sequence {mn }
of elements of S. To this

sequence {mn \,
there corresponds a sequence {rn }

in X, all the elements of

which belong to R
;
and this sequence {/} has a limiting element x, in X,

not belonging to R
;
we take therefore m, in M, to correspond to x, in X. If

we take a different sequence {# },
which has the same limiting element m as

before, in M, then there corresponds to it a sequence {? }
in R, which has the

same limiting element x as before, in X. It will now be shewn that, in

the correspondence so established between the elements of M and of X, the

relative order of two elements of M is the same as that of the corresponding
elements of X. This clearly holds of any two elements of M which are also

elements of S. Consider next two elements m and s, of M, the first of which

does not, and the second of which does, belong to S ,
and let as1} r be the corre

sponding elements of X. If r&amp;lt; x1} there exists an ascending sequence in R,

of which xl is the limiting element, such that all its elements are &amp;gt; r; then, to

this sequence there corresponds an ascending sequence in S, all the elements

of which are &amp;gt; s, and of which m is the limiting element
;
hence s &amp;lt; m. If

r&amp;gt;x
1 , it can be shewn, in a similar manner, that s&amp;gt;m. The proof that,

corresponding to any two elements m l} m2 ,
of M, which do not belong to S,

the elements xlt xz ,
of X, are such that ml ^ m.2 , according as x

l $ xz ,
is of

a precisely similar character to that just given. It has thus been shewn that

M and X are similar aggregates, and that the type 6 is characterised by the

conditions (1) and (2).

The above characterisation* of the type 6 contains Cantor s ordinal theory
of the constitution of the linear closed continuum.

A non-dense perfect set of points in a linear interval has not the order-

type 6, but the set of complementary intervals together with the limiting

* See Russell, Principles of Mathematics, vol. i, p. 303, also Veblen, Trans. Amer. Math. Soc.,
vol. vi, and Huntington, Annals of Math., (2), vols. vi and vn.
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points of their end-points does form an aggregate of order-type 9, when the

elements, consisting partly of points, and partly of intervals, are taken in the

order in which they occur in the continuum.

164. The order-type *oj + w may be denoted by TT, and is the order-type
of the negative and positive integers in their natural order. This order-type
has properties distinct from those of &&amp;gt;. For example, n + a&amp;gt; has been shewn
to be identical with w, where n is a finite integer; but n + TT is not identical

with TT. From either of the equations n + TT = m + TT, or TT + n = TT + m,
there follows m = n, or more generally f:

If n, n are finite integers, and
&quot;

other order-types, from the equation
n + TT + f= n + TT + ,

there follows n = n, = f.

To prove this theorem, we observe that, if the two aggregates be placed
into similar .correspondence, the lowest elements correspond to one another,
then the second, and so on

;
hence n = n is proved at once : and we now have

When two simply ordered aggregates Mw + 2, N* + Z ,
of order-types

TT + TT +
&quot;,

are placed in correspondence in order, either Mn corresponds
to Nn , or Mn corresponds to a part of Nv ,

or else Nv corresponds to a part
of Mn . In the last two cases the order-type TT must be split up into

7r = 7r1 + 7r2 , where 7r = 7rl ,
and 7T2 is some other order-type ;

but from the

definition TT = *eo + w, it is clear that every mode of dividing TT into two

parts, without altering the relative order of the elements, leaves it in the

form *tu + &amp;lt;u

;
hence it is impossible that TT =^ + 7r2 ,

and TT = -n^ ;
and there

fore Mv corresponds to Nn . Hence also Z corresponds to Z
;
or f= &quot;.

NORMALLY ORDERED AGGREGATES.

165. The order-type of a simply ordered aggregate is, as we have already

seen, such that the structure of the aggregate, as revealed by an examination

of the sequences contained in it, may be of the most varied character
;
the

various sequences may be ascending or descending ones, and may, or may not,

have a limiting element within the aggregate.

Of all the possible order-types, those are of especial importance which

have been defined by Cantor as the order-types of normally ordered aggregates

(wohlgeordnete Mengen).

A normally ordered aggregate M is one which satisfies the following
conditions :

(1) M has an element m, of lower rank than all the other elements.

(2) If J/! is any part of M, and if M contains one or more elements

which are of higher rank than all the elements of M l , then there exists one

t Bernstein, loc. cit., p. 9.

142
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dement m , of M, which immediately follows the part-aggregate Mly so that

there are no elements of M which are intermediate in rank between m and all

the elements ofMlf

The special case of (2) which arises when M^ consists of one element,

shews that a normally ordered aggregate is such that each element has one

which immediately follows it, unless the element is the highest element of

M. It is however not necessarily the case that M has a highest element.

If ej, e2 ,
e3 ,

... en ,
... is an ascending sequence of elements contained in M,

and such that elements exist, in M, which are of higher rank than every en ,

then there exists an element e, of M, which is higher than all the en ,
and

such that every element
e&quot;,

of M, which is lower than e is lower than en , en+i,

en+2 , ..., for some definite value of n.

Every part of a normally ordered aggregate has a lowest element.

Let 3/j be a part of M; if 3/j contains m 1} the lowest element of M, then

m1 is the lowest element of M^. If J/: does not contain ml} consider that

part of M which contains all those elements every one of which is of lower

rank than all the elements of M
;

this part of M must have an element

which immediately follows it; and this element belongs to M1} and is its

lowest element.

If a simply ordered aggregate M itself, and also every part of M, has a

lowest element, then M is normally ordered.

The condition (1) is fulfilled. Let J/j be a part of M such thatM contains

elements which are higher than all those of M^ ;
let these form the aggregate

M2 ,
and let m be the lowest element of Mz . Then m is the element which

immediately follows Ml ;
and thus the condition (2) is satisfied.

This property of a normally ordered aggregate, that every part of it has a

lowest element, might be adopted as the definition of a normally ordered

aggregate.

A somewhat simpler property, which might be employed to define a

normally ordered aggregate, is the following :

An aggregate M is normally ordered^ if; and only if, it contains no part, of
which the order-type is

* w.

If M is not normally ordered, at least one part of it must have no lowest

element, and this part contains a sequence whose order-type is *&&amp;gt;. This

follows from the theorem of 151, that every aggregate that is not finite contains

a part, of cardinal number K . Such part can be ordered according to the

type w, when it has no highest element, and according to the type *&&amp;gt;,
when

it has no lowest element. An aggregate which has a lowest element, and is

f See Jourdain, Phil. Mag., (6), vol. vn, p. 65.
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also such that each element has one that immediately succeeds it, is not

necessarily normally ordered, even if each element has one immediately

preceding it. This can be seen by considering an aggregate with the order-

type O) + *(!).

166. The following properties of normally ordered aggregates can be

proved in a very simple manner :

Every part-aggregate of a normally ordered aggregate is itself normally

ordered.

Every ordered aggregate which is similar to a normally ordered aggregate

is itself normally ordered.

If, in a normally ordered aggregate M, there be substituted for the

elements normally ordered aggregates, in such a manner that, if Mm ,
Mm &amp;gt;

are the aggregates substituted for any two elements m, m, then Mm $ Mm &amp;gt;,

according as m t m, the resulting new aggregate is normally ordered.

167. The part of a normally ordered aggregate M which consists of all

those elements which are of lower rank than an element m, of M, is called the

segment ofM determined by the element m.

The aggregate which remains when the segment of M, determined by

the element m, is removed from M, is called the remainder of M determined

by an element m. The element m is the lowest element of the remainder.

If S is the segment of M, determined by m, and R is the remainder,

then Jf=(S, R).

The segment of M determined by the lowest element of M contains no

element, but it may be regarded as existent, and being the null-segment.

The remainder, determined by the lowest element, is the aggregate M itself.

Of two segments S, S determined by the elements m, m, of which m &amp;lt; m ,

we say that S is the smaller, and S the larger segment, or S&amp;lt;S .

It can easily be seen that, if M, M^ are two similar normally ordered

aggregates, a segment of M corresponds to a similar segment of M1} the

element by which the segment of M is determined corresponding to the

element of M^ by which the segment of M^ is determined.

A normally ordered aggregate is not.similar to any of its segments.

Assume that, if possible, SM, and suppose the elements of S, M are

put into correspondence. To the segment S, of M, there must correspond a

segment S
l ,

of S, so that S
l

- M - S, where Sl
&amp;lt; S. Since S1

- M, we find in

a similar manner a segment S.2 &amp;lt; S1} which is similar to M, and so on
;
and in

this way we obtain an unending sequence S &amp;gt; S
l

&amp;gt; S.2 . . . &amp;gt;Sn ... of segments

of M, which are all similar to M. Let m, m l} m a ,
... mn ,

... be the elements

which determine the segments S, 8t , S.,, . . . Sn ,
. . .

;
then m &amp;gt; m,. &amp;gt; m, . . . &amp;gt; mn ....
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The aggregate ( mn ,
... m.2,m1 ,m) would be a part ofM which has no

lowest element, and is of type *&&amp;gt;
;

this is impossible if M is normally
ordered.

If M is an infinite normally ordered aggregate, it always has parts which
are similar to M, although such a part cannot be a segment.

A normally ordered aggregate cannot be similar to any part of one of its

segments.

Let us assume that, if possible, S a part of a segment S, of M, is similar

to M. Since S = M, we can place the elements of S
,
M in correspondence,

then, to the segment S, of M, there will correspond a segment S1} of S , where
$! = $; let then Sj. be determined by the element e

l ,
of 8 . Since e

l is also

an element of M, it determines a segment M,, of M, of which S1 is a part,
and which has a part similar to M. Proceeding in the same manner, we
determine a segment M2 ,

of Ml} which has a part that is similar to M\
and in this way we obtain an unending sequence of segments of M, all

similar to M, so that M &amp;gt; M, &amp;gt; M2 . . . &amp;gt; Mn . . . . The elements which determine
these sequences form a part ofM which is of type *o

;
and this is contrary to

the hypothesis that M is normally ordered.

Two different segments of a normally ordered aggregate cannot be similar.

For one of these segments is a segment of the other.

The aggregate of which the elements are the segments of a normally ordered

aggregate M, can be so ordered that it is similar to M.

For each element of M corresponds to a single segment of M, and thus
the aggregate of segments can be so ordered as to be similar to M.

There is only one mode of putting the elements of two similar normally
ordered aggregates into correspondence, so that the relative orders of the
elements are unaltered in the correspondence.

For if, in two modes of placing the aggregates in correspondence, two
elements /, / ,

of one aggregate M, correspond to one element e of the otherM
, the segments ofM determined by/,/ are each similar to the segment ofM determined by e; but it has been shewn to be impossible that M can have

two different segments which are similar to one another.

A segment of one of two normally ordered aggregates is similar to at
most one segment of the other aggregate.

If S, S are similar segments of two normally ordered aggregates M, Mf

,

then, to every smaller segment 8, &amp;lt; S, of M, there corresponds a similar

segment / &amp;lt; 8
,
of M .

f 8lt S2 are two segments of the normally ordered aggregate M, and
/, Si are tAvo similar segments of a normally ordered aggregate M then if

S, &amp;lt; S1} it follows that S2 &amp;lt; S2 .



167, IBS] Normally ordered aggregates 215

If a segment 8, of M, is not similar to any segment of another normally

ordered aggregate M ,
then no segment S &amp;gt; 8, of M, is similar to any segment

of M
,
nor to M itself; and the same holds ofM itself.

// M, M ,
two normally ordered aggregates, are so related that, to any

segment of either, there corresponds a similar segment of the other, then M M .

Any element e, of M, determines a segment of M which corresponds to a

similar segment of M . Let this latter be determined by an element e ,
of

M ;
we then take e to correspond to e. To every element of M we therefore

find a corresponding element of M
,
and it is seen by applying the foregoing

theorems that the relative order of the elements is preserved.

168. If two normally ordered aggregates M, M are so related that, (I) to

every segment S, of M, there corresponds a similar segment S , of M ,
and (2)

at least one segment of M exists, to which there is no corresponding similar

segment of M; then there exists a definite segment $/, ofM ,
such that $/ M.

Consider all those segments of M which do not correspond to similar

segments of M. Among these, there must be one $/, which is the least of

all
;

this follows from the fact that the elements which determine these

segments of M form an aggregate which has a lowest element, and this

lowest element determines the segment $/. Every segment of M which is

greater than $/ is such that there exists no corresponding similar segment

of M
;
but every segment of M which is less than $/ has a corresponding

similar segment of M. Since, to every segment of M, there corresponds a

similar segment of /, and, to every segment of #/, there corresponds a similar

segment of M, it follows that MSi .

If the normally ordered aggregate M has at least one segment to which

there corresponds no similar segment of M, then, to evert/ segment of M, there

corresponds a similar segment of M .

Let Si be the smallest segment of M to which there corresponds no

similar segment of M. If there exist segments of M to which no corre

sponding similar segments of M exist, let 8l
be the smallest of all such

segments of M. To every segment of Si there corresponds a similar segment

of Si, and conversely ;
hence Si Si, which is contrary to the hypothesis

that there exists no segment of M which is similar to $/.

If M, M are any two normally ordered aggregates, then either (1) M and

M are similar, or, (2) there exists a segment 8 ,
of M

,
which is similar to M,

or, (3) there exists a segment S, of M, which is similar to M 1

;
and these

possibilities are mutually exclusive.

The following four possibilities may be contemplated, as regards the

relation of M to M :

(1) To every segment of either M or M there corresponds a similar

segment of the other aggregate.
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(2) To every segment of M there exists a corresponding similar segment
ofM

;
but there is at least one segment ofM to which no similar segment of

M corresponds.

(3) To every segment of M there corresponds a similar segment of M
;

but there is at least one segment of M to which no similar segment of M
corresponds.

(4) There is at least one segment of M to which no similar segment of

M corresponds, and also at least one segment of M to which no similar

segment ofM corresponds.

It has been shewn that (4) is impossible. In the case (1), it has been

proved that M M . In the case (2), it has been shewn that a definite

segment /, of M
, exists, such that /-if ;

and in the case (3), that there

is a definite segment Slt of M, such that S1
M

It is impossible that, at the same time M M1

,
and also if = $/; for, in

that case, if $/; and it has been shewn to be impossible that M should be
similar to one of its own segments.

It is also impossible that M S/, and also M S
1 ;

for there must then
exist a segment of / which is similar to Slt and therefore to M

; but this is

contrary to the theorem that a normally ordered aggregate cannot be similar
to one of its segments.

If any part ofM is such that that part is not similar to any segment of M,
then that part is similar to M itself.

Any part Ml} of M, is normally ordered
; if then i/! be similar neither to M

nor to any segment of M, there must exist a segment of MI, ofMlt which is

similar to if; and i// is a part of that segment of M which is determined

by the same element that determines the segment if/, of i/j. Therefore M
l

would be similar to a part of one of its segments, which has been shewn to be

impossible.

THE THEORY OF ORDINAL NUMBERS.

169. The order-type M, of a normally ordered aggregate M, is said to be

the ordinal number which belongs to M ; all similar normally ordered aggregates
have consequently the same ordinal number.

If M, M are two normally ordered aggregates such that M has a segment
which is similar to M

, whilst M has no segment which is similar to M, then
the ordinal number a = M is said to be greater than the ordinal number
@= M ; and this relation is denoted by a&amp;gt;/3. // if has no segment similar
to M

,
but M has a segment similar to M, the ordinal number a is said to be

less than /3, and the relation is denoted by a. &amp;lt; /3.
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It follows from these definitions, in conjunction with the theorem of 168,

that, if a, ft are any two ordinal numbers whatever, they satisfy one, and one

only, of the relations a = ft,a&amp;gt;ft,a&amp;lt;ft;
and that if a &amp;gt; ft, then ft &amp;lt; a.

Further it is seen that, if a &amp;lt; ft and ft &amp;lt; 7, then a &amp;lt; 7 ;
hence the aggregate

of all ordinal numbers is a simply ordered aggregate, when arranged in such

a manner that any one a, which has been defined as less than another one ft,

precedes it.

The sum a. + ft of two ordinal numbers is, in accordance with the general

definition of the sum of two order-types, the order-type of the normally ordered

aggregate (M, N), where M, N are two normally ordered aggregates such that

Since M, N both contain no part of type *&&amp;gt;,
the same is true of (M, N}.

Hence the aggregate (M, N) is normally ordered
;
and thus a + ft is an ordinal

number.

Since M is a segment of (M, N), we see that a &amp;lt; a + ft.

N is a remainder of (M, N) determined by the lowest element of N,

hence N may be similar to (M, N) ; or, if not, it is similar to a segment of

(M, N) : thus either ft
= a + ft, or ft &amp;lt; a + ft.

The addition of ordinal numbers obeys the associative law, but not in

general the commutative law
;
thus (a + ft} +.7 = a -I- (ft + 7); but a + ft is in

general not the same as ft + a.

170. The product a . ft, of two ordinal numbers, is, in accordance with the

definition of 159, the order-type of the aggregate obtained by substituting

for each element of an aggregate of order-type ft, an aggregate of order-type a.

In accordance with the theorem of 166, the aggregate thus obtained is

normally ordered, and of type dependent only on a and ft.

In general a . ft is not equal to ft . a.

It is easily seen that a.ft&amp;gt;a, provided ft &amp;gt; 1
;
and that, if aft

=
ay, then

If a, ft are two ordinal numbers such that a. &amp;lt; ft, there exists an ordinal

number 7 such that a + 7 = ft ; and this number 7 is defined to be ft a.

For, if M= ft, there is a segment of M which may be denoted by MI, such

that M
l
= a; let then M = (M^ , S), therefore M=Ml

+ S, and ft-a = S.

171. Let ftlt ft2 ,
... ftn ,

denote a simple sequence of ordinal numbers,

and suppose M^, M2 ,
... Mn ,

... are aggregates of which the order-types are

respectively the numbers of the sequence. The aggregate (Ml ,
M2 ,

... Mn , ...),

which is obtained by replacing each element of the normally ordered aggregate

(1, 1, 1, ...), of type co, by a normally ordered aggregate, is, in accordance with
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the theorem of 166, itself normally ordered; and its type defines the sum
& + & + +fin + ...=/3. If an denotes the sum &+&+...+&,, we see

that an = (J/j, J/2 ,
... Mn) ;

and it is clear that an+1 &amp;gt; an : hence

ft l
= a

} , /32
= Q?2 i, , /3n = a ?l an_j.

It will now be shewn (1) that /3&amp;gt;an ,
for every value of n : and (2) that, if /3

is any ordinal number &amp;lt; /3, there is some definite value of n such that an ,

an+1 , are all &amp;gt; ft .

(1) follows from the fact that each an is the ordinal number of a segment
of (M1} Mo, ... Mn , ...) of which ft is the ordinal number.

To prove (2), we observe that a segment of (M1} MS) ... Mn , ...) exists, of
which ft is the ordinal number, and therefore the element which determines
this segment must belong to one of the aggregates M1} Mz , ... Mn , ..., say J/% .

It follows that the segment is also a segment of (J/i, Mz ,
... Mn ); and there

fore, ft &amp;lt; a
ni ,

or an &amp;gt; ft ,
n being ^ wlt

It has thus been proved that ft is the ordinal number which immediately
follows all the ordinal numbers a,, 2 ,

... an , ...
;
and it may be spoken of as

the limit of the sequence a
l ,a.2 ,

... an , ....

Thus every ascending sequence als 2 ,
. . . a n ,

. . . of ordinal numbers determines
a limiting number /3= lira an , which immediately follows all the numbers of the

sequence.

THE ORDINAL NUMBERS OF THE SECOND CLASS.

172. Every finite ordered aggregate is normally ordered, and its order-type
is the ordinal number of the aggregate. The finite ordinal numbers may be

spoken of as the ordinal numbers of the first class
;
to each such ordinal number

there corresponds a single cardinal number, and the properties of the finite

ordinal numbers are identical with those of the finite cardinal numbers, the
terms ordinal and cardinal simply defining the two uses of the same number.
In the case of transfinite aggregates there is no such identity between ordinal
and cardinal numbers

;
in fact the arithmetic of the one kind of numbers is

essentially different from that of the other kind.

Corresponding to a single transfinite cardinal number there is an infinity
of transfinite ordinal numbers

;
all those transfinite ordinal numbers which

correspond to aggregates that have one and the same cardinal number a are
said to form a class Z(ci), the class of normal order-types which have the
cardinal number a.

The ordinal numbers of all those order-types which have the same cardinal
number X

,
as the aggregate of finite numbers, are said to be of the second

class

The ordinal number w = lim n, and is the smallest number of the second class



171, 172]
Ordinal numbers 219

If M denotes the aggregate (m1} w2 ,
wn , ...), then Mw, and o3 = K -

Any number ft, which is &amp;lt; ,
must be the order-type of a segment of M, and

M has only segments (mlt m 2 ,
... wn) with finite ordinal numbers w

;
thus ft

must be a finite number
;
and therefore the only ordinal numbers &amp;lt; o&amp;gt; are

finite ones.

Every number a, of the second class, has a number a + 1 immediately

following it.

For if a = M, a = K
,
we have a + 1 = (M, e), where e is a new element ;

and since M is a segment of (M, e), we have a -t- 1 &amp;gt; a. Also

It has thus been shewn that a + 1 is a number of the second class. Every
number &amp;lt; a+ 1, is the order-type of a segment of (M, e) ,

and such segment
can only be M, or a segment ofM

\
hence no number &amp;lt; a + 1 is &amp;gt; a : therefore

a + 1 is the next number greater than a.

If j, a2 ,
... a )ls ... is cm?/ sequence of numbers of the second class, there is

a number lim an ,
afoo q/ Ae second class, which is the smallest number that is

OT~aO

greater than every number an of the sequence.

If, as in 1 7 1
,
we write /32

= a
r , /32

= a2 ctj ,
... /3n = an }l_i ,

. . .
,
then if

Gn = fin, we have lim an = (Gl , Gz ,
... Gn ,

. . .) ;
and this number lim an has been

~x t~cc

shewn to be the smallest number which is &amp;gt; an for every value of n. To shew

that this number lim an is of the second class, we have, since ftn K
,
for every

n~
value of /?,

lim an X . NO ^ K ; and, since lim . is not finite, it must therefore = K .

n ~ oc H ~ oo

Two sequences {}, |a n }, oy numbers of the second class, have the same

limiting number, when, and only when, the sequences are related to one another,

in accordance with the definition o/ 160.

Let ft, 7 be the two limiting numbers, and first assume that the sequences
are related to one another. If j3 &amp;lt; 7, then for some value of n, a. n &amp;gt; ft,

ot n+1 &amp;gt; ft, ...; and hence, for some value of n
,
we must have an &amp;gt;

&amp;gt; ft, an -

+1 &amp;gt; ft, . . .
,

which is inconsistent with ft being the limit of the sequence [}.

If we assume ft
=

j, then, since an
&amp;lt;&amp;lt;y,

for some fixed number r we must

have a
,.

&amp;gt; an ,
a rJrl &amp;gt; &amp;lt;xn , ...; and similarly, since a n &amp;lt; ft, for some fixed number

s we must have a, &amp;gt;a n ,
as+l &amp;gt; a n , ...; hence the two sequences are related to

one another.

If a is a finite ordinal number, and a a number of the second class, then

n + a = a, and hence a n = a. If a be a non-limiting number, it is however

convenient to denote the number immediately preceding a by [a 1].
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For n + &amp;lt;u
=

co,

snce

where Qi-^e, di = e^ a p n f n - /yi qu yi e2 , ... yn en , gn+1 jlt gn+2 =j-2)

Further, n + a = w + o + (a
-

o&amp;gt;)

= w + (a
-

eo)
= a.

If w is a finite number, then ?i&&amp;gt;
=

a&amp;gt;. This is seen by taking an aggregate
of the type &&amp;gt;,

and replacing each element by n new elements
;
then it is clear

that the new aggregate is also of type &&amp;gt;.

It can easily be proved that (a + .)
=

a&amp;lt;y,
where a is of the second class,

and n of the first class.

173. If a is any number of the second class, then those numbers of the first
and second classes which are less than a form a normally ordered aggregate
of type a, when they are arranged in order as defined above.

If M is an aggregate such that M=a, and i is an ordinal number &amp;lt;

then there is a segment M , of M, such that M = tf; and, conversely, every
segment ofM determines a number of the first, or the second, class which is &amp;lt; a.

For, since M=X
, any segment M must have either a finite cardinal number,

or else must have N for its cardinal number. If
l is the lowest element of M,

a segment M is determined by an element e &amp;gt; e,\ and every element e
, of M,

determines a segment M . If e
, e&quot; are two elements of M, both &amp;gt; elt and M ,

M&quot; the segments of M determined by these elements, and a
, a&quot; their order-

types, then if e &amp;lt; e
&quot;,

it follows, by 167, that M &amp;lt;

M&quot;; and hence &amp;lt; a&quot;.

If thenM =(e1} M \ and to the element e, ofM
,
we make the element a,

of
{ }, correspond, the two aggregates M and

{ }
are placed in the relation

of similarity. It has thus been shewn that {a
7

}
= M

;
now M = a - 1 = a

,

hence
{ }=.

Since a = K
, we have fo

7

}
= K

;
and therefore the following theorem is

established :

The aggregate {a!} of all those numbers a. , of the first and second classes,
which are ordinally smaller than a number a, of the second class, has the
cardinal number K .

174. Every number a, of the second class, is either (1) such that it is obtained

from a number of the same class immediately preceding it, by the addition of
unity, or else, (2) such that there exists a sequence {an }, of numbers of the first
or second class, having a for its limit.

Let a = 17; then, if M has a highest element e, M=(M , e}, where M is

the segment of M determined by e
;
thus M=~M + 1

,
or a = [a

-
1] + 1 .
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If M has no highest element, then the aggregate {a },
of all numbers &amp;lt; a,

which is similar to M, has no greatest number
;
and this aggregate { }, being

of cardinal number K ,
can be re-arranged as an aggregate {a?n }

of type o&amp;gt;. In

this aggregate { },
some of the numbers or/, or/, ... will in general be less

than a/, but others must be greater than a/; for a/ cannot be greater than

all the other numbers of the aggregate, there being in
jet }

no greatest number.
Let K P, be that number of

{ },
with the smallest index, such that a

p2
&amp;gt; a/;

similarly let a p3 be that number, with the smallest index, such that a
Ps &amp;gt; a p2 ,

and so on. We have now an infinite sequence
/ /

of numbers, such that they are in ascending order, and such that their indices

are also in ascending order. Since n pn ,
we have a n a Pn ; hence, for every

number a which is less than a, there exists a number a Pn which is &amp;gt; a.

Since a is the number which follows next after all the numbers a
,
it is also

the number which follows next after all the numbers a/, a
p2 ,

a Pa , ..., which
we may write as Oj, cr2 ,

crs ,
... an , ...; thus a = lim an .

It has thus been shewn that there are two kinds of numbers of the second

class, (1) those which have an immediate predecessor in the aggregate of all

such numbers arranged in ascending order, and (2) those which have no such

immediate predecessor, and are called limiting numbers.

A number of the first kind is obtained by means of the first principle of

generation, (see 65), from the immediately preceding number.

A number of the second kind is obtained by the second principle of

generation, as the number a which next follows all the numbers u ,
of some

sequence {a,,}
of numbers of the second class.

THE CARDINAL NUMBER OF THE SECOND CLASS OF ORDINALS.

175. The totality of the numbers of the second class, arranged in ascending
order, forms a normally ordered aggregate.

If A a denotes the ordered aggregate of all those numbers of the second

class which are less than the given number a, then A a is normally ordered,
and of type a - to. For the aggregate {a ]

of numbers of the first and second

classes, which consists of {} and A a ,
has been shewn, in 173, to be normally

ordered, and thus

Ja } -&amp;lt;{*}, X),

hence
{ }

=
{n} + A a , or A a = a - &&amp;gt;.

Let M denote any part of the aggregate (a), of all the numbers of the second

class, such that, in {a}, there are numbers which are greater than all the numbers
in M

;
and let a be one such number : then M is a part of A

ao+l ,
which is such

that all the numbers of M are less than at least one number a
,
of A^^. Since
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A
a()+ i is normally ordered, there must be a number a, of A

ao+} , being itself

consequently a number of {}, which is the next greater number than all the

numbers ofM. Thus, since {} has a lowest number
&&amp;gt;,

the conditions are satisfied

that {a} is a normally ordered aggregate.

It follows, by applying the results of 165, that :

Every part of the aggregate {a}, of all numbers of the second class, has a

least number.

Every such part, in order, is normally ordered.

It will now be shewn that the aggregate [a], of all the numbers of the second

class, has a cardinal number greater than N .

Consider the two aggregates {} and {}, where n denotes the finite integers.

The aggregate fa} has a part, viz. that consisting of w + 1, w + 2, ... &&amp;gt; + n, ...,

that is equivalent to {n}.
It has been shewn in 151 that every part of [n] is

either finite, or that it is equivalent to {n} itself. In order to shew that the

cardinal number of {a} is greater than N
,
it is therefore only necessary to shew

that it is not equal to N .

If {a} =K ,
the numbers of {a} could be arranged in the form

7i&amp;gt; 7a&amp;gt; 7&amp;gt; &amp;gt;

of type &&amp;gt;,
in which of course the order would not be that of generation. Starting

from 7! ,
let

&amp;lt;yp2
be the 7, with the smallest index, which is such that

&amp;lt;ypz &amp;gt; 71 ;

then let 7P3 be that 7, with the smallest index, such that yPs &amp;gt;

&amp;lt;yPz ;
and so on.

)Ve obtain in this manner a sequence

7i 7*v 7*. &amp;gt;

in ascending order, the indices 1, p2 , p3 ,
... being also in ascending order. In

accordance with 171, there must be a definite number 8 of the second class,

namely 8 = lim ypn ,
such that 8 &amp;gt; yPn ,

for every pn ,
and consequently such that

w~x
8 is greater than every yn ;

but this is impossible, since {7^} contains every

number of the second class; hence {a} cannot equal K ,
and is therefore &amp;gt; N .

Every part of the aggregate [a], of all numbers of the second class, has either

the cardinal number of {a}, or else the cardinal number K , unless it is a finite

part.

Every such part, when the elements of it are in order of generation, being

part of the normally ordered aggregate [}, is either similar to {}, or else to

some segment A a(&amp;gt;

,
of {}; hence the cardinal number is either that of

{a},
or is

A
ao
= or o, and this last is either N ,

or is finite.

The cardinal number of [a] is the cardinal number next greater than X .

If there exist a cardinal number less than
[ctj,

and greater than K
,

it

must be the cardinal number of some part of {a} ;
but it has been shewn that

every such part of {a} has either the cardinal number of {a}, or is K ,
or is finite.

The cardinal number of {}, or of Z {K },
is denoted by N,.
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THE GENERAL THEORY OF ALEPH-NUMBERS.

176. It has now been shewn that the ordinal numbers of the second class,

in their order of generation, form a normally ordered aggregate, of which the

cardinal number is N1; the next cardinal number to N . The ordinal type of

the normally ordered aggregate [a] of all numbers of the second class, is a

number fl, which is the smallest number of the third class. In analogy with
the definition of the second class, and in accordance with what Cantor has

denominated the principle of limitation (Hemmungsprinzip), the third class is

taken to include all the ordinal types of normally ordered aggregates, of which
the cardinal number is K1; and this class is consequently denoted by Z(^).
The number ft, which is the order-type of all the numbers of the first and
second classes, in the order of generation, and which comes after all those

numbers, is not the limiting element of any sequence a1} a2 , . . . an ,
. . . of numbers

of the second class
; for, as we have seen, every such sequence has a limiting

number within the second class. From the point of view adopted by Cantor
in his earlier writings, and explained in 65, in which the successive ordinal

numbers are regarded as successively generated, in accordance with postulated

principles of generation, the number ft must be regarded as generated by a
third principle of generation, different from the two principles of generation

employed in the case of the numbers of the first and second classes. This third

principle of generation affirms that every set of ordinal numbers similar to the

aggregate of all the numbers of the first and second classes, in their order of

generation, is immediately succeeded by a new number, ordinally greater than
all the numbers of the set, so that every number which is less than this new
number is also less than some of the numbers of the set. When, proceeding
from H, the numbers ft + ]

,
ft + 2, . . . ft + ft, . . . are formed, all three principles

of generation will be required, in forming the numbers of the third class.

From the point of view adopted later by Cantor, and explained in the

present chapter, ft is simply defined to be the order-type of the totality of the
numbers of the first and second classes, in their normal order. The numbers

higher than ft are then defined in the same manner, each one as the order-type
of the totality of the preceding numbers in normal order.

The existence of a whole series of classes of order-types of normally ordered

aggregates, i.e. of ordinal numbers, has been speculatively asserted by Cantor*,
who has however, in his published works, confined his detailed investigations
to numbers of the first and second classes.

To each of the successive classes of numbers, there corresponds a single
cardinal number, that of the totality of the ordinal numbers up to, and including
all the ordinal numbers of that class. The first ordinal number of each class
is the order-type of all the numbers of the preceding classes, in their order of

* See Math. Annalen, vol. xxi, pp. 587, 588, also vol. XLVI, p. 495.
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generation. A new principle of generation is required for the first number of

each new class, since that number cannot be regarded as the limiting number

of any sequence of which the ordinal number is less than that of the number

in question. All the successive principles of generation are however included

in the one principle, that an aggregate of normally ordered ordinal numbers

has itself an order-type which is a new number
;
and thus, from this point of

view, all the principles of generation, from the second, onwards, are replaced

by this one principle.

177. In accordance with this theory, there exists an ordered aggregate

1, 2, 3, ... n, ... w, w + l, ... a)-, ... w
,

... ft, H + l, ... 7, ...

which contains every ordinal number of every class ; and there also exists a

similar aggregate

1, 2, 3, ... n, ... Ko, Ni, N2 ,
... NB , ***, *&amp;lt;n&amp;gt;

N
y ,

of cardinal numbers, each element of which is the cardinal number of a single

class of numbers of the first aggregate.

That the first of these aggregates is normally ordered may be seen by

remarking that, if it contained any part, of the type *o&amp;gt;, then such part would

also be part of the normally ordered aggregate formed by the numbers

1, 2, 3, ... o), ... a; where a is the highest number in the hypothetical part, of

type
*

a). This is impossible, and hence the first aggregate is normally ordered.

Cantor has given a proof that N is less than, or equal to, the cardinal

number of any transfinite aggregate, and that Xj is the cardinal number next

greater than X . In his proof the possibility of two cardinal numbers being

incomparable was disregarded. Accordingly, the first theorem in 151 has

been made to precede Cantor s theorem, wrhich has however also been given.

A proof has been given by Jourdainf, that K2 is the next greater cardinal

number than Kl5 who has also considered, in some detail, the ordinal numbers of

the third class, and has given indications of extension to the higher classes.

The question whether every transfinite cardinal number is necessarily an

Aleph-number, which is equivalent to the question whether every aggregate is

capable of being normally ordered, has engaged a considerable amount of

attention. That the answer should be an affirmative one, was regarded

by Cantor as probable. Some discussion of attempts which have been made

to settle this matter, will be considered in 203. A case of great importance
is that of the continuum, which is defined as a simply ordered, but not as a

normally ordered, aggregate. No proof has yet been discovered of the cor

rectness of Cantor s view that c = Nj . In case c occurs at all in the aggregate

of Aleph-numbers, the continuum is capable of being normally ordered. The

possibility has also been contemplated that c may be greater than all the

Aleph-numbers.

f See Phil. Mag., (6), vol. vn, p. 294, &quot;On the transfinite cardinal numbers of number-classes in

general.&quot;
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THE ARITHMETIC OF ORDINAL NUMBERS OF THE SECOND CLASS.

178. The ordinal numbers of the second class have been defined as the

order-types of normally ordered, enumerably infinite, aggregates; and the

operations of addition and multiplication have been defined for these numbers,
in 169 and 170. It now remains for us to define exponentials, for numbers
of this class; and the definition is founded upon the following theorem:

If is a variable of which the domain consists of the numbers of the first

and second classes, including zero, and if 7, & denote two constants belonging
to the same domain, such that 8&amp;gt; 0, 7 &amp;gt; 1, then there exists a single-valued
determinate function /(), which satisfies the conditions

(1) /(0) = .

(2) If f, f are any two values of such that | &amp;lt;
&quot;, then/(f) &amp;lt; /(&quot;)

(3) For every value of /( + 1)
= /() . 7.

(4) If
j n]

is a sequence, of which is the limiting number, then

is a sequence, of which /() is the limiting number.

In the case 8 = 1, the function /() is denoted by 7^; and then

satisfying the above conditions, defines the exponential function 7*, for all

numbers 7, f of the first and second classes.

To prove the theorem, in the first place we have

thus /(I) &amp;lt;/(2) &amp;lt;/(3),
...

;
and the function is determined for every &amp;lt; &&amp;gt;.

Next assume that the function is determined for every &amp;lt; a, a number of the

second class. If a is not a limiting number, /(a) =/[ 1] 7 &amp;gt;/[ 1];

and thus /() is determined. If a is a limiting number, and is preceded by
the sequence {on},

then {/()} is a sequence, and/()= lim/(an).
If {on j

is

MM CO

another sequence such that a = Km a,/, then the two sequences {/()}, {/(a*/)!
n~ x

are related to one another, and therefore have the same limit; and thus /()
is uniquely determined. /() is now determined for every : for if there were

values of a for which it were not determined, there must be a smallest of

such values; the theorem would then hold for f &amp;lt; a, but not for i a; which

is contrary to what has been proved above.

179. If a, /3 are numbers of the first or second class, y
a+? = 7 . y

ft
.

The function &amp;lt; (), = 7+^, satisfies the conditions

(1)

(3) *(+l)
(4) If {} is a sequence such that lim n = ,

then
&amp;lt;f&amp;gt; () = Km

n~ oo n ~ oo

. 15
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It follows by 178 that, if we take 8 = 7% then
&amp;lt;/&amp;gt;
() = 7

a
7*&amp;gt;

hence if

=
/?, we have

iy
a+0

yO- yP

Again, if a, /3 are two numbers of the first or second class,

If we put /(|) = 7*, we find by applying the theorem of the last section,

that/() = (7)f
,
where 7

a
replaces 7.

7 being &amp;gt; 2, it can be proved that, for every |, 7* ^ |f.
The theorem holds

for = 0, |f
= 1

;
and if it be assumed to hold for all values of which are

less than a given number a, then it holds also for
|f
= a.

For, first let a be not a limiting number: then, if [a 1] ^ 7
[a
~

1]
,
we have

0-1] 7^7&quot;;

hence
7&quot;
^ [a 1] + [a 1] [7 1]: therefore since [a 1] and [7 1] are &amp;gt; 1,

and [a 1] + 1 = a, we have
&amp;lt;y

a ~ or. If a is a limiting number = Km an , then
n~ao

since crn S 7
a

, we have lim an ^ lim
7&quot;&quot;,

or a ^
7&quot;.

If there were values of
n~oo ~oo

such that
&amp;gt;7^,

there would be one of such values which is the least of all;

and if this were a, then |f
^ 7*, if &amp;lt; a, but a &amp;gt;

7&quot;;
which is contrary to what

has been proved above.

180. Of all the numbers of the second class, the smallest ones are those

which are algebraical functions of at, of the form

wn . pn + wn~l
. pn_1 + . . . + w . p l + po,

where p , p^, ... pn are finite numbers. If we write

ft)j
=

&)&quot;*,
&amp;lt;W2
=

&&amp;gt;&quot;
,

&&amp;gt;3
= tW* -, . . .

then we obtain the number e = lim &amp;lt;wn . This number e is the smallest of a
M~OC

species of numbers of the second class which are characterised by the property
e = o)

e
,
and which Cantor has designated e-numbers. Cantor has shewn that

the e-numbers form a normally ordered aggregate, of type H, and therefore

similar to the whole second class of numbers. He has further shewn that

every number a, of the second class, is uniquely representable in the form

a = a)
a

/c 4- W /Cj + ... + o)ar Kr ,

where a
,
a1; a2 ,

... ar are numbers of the first or second class which satisfy the

conditions or &amp;gt; ax &amp;gt; a2 ... &amp;gt; or,. = 0, and KO , KI, K, ... tcr ,
r + 1, are numbers of

the first class which are different from zero. For the detailed investigation

of the normal form, and for that of the special class of e-numbers, we must

refer to Cantor s original discussion*.

* Math. Annalen, vol. XLIX, pp. 235 246.
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THE THEORY OF ORDER-FUNCTIONS.

181. A method of representation of any mode of ordering a given

aggregate M has been given by Bernstein*. When the elements of the

aggregate are numbers, this method lends itself to a diagrammatic repre
sentation of the aggregate, as ordered in any particular order-type.

An aggregate M is ordered, in the most general sense of the term, when
it is known as regards every* pair of elements a, b, whether a $ 6; but a

particular mode of ordering the aggregate can be represented by means of

a function f(a, b) of the pairs of elements, which is defined by

f(a, b)
=

1, if a &amp;lt; b: f(a, b)
=

1, if a &amp;gt; 6
;
and f(a, a) = 0.

This functionf (a, b) may be denominated an order-function of the aggregate

M; and there is one order-function for each possible mode of ordering the

aggregate. The function must satisfy the condition that, if /(a, b) =f(b, c],

then each is equal to f(a, c).

Two order-functions /i (a, 6), /2 (a, b), of a given aggregate M, represent
two methods of ordering the aggregate in one and the same order-type,

provided there exist a reversible transformation
&amp;lt;,

of the aggregate M into

itself, such that/; {&amp;lt; (a),
&amp;lt;j&amp;gt; (b}} =/2 (a, b).

All those order-functions of a given aggregate M, which correspond to an

arrangement of M in one and the same order-type, constitute a family of

order-functions; and there is one such family of order-functions corresponding
to each order-type in which the given aggregate M can be arranged.

It is clear that the order-functions of a family corresponding to M form

an aggregate with the same cardinal number as the group of transformations

of M into itself.

If, in particular, the aggregate M is that of the positive integers, then a

pair of elements (a, 6) is represented by a cross-point of the rectangular trellis

formed in the positive quadrant by drawing all the straight lines, x = i, y = i,

for positive integral values of i, referred to rectangular Cartesian coordinates

x,y.

The natural order of the numbers 1, 2, 3, ... will be represented by f(x, y},

defined for all the cross-points, so that/(#, y)
= 1, when x &amp;lt; y, and/(#, y}

=
1,

when x &amp;gt; y, and such that f(x, x} = 0.

Any particular mode.f of ordering the numbers 1, 2, 3, ... will be represented

by marking one set of cross-points +1, and another set -1,. those on the

diagonal x = y being marked zero.

*
See his Dissertation, also W. H. Young, on &quot; Closed sets of points and Cantor s numbers,&quot;

Proc. Load. Math. Soc. (2), vol. i.

t Some examples of order-types represented in this manner are given by W. H. Young, Proc.

Land. Math. Soc. (2), vol. i, p. 244.

152
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It is, however, not every mode of so marking the cross-points that repre

sents a possible ordering of the aggregate. That a mode of marking may

represent a possible order, two conditions must be satisfied. First, we must

have/(#, y}
=

f(y, x); and thus points which are optical images, relatively to

the diagonal y = x, must be marked with unities of opposite sign. Secondly,

the condition that, if f(a,b l)=f(b1 ,c), then each =/(a,c), must be satisfied.

This condition may be expressed as follows: Join every cross-point which is

marked +1, or 0, with every other such cross-point, then the resulting figure

may be called the positive frame-work; join similarly all the pairs of points

marked 1, 0; in this way we obtain the negative frame-work. Let lines

joining the two pairs of points (xlt y-^, (xz , y2) and (X, 2/2). (#2. y\) be called

conjugate lines. The condition which must be satisfied is that no side of the

positive frame-work can be conjugate to a side of the negative frame-work.

It can easily be seen that the condition so stated is necessary and sufficient.

THE CARDINAL NUMBER OF THE CONTINUUM.

182. The arithmetic continuum has been defined as an aggregate of the

order-type 6 (see 163), and it is thus not normally ordered. It has been held

by Cantor* that this aggregate, and perhaps every aggregate, is capable of

being arranged as a normally ordered aggregate; but no universally accepted

proof of the correctness of this view has been obtained. If the continuum be

capable of arrangement as a normally ordered aggregate, its cardinal number

c must be identical with one of the Aleph-numbers; and in fact Cantor be

lieved that c = &*!, the cardinal number of the aggregate of all the order-types

of normally ordered enumerable aggregates. As evidence of the probable truth

of this view, the facts may be cited that all the sets of points which have

actually been defined in connection with the theory of sets of points have one

or other of the two cardinal numbers K and c, and that no such set of points

has been defined of which it is known that the cardinal number is &amp;gt; N and

&amp;lt; c. This negative evidence is however clearly insufficient to settle the question

whether every part of the continuum has one of the powers N or c, a question

which has hitherto defied all attempts to obtain a conclusive answer. It has

been shewn by Konig that the cardinal number of the continuum cannot be an

Aleph-number of which the index is a limiting number. As has already been

pointed out, it cannot be assumed that every two cardinal numbers are such

as to be comparable with one another; but a proof has been propounded by
G. H. Hardyf that c, and presumably any cardinal number whatever, must

either be an Aleph-number, or else be greater than all the Aleph-numbers.

The mode of reasoning is a generalization of that employed by Cantor in his

proof (see 151) that K is less than any other transfinite cardinal number.

* Math. Annalen, vol. xxi, p. 550.

t Quarterly J. of Math. 1903, p. 87.
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Because c = N1} it is possible to take elements from the number-continuum

corresponding to all the numbers of the first and second classes of ordinals.

For, if this process came to an end, we should have c = N
,
which has been

proved by Cantor not to be the case. It follows that a set can be selected

from the continuum equivalent to the aggregate of ordinal numbers of the

first and second classes. Now if a set could be selected from this aggregate

equivalent to the continuum, it would follow from the equivalence theorem,

proved in 153, that c = Kj; and if no such set could be selected it would

follow from the definition of inequality in 146, that c &amp;gt;Xu thus it follows

that c = tfj. If now c &amp;gt; N1? a similar proof would shew that c ^ N2 ,
and so on.

If c&amp;gt;Nn for every finite n, then c=.tfla ,
and this process may be continued

indefinitely through the Aleph series. The validity of this proof depends

upon considerations which will be discussed in 198.

It is known that every infinite closed linear set of points has one or other

of the two cardinal numbers K
, c; and if a set of points can exist of which

the cardinal number has neither of these two values, it must be unclosed, and

may without loss of generality be taken as dense in itself. The difficulties of

dealing with unclosed sets, dense in themselves, are so great that attempts to

find a contradiction involved in the assumption of the existence of such a set,

possessing a cardinal number different from both K and c, have hitherto been

a complete failure.

183. A very remarkable relation has been given by Cantor between the

cardinal number of the continuum and that of the integral numbers. This

relation is expressed by c = 2^o, or more generally c = n^o, where n is a finite

integer.

This theorem was applied by its discoverer to obtain a simple arithmetical

proof that the N -dimensional continuum has the same power as the one-

dimensional continuum.

In accordance with the definition of an exponential, given in 150, 2S &amp;lt;&amp;gt; is

the cardinal number of the numbers in the dyad scale,

&i k k
2

&quot;*&quot;

2s 2 s

where every b is either or 1. In this aggregate, each number of the form

&~~ &amp;lt;
1&amp;gt;
where p and q are integers, occurs twice; hence

where X is the aggregate of real numbers between and 1, and s is an

enumerable aggregate.

It follows from the above, that 2xo = c + N . Now c + N = c + 2K ,
since

K = 2X
;
therefore c = c + X ; whence we have 2*o = c.
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From this theorem, we deduce c . c = 2No . 2xo = 22Xo = 2xo = c; and hence

by repeated multiplication by c, we find c
n =

c, where n is any finite
-

integer.

Again c^o = (2o) NO = 2o = 2o = c,

and therefore the continuum of finite, or of enumerable, dimensions is

equivalent to the one-dimensional continuum.

The aggregate defined by all possible modes of distributing the numbers
of the continuum upon themselves, has the power cc =f; and this number /is
greater than c. This has been proved in 154

;
for a part of the new aggregate

is equivalent to that obtained by replacing the numbers of the continuum
either by A, or by B, and taking all possible aggregates which arise in this

way. Since this part has been shewn to have a cardinal number greater than
that of the original aggregate, it follows then

that/&amp;gt;
c:

More generally, if a is any cardinal number, we have aa &amp;gt; a.

If the continuum be divided into any finite number n, of parts, such that

all the parts have the same cardinal number, then that cardinal number is the

same as that of the continuum*.

The parts may consist of sets of points of any kind.

The theorem may also be stated thus: if no. = c, then a = c.

To prove it, we have no. = c = nc; and therefore, by applying the theorem
of 156, it follows that a = c.

184. The continuum is equivalent to the aggregate of all possible order-

types of simply ordered aggregates of cardinal number X .

This theorem points the contrast between the aggregate of all order-types
of simply ordered enumerable aggregates, which is of power 2*0, and the

aggregate of all the order-types of normally ordered enumerable aggregates,
which is N1P The latter aggregate is, of course, a part of the former one, and
thus the theorem N a

&amp;lt; 2**o can be deduced.

The theorem may be also stated in the form: The total number of ways
of ordering the integral numbers 1, 2, 3, ... is c.

If p is the order-type of an enumerable aggregate, arranged as a simply
ordered aggregate, then a part of an aggregate of the type 77, considered in

162, can always be determined, which is of the type /*. To establish this, it

can be shewn that an aggregate of type /JL
can always be changed into one of

type 77, by insertion of new elements. If, between every pair of elements m^,
m2 ,

of
fj,, there are other elements, then p is of one of the types 77, 1 + 77, 77 + 1,

1 + 77 + 1
;
so that p is reduced to

77 by the removal of the lowest and the highest
elements, when such elements exist. In any such case, if we add to

/z, aggre-

*
Bernstein, loc. cit., p. 31.
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gates of type 77, at the beginning and at the end, we obtain an aggregate of

type 77 + fji + 77, which is of type 77,
whichever of the types 77, 1+77, 77+!, 1 + 77 + !

may be identical with
/JL.

If pairs of elements exist in the aggregate of type /A,

such that there are no elements between them, an aggregate of type 77 can be

inserted between every such pair, until a new aggregate of one of the types 77,

1-1-77, *7 -t- 1 1 + *7 + 1&amp;gt;

is obtained; then, as before, by adding aggregates of

type 77,
at the beginning and end, we obtain an aggregate of type 77. It has thus

been shewn that any aggregate of type p is a part of another aggregate of type

77. Since the rational numbers in their totality naturally exist in the order-type

77, it follows that an aggregate of any type /* can be made by taking a part of

the aggregate of rational numbers, of type 77. It follows that the aggregate

of all types /JL
has a cardinal number less than, or equal to, that of the aggre

gate of all part-aggregates of the set of rational numbers, arranged in type 77.

Now every aggregate (r^n,...), of which all the elements are rational

numbers, corresponds to a single point of a continuum of an enumerable number

of dimensions, of which the coordinates are x-^ r^, #2
= r2 ,

.... Hence the

cardinal number of the aggregate of all part-aggregates of the set of rational

numbers is less than, or equal to, the cardinal number of the K -dirnensional

continuum, that is, ^ c; and therefore the cardinal number of the aggregate

of all types p, is ^ c.

It will now be proved that c the cardinal number of the aggregate of

all types p,.
To every real number between and 1, there corresponds an

infinite sequence b^b^..., where every b is either or 1, expressing the number

in the dyad scale. After each b, insert an aggregate of type TT, and we then

have an aggregate b-^TTb^Trb^ir ..., of type v = b l + TT + b.2 + TT + b3 + TT +

Here, some of the 6 s may be zero, and these may be simply omitted; thus

7r + + 7r = 7r + 7r. Hence, to any real number x, between and 1, there

corresponds the type
V=b

l + 7T + b+ ....

It is now necessary to shew that the two order-types v, v
,
which correspond

to two different numbers, x, x, are necessarily distinct from one another. If

v = v, we can write the equality Cl + TT -f ,
= CV + TT + V, where Cly C/ are

each either or 1; and from this we obtain, by means of the theorem of

164, C\ = OS, and =
/. The last equation can be written

c, + 7r + & = a: + TT + &,

and from this we conclude that (72
= C2 , ,

= & ;
and we can proceed onwards

in the same manner. From b^
= 6/, 62

= b.2

f

, ..., we conclude that x = x. It

has thus been shewn that [x] {v} ;
and from this we conclude that c ^ the

cardinal number of all order-types p,.

This part of the theorem is due to Cantor*, and the first part to Bernstein.

By combining the two results, the complete theorem is established.

* See Bernstein s Dissertation, p. 7.



232 Transfinite numbers and order-types [CH. iv

This important result may also be expressed by saying that the totality

of all permutations of the sequence of positive integers has the power of the

continuum.

It may also be shewn that the totality of all parts of the sequence 1, 2, 3, ...

has the power of the continuum.

For, if we form a sequence, by writing for each of the numbers 1, 2, 3, ...

which does not occur in a given part of (1, 2, 3, ...); and 1 for each number
which does occur in the given part, then the sequence of O s and 1 s, thus

obtained, corresponds to a real number expressed in the dyad scale, and
therefore the numbers of the continuum are put into correspondence with the

parts of the sequence (1, 2, 3, ...).

185. It can be shewn that the aggregate of all sets of points in the

n-dimensional continuum has a cardinal number greater than c.

For, in the aggregate {.P} of all points in an n -dimensional continuum,
we can substitute for each point P which does not occur in a given set

of points of the continuum, and 1 for each point P which does occur; we
then obtain an aggregate consisting of O s and 1 s: but it is known that

the totality of all such aggregates has the power 2C
, which is &amp;gt; c.

On the other hand, the totality of all closed sets of points in the n-dimen
sional continuum has the same power c as the continuum.

Every closed set is the derivative of an enumerable set of points ; and, to

every enumerable set of points, there corresponds a single closed set.

It follows that the cardinal number of the totality of closed sets is ^ the

cardinal number of the totality of enumerable sets of points chosen out of the

continuum. To shew that the latter is c, we observe that it is ^ the aggre
gate of all combinations of points of the continuum in sets of K elements,
that is, S c^o, or c.

Again, every single point of the K -dimensional continuum corresponds
to a single point of the one-dimensional continuum, and this point is an
enumerable part of the continuum; hence the totality of enumerable sets

of points of the n-dimensional continuum is ^ c. On combining this with
what has been proved above, we see that the totality of all enumerable sets

of points in the n-dimensional continuum is c; hence the totality of all

closed sets of points in the n-dimensional continuum is ^ c.

Again, the totality of all closed sets of points in the n-dimensional
continuum is ^ c. For one such closed set can be taken in each of an

infinity of the domains x^ = a, where x
l is one of the n coordinates which

determine the position of a point in the n-dimensional continuum
;
and the

aggregate of all possible values of a has the power c. We thus obtain
an aggregate of closed sets which has the power c

;
and it follows that the

aggregate of all closed sets in the n-dimensional continuum is ^ c.
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Since the totality of all closed sets of points in the w-dimensional con

tinuum is ^ c, and at the same. time is ^ c, it must have the cardinal number c.

Since* every curve, or surface, in a continuum is formed by a closed set of

points, we see that every possible curve, or surface, corresponds uniquely to

a single definite real number.

186. A method of constructing a set of points of which the cardinal

number is N1} has been givenf by G. H. Hardy.

If we start from the sequence

1, 2, 3, 4, 5, (1)

of integral numbers, a new sequence

2, 3, 4, 5, (2)

is formed by omitting the first term.

Continuing this process, we form

3, 4, 5, 6, (3)

4, 5, 6, 7, (4)

5, 6, 7, 8, (5)

We now form a new sequence

1, 3, 5, 7, 9, (o&amp;gt;)

by traversing the above infinite array of sequences diagonally. Then we form

3, 5, 7, 9, 11, ( + l)

5, 7, 9, 11, 13,
(&amp;lt;u
+ 2)

7, 9, 11, 13, 15, (o) + 3)

9, 11, 13, 15, 17, (w + 4)

1, 5, 9, 13, 17, (. 2)

5, 9, 13, 17, 21, (&). 2 +

9, 13, 17, 21, 25, (a). 2 +

1, 9, 17, 25, 33, (a). 3)

Thus sequences corresponding to all the numbers w .
yu, + v can be formed.

To form the sequences corresponding to w2
,
we take the array of sequences

1, 3, 5, 7, 9, (ft))

1, 5, 9, 13, 17, (w. 2)

1, 9, 17, 25, 33, (w. 3)

1, 17, 33, 49, 65, (&amp;lt;y.4)

1, 33, 65, 97, 129, (o&amp;gt;.5)

*
Bernstein, loc. cit., p. 43.

t Quarterly Journal of Math., vol. xxxv, 1903, &quot;A theorem concerning the infinite cardinal

numbers.&quot; See also Hausdorff, Leip. Ber., vol. LIX, p. 155.
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and traverse it diagonally ;
we thus obtain

1, 5, 17, 49, 129, V)-

Generally, if bi, b.2 , b3 ,
b4 ,

... is the sequence corresponding to j3, the

sequence b2 ,
bs ,

64 , 65 , ... corresponds to ft + 1. To obtain a sequence cor

responding to a number 7 which is a limiting number of the second class,

we take the array of sequences corresponding to any ascending set of

numbers ftlt /32 ,
... of which the limit is j, and traverse it diagonally. It is

clear that, in this manner, a sequence can be found for any given number of

the second class
;
but that the set of sequences so obtained is not unique. For

example,. &amp;lt;B might have been taken as the limit of 1, 3, 5, 7, ... ,
or w- might

have been taken as the limit of &amp;lt;o + 1, w . 2 + 2, co . 3 4- 3,

It will be shewn that the sequences bl} b.2 ,
b3 ,

... can be so chosen that

in every case b
1 &amp;lt;b&amp;lt;b3 , ...; and that, if the sequences b1} b2 ,

... and &/, b2 ...

correspond to any two numbers ft, ft ,
where $ &amp;lt; ft , then there exists a

number N such that b,i&amp;gt;bn ,
for n^N; and thus that the sequences are

distinct from one another.

Let us assume that sequences, corresponding to all numbers &amp;lt; 7, have

been constructed in such a manner that this condition is satisfied. First,

let 7 be a non-limiting number, so that 7 = 7 + 1. Then if
ft&amp;lt;y,

there is

a number N such that a n &amp;gt; bn ,
for n ^ N, where /, a2 , a/, ... is the sequence

which corresponds to 7 . But if alt 2 , s&amp;gt;

...is the sequence which cor

responds to 7, we have an = a n+l &amp;gt; an &amp;gt; bn ,
for n ^ ^V.

Hence, if the construction is possible for all numbers
&amp;lt;y,

it is possible
for all numbers ^ 7, where 7 is a non-limiting number.

Next, let us suppose that 7 has no immediate predecessor, and that

7 = lim . ftm ;
then also 7 = lim (ftm + vm ),

where the vm are finite numbers.
m~ co 7/1~ oc

Now there is a number Nlt such that 6
2&amp;gt;n

&amp;gt;6]
&amp;gt;n

,
for nNlt where b

m&amp;gt;n

denotes the nth number in the sequence corresponding to ftm . A fortiori, if

7m = ftm + vm ,
we have c

2&amp;gt;Tl

= b
2&amp;gt;n+Vz

&amp;gt; b.
2&amp;gt;n

&amp;gt; b
1&amp;gt;n

,
for n ^ Nlt where c

m&amp;gt;n
is the

?ith number in the sequence corresponding to ym . But if we take v2 &amp;gt;&i,2vx -i&amp;gt;

we have c
2&amp;gt;n

= &
2l H-K2 = + vz &amp;gt;b

l&amp;gt;Xl

_l &amp;gt; b
1&amp;gt;n

,
for )i&amp;lt;N^; and hence we have

C2,n &amp;gt; b
1&amp;gt;n

,
for all values of n. Similarly, v3 can be so chosen that

&amp;lt;y
3 &amp;gt;y2 ,

and

C3,n&amp;gt;c2tn ,
for all values of n; and so on generally. If we write yl for ftlt

and c
1&amp;gt;n

for b
ljn&amp;gt;

we have a doubly infinite array

CI,D C
lj2 , C

])3 ,
. . .

^2, i &amp;gt;

C
2j 2 , C

2) 3 , . . .

^3, 1 &amp;gt; 63, 2 &amp;gt;

C
3) 3 ,

. . .

and we define the sequence corresponding to 7, by traversing it diagonally,
so that cM = c

w&amp;gt;n

. If then
ft&amp;lt;y,

we can find in so that
ft&amp;lt;jm ,

then there

is a number K, such that c
w&amp;gt;n

&amp;gt;6n ,
for n^K. But if n&amp;gt;m, we have
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cn = cn
,
n &amp;gt; c

w&amp;gt;n ;
and thus, if n is greater than the greater of the two numbers

m, K, we have cn &amp;gt; bn . It has thus been shewn that, if the construction is

possible for all numbers &amp;lt; 7, it is possible for all numbers ^ 7, whether 7 is

a limiting number or not.

In this manner, a sequence is obtained which corresponds to any assigned

number 7 of the second class, and this sequence is distinct from those which

correspond to the numbers &amp;lt; 7, such sequences being also distinct from one

another.

The sequences may be correlated with points in the linear continuum

(0, 1). To correlate a sequence blt b.2 ,
b3 ,

...
,
we may take the binary radix

fraction in which the frjth, b2th, b3ih, ... figures are all 1, and the remaining

figures all 0. In this manner a set of points is shewn to exist, such that

one point of the set corresponds to each number of the first, or of the second,

class. This amounts to the construction of a set of points of cardinal

number Xj. Just as an enumerable set of points is determinate, when the

point which corresponds to any assigned number n, of the first class, is

determinate, so the set of cardinal number Nj is determinate, in the sense

that a definite point is determined, corresponding to any assigned number

ft, of the first, or of the second, class.

It may be remarked that a set of points of cardinal number Xl5 or of any

cardinal number &amp;gt;X
,
when arranged in normal order, cannot possibly be in

the order in which they occur in the continuum.

For, if a set of points, in the order in which they occur in the continuum,

forms a normally ordered aggregate, each point and the next succeeding one

define a linear interval of which they are the end-points. We have thus a

set of intervals which must have the same cardinal number as the given

set of points. Each interval of the set abuts on the next one, and thus the

end-points together with their limiting points define an enumerable closed

set. Hence the given set must be enumerable.

GENERAL DISCUSSION OF THE THEORY.

187. Cantor s definition of an aggregate, given in 145, implies that the

elements of an aggregate are logically prior to the aggregate itself. The

definite and distinct objects are, by an act of synthesis, regarded as a single

collection, or aggregate. Such an act of synthesis involves a postulation,

which is subject to the law of contradiction. It appears to have been fully

recognized by Cantor himself, in connection with a certain so-called
&quot; incon

sistent
&quot;

aggregate, to be discussed below, that this is the case. The postula-

tions of the existence, as single objects, of the aggregate of integral numbers,

and of that of real numbers, are instances of such an act of synthesis. A
somewhat different view of the nature of an aggregate is however widely

spread. In accordance with this view, the elements of an aggregate consist
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of all objects that satisfy some prescribed condition or conditions; and thus

the aggregate consists of a certain class of objects; and there has been a

tendency to identify the conception of aggregate with that of
&quot;class,&quot; employed

in Formal Logic. The aggregate itself is, from this point of view, logically

prior to the elements it contains; in fact, in any given case, it may be doubt

ful whether any such elements exist; or it may even be known that no

element exists, in which case the aggregate, or class, is called a null-aggregate,
or null-class. Thus the relation of the aggregate to its elements is inverse

to that which is in accordance with Cantor s synthetic definition. The fol

lowing form of definition expresses this view of the nature of an aggregate:

All objects which are such as to satisfy a prescribed norm are said to

belong to an aggregate defined by that norm. The norm consists of a set of

specified conditions, or of a set of alternative specified conditions; and this

norm must be sufficient to render it logically determinate, as regards any
particular object whatever, whether that object belongs to the aggregate or not.

In the case of a finite aggregate the norm may take the form of indi

vidual specification of the objects which form the aggregate, but such ex

haustive individual specification of the elements of a non-finite aggregate is

not possible. The condition that it must be logically determinate whether

a particular object is an element of a particular aggregate, or not, covers

cases in which effective determination is not possible, either because such

determination is impracticable, on account of the length of the process which

would be requisite actually to make the decision, or because we are not in

possession of the requisite means for making the decision. For example,
the determination of the millionth digit in the value of the number TT is

merely impracticable, although it can be carried out by a finite process.

Again, the question whether a particular number, such as Mascheroni s

constant, belongs to the aggregate of transcendental numbers, has a logically

determinate answer, although we may not be in possession of a method by
which that answer can be obtained. The definition admits the logical deter

mination as sufficient when effective determination is impossible or difficult.

There may even be cases in which the effective determination of the question
whether a defined aggregate is a null-aggregate, or not, is impossible, by the

employment of existing means, or is so difficult as to be impracticable.

It is clear that the elements of an aggregate, being subject to a common
norm, must have a certain community of nature, their class mark, which

constitutes the ground of the aggregation.

188. The discussion of the theory of aggregates which has taken place

amongst mathematicians, since the publication of Cantor s theories, has led to

the examination of certain aggregates which appear to satisfy, prinia facie,

the definition ofan aggregate, and yet which are such that their existence, at all
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events if they are regarded as possessing cardinal numbers or order-types,

involves certain contradictions. In this manner, what are known as the anti

nomies of the theory of aggregates have arisen. Both Cantor s definition of an

aggregate, and the definition, given above, of an aggregate as a class, lead to anti

nomies of this kind, the most important ofwhich will be discussed below. It was,

however, recognized by Cantor* that the collection of elements into an aggre

gate is only valid provided a conception free from contradiction is the result

of such synthesis. Suggestions have been made in various quarters, in the

direction of limiting the concepts of the theory by means of postulates, in such a

manner that the antinomous aggregates will not arise. At the present time

however, no such generally accepted scheme of postulations and axioms is

in existence. The final goal of such investigations would be attained if we

were in possession of a definition of an aggregate, of such a character that

it could be shewn a priori to be free from contradiction, without waiting for

the discovery of antinomies. Such a definition should also be sufficiently

wide: so that all aggregates, which are fitted for employment in a mathe

matical theory, would fall under it.

On systems of axioms which are suited for the building up of a theory

of aggregates of such a character that no contradictions will arise, the writings

of Hilbertf, Zermelo^:, Russell, Schoenfliesj], and Huntingtonll may be

consulted. Developments of the theory which go beyond those of which

an account is given in the present chapter will be found in the writings

of Hausdorff**, Hessenbergff, Schoenflies+J, Bernstein
, Jourdain||j| and

WhiteheadTH. A treatise has been published by Konig***, in which the

subject is treated from his own point of view.

189. It is not clear that an aggregate, defined as a class of objects, is

necessarily capable of being ordered at all. For example, it is difficult to

* See Jourdain, Phil. Mag. (6), vol. vn, p. 55.

f Jahresber. d. Math. Vereinigung, vol. ix, p. 55; Verhand. d. Math. Kongress z. Heidelberg,

p. 176; d. Math. Vereiniyung, vol. vm, 1, p. 180. See also Mollerup, Math. Annalen, vol. LXIV,

p. 231.

J Math. Annalen, vol. LXV, p. 261; Acta Math., vol. xxxn, p. 186.

Proc. Lond. Math. Soc. (2), vol. iv, p. 29.

i|
Die Entwickelungen der Lehre von den Punktmannigfaltigkeiten.

IT Ann. of Math. (2), vol. vi, p. 151, and (2), vol. vn, p. 15.

**
Grundzinje der Mengenlehrc, Leipzig, 1914; also Math. Annalen, vol. LXV, p. 435, and

vol. LXXV, p. 469; Leipz. Her., vol. LIII, p. 460; vol. LVIII, p. 106, and vol. LIX, p. 84. Jahresber.

d. Math. Vc.reinigung, vol. xin, p. 570.

j&quot;f Grundbegri/e der Menyenlehre, Gottingen, 1906-.

JJ Math. Annalen, vol. LIX, p. 129; vol. LX, p. 181, and p. 431.

Math. Annalen, vol. LXI, p. 117.

III! Phil. Mag. (6), vol. vm, p. 49, (7), vol. vi, p. 73, and p. 302.

1f1T Amer. J. of Math. (2), vol. vi, p. 151, and (2), vol. vn, p. 15.

*** Neue Grundlagen der Logik, Arithmetik itnd Mengenlehre, also Math. Annalen, vol. LX,

p. 177, and p. 462. Also C. R. Paris, vol. CXLIII, p. 110, and Verhand. d. Math. Kongress z.

Heidelberg, p. 144.
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see that such an aggregate as that of &quot;all
propositions&quot;

could conceivably be

ordered; where it is assumed that the meaning of the word
&quot;proposition&quot;

is

taken as so definite, that this aggregate has a norm in accordance with the

definition above. Again, to take an example among aggregates of the kind

usually considered in Mathematical theory, we may consider the aggregate
obtained by distributing the aggregate of real numbers upon itself. This aggre

gate which has the cardinal numberf= c
c

,
is equivalent to the aggregate of all

the functions of a real variable
;
it is difficult, if not impossible, to see how order

could be effectively imposed upon this aggregate. If then, a transfinite aggre

gate is to be given as an ordered aggregate, or is to have an order imposed upon
it, or rather discovered in it, it would appear to be necessary that the norm,

which constitutes the definition of the aggregate, should be of such a character,

that a principle of order is contained therein, or can at all events be adjoined

thereto; so that, when any two particular elements are considered, the con

ditions which they satisfy in virtue of their belonging to the aggregate, when

individualized for he particular elements, may be sufficient also to allow of

relative rank being assigned to those elements, in accordance with a principle

of order. This is in fact the case in such aggregates as those of the integral

numbers, the rational numbers, or the real numbers. In the case, for example,
of the positive rational numbers, the relative rank ofany two particular elements

(p, q), (p, q } is assigned by the system of postulations, contained in 12,

which defines the aggregate. It may, of course, also be possible in other

cases, as in this one, to re-order the aggregate, in accordance with some other

law, extrinsically imposed upon the aggregate ;
but the nature of the elements

must be such that this is possible.

We can now state that:

In order that a transfinite aggregate, defined as in 187, may be capable of

being ordered, a principle of order must be explicitly or implicitly contained in

the norm by which the aggregate is defined.

The relative order of any two elements chosen from an ordered aggregate

depends upon the individual characteristics of those elements, in accordance

with the principle of order.

In the definition of order-type given by Cantor (see 157), according to

which the order-type of an aggregate is obtained by making abstraction of

the particular nature of the elements of the aggregate, it is assumed that

the aggregate is given as an ordered aggregate. Again, in his definition

of cardinal number (see 145), Cantor has assumed that the aggregate is

given as an ordered one; the cardinal number there appears as the result of

a double abstraction, viz. of the particular nature of the elements, and of the

order in which they are given. The question however arises, whether the

definition of cardinal number should not be such as to be also applicable in
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the case of aggregates which are not given as ordered aggregates. Cantor has

himself, in fact, in his theory of exponentials involving transfinite cardinal

numbers, contemplated certain aggregates as having cardinal numbers, whilst

such aggregates were not given as ordered aggregates, and primd facie, at all

events, are not capable of being ordered.

190. Taking the case of an aggregate defined as an ordered aggregate,
we now approach the consideration of the fundamental question, whether,
and under what conditions, if any, such an aggregate can be regarded as

having a definite order-type, and a definite cardinal number. This is equiva
lent to asking whether, or when, meanings can be given to those terms, in

accordance with general definitions, of such a character that they can be

treated as permanent objects for thought, or as mathematical entities which

may themselves be elements in aggregates.

With reference to Cantor s definition (see 145), of the cardinal number
of a transfinite aggregate, by abstraction, in accordance with which the

cardinal number is represented by replacing each element by an abstract

unity, it must be observed that such a substitution would replace the given

aggregate by another one which had no longer any intelligible relation with

the norm by which the original aggregate is defined. The abstract unities

would be indistinguishable from one another, and the new aggregate would

be indistinguishable from any other non-finite aggregate of such unities. It

would be impossible to decide, as regards any particular abstract unity,
whether it belonged to the aggregate or not; in fact, to make complete
abstraction of the individual nature of the elements of an aggregate is to

destroy the aggregate. A definition by abstraction could be justified only

by the interpretation that abstraction is made of those characteristics only,
in which the elements of the aggregate differ from the corresponding ele

ments of all possible equivalent aggregates. Thus the existence of aggregates

equivalent to the given aggregate would appear to be essential, if the latter

is to be regarded as having a cardinal number to which any definite meanino-

can be attached. On the grounds stated, the definition of a cardinal number,
as the characteristic of a class of equivalent aggregates, is to be preferred to

the definition given by Cantor. Accordingly, an aggregate has a cardinal

number, only when it is one of a plurality of equivalent aggregates, distinct

from one another. In all cases the correspondence between equivalent aggre

gates must be definable by some norm.

We are thus led to the following statement, containing a definition of

cardinal number :

The members of any particular class of equivalent aggregates have a

quality in common in virtue of their equivalence. This quality is the cardinal

number, and may be regarded as characteristic of each aggregate of the

particular class.
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A cardinal number has been defined* by B. Russell to be a class of

equivalent aggregates. It may then be urged that such a class may contain

only one member, and that this is sufficient for the existence of the cardinal

number of that member. In fact, Russell infers f the existence of the number

n + 1 from that of the numbers 0, 1, 2, 3, ... n. Russell objects^ to the con

ception of a number as the common characteristic of a family of equivalent

aggregates, on the ground that there is no reason to think that such a single

entity exists, with which the aggregates have a special relation
;
but that

there may be many such entities, and that there are in fact an infinite number

of them. The mind does, however, in point of fact, in the case of finite

aggregates at least, recognize the existence of such a single entity, viz. the

number, or degree of plurality, of the aggregate; and this creation, by

abstraction, is a valid process, subject to the law of contradiction. ^ ,&quot; t *-*V &amp;lt;^

191- In Cantor s definition of the order-type of a simply ordered trans-

finite aggregate (see 157), abstraction is made of the nature of the elements,

their order in the aggregate being alone retained. The order-type is then

regarded as represented by an aggregate of abstract unities, in the order

of the elements of the given aggregate. In any ordered aggregate, it is

however the individual characteristics of any two elements which determine

their relative order in the aggregate, in accordance with some principle of

order, valid for the whole aggregate. If complete abstraction be made of

the characteristics of the various elements, order has then disappeared from

the aggregate. It must be supposed that, in Cantor s representation of the

order-type, there are attached to the abstract unities marks of some kind,

which may in particular cases be marks indicating position in space or time,

by which the order of the various abstract unities is denoted; the given

aggregate is then really replaced by an aggregate of these marks, and the

abstract unities are superfluous. These marks, by which order is determined,

must also have been associated with the elements of the original aggregate.

It thus appears, that in a definition by abstraction, it can be only those

characteristics (if any) of the various elements which are irrelevant in

determining the order, of which abstraction is made : thus the aggregate is

really replaced by a similar one. On these grounds, that definition of ah

order-type is to be preferred, in which the order-type is defined as the

characteristic, or class-name, of a class of similar aggregates. Accordingly,

in order that a given aggregate may have an order-type, to which a definite

meaning can be attached, it is necessary that the aggregate be one of a

plurality of similar aggregates.

We may accordingly state that :

The members of any particular class of similar aggregates have a quality

*
Principles of Mathematics, vol. i, pp. Ill 116. t Ibid., p. 497.

J Ibid., p. 114. See Math. Annalen, vol. XLVI, p. 497.
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in common, in virtue of their relation of similarity. This quality of mutual

similarity possessed by the aggregates is their order-type, and may be repre

sented by a name or symbol, regarded as characteristic of each aggregate of

the particular class.

The considerations above adduced may be applied in the case of an

aggregate which is a segment of the hypothetical aggregate of all ordinal

numbers. In this case it is impossible to make abstraction of the nature

of the individual elements of the aggregate, without destroying the order,

because the elements are themselves nothing more than marks indicating order.

192. The question has frequently been discussed whether the conception

of an ordinal number is necessarily prior to that of a cardinal number. The

view is held that the very earliest conception of a number was developed as

the result of immediate intuition of the degree of plurality in a very small

group of objects, for example of a pair, or of a triplet, or of the unity in a

single object, without recourse to the process of counting. In this manner

the conception of the first few integral numbers may have arisen, and the

conception would be that of cardinal number; the objects in a group not

being regarded as in any particular order. This mode of apprehension of the

number of objects in a group must certainly have been extremely limited in

its scope, and the conception of numbers, after the first few. must have arisen,

as explained in 1, in connection witji the process of counting, in which the

objects are taken in some definite order; thus leading in the first instance

to the ordinal number of the group. It appears certain, then, that the actual

order of development of Arithmetic, except for the case of the first few

numbers, must have been one in which the ordinal number has a certain

priority to the cardinal number.

In the systematic development of the theory of numbers, finite and

transfinite, the notion of an ordered aggregate has certainly been fundamental,

and not derivative. A reversal of the historical procedure, in which ordered

aggregates, having definite ordinal numbers or order-types, were first -con

sidered, and afterwards the notion of the cardinal number has arisen, would

lead to probably insuperable difficulties. It is no doubt possible to define

the cardinal number of a transfinite aggregate, as has in fact been done above,

in such a way that the notion of order does not explicitly appear, but the

question of the comparability of cardinal numbers so defined at once arises,

and the consideration of ordered aggregates would appear to be indispensable
for the development of any systematic arithmetic of cardinal numbers.

Cantor s aleph-numbers, as forming an ordered family of cardinal numbers,
are essentially dependent upon the theory of the order-types of normally
ordered aggregates. It is difficult to see, for example, how it could be known,
in respect of a particular aggregate, that it has the cardinal number Xa ,

unless

a correspondence of the elements of the aggregate with the ordered set of

H. 16
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finite numbers could be shewn to exist. It may be asserted that, since any

non-finite part of an enumerable aggregate is itself enumerable, there may
exist a part of the integer sequence 1, 2, 3, ... n,... which cannot be defined

by means of a finite set of rules, and yet that such an aggregate must have

the cardinal number K . A distinction is accordingly drawn, by some writers*,

between those enumerable aggregates for which a correspondence with the

integer sequence 1, 2, 3, ... can be effectively defined, and those for which this

is not the case. It can, however, be shewn that there exists no part of the

integer sequence [n] which is inherently incapable of finite definition. It

has been shewn, in 63, in the case of the numbers of the continuum, that

those numbers, in any interval, that are capable of finite definition, form an

aggregate which has all the properties of the continuum itself; and in view

of the theory of the order-type of the continuum given in 163, that aggregate

is identical with the continuum.

Any non-finite part of the integer sequence {n} can, however, be made to

correspond with a particular number of the continuum in the interval (0, 1);

we take such a number expressed as a radix fraction in the binary scale,

defined by the rule that the rath digit is or 1, according as the integer m
occurs, or does not occur, in the part of the integer sequence which is under

consideration. Since there is a (1, 1) correspondence between the parts of

the integer sequence and the numbers of the continuum within the interval

(0, 1), it follows that, since, as has been shewn in 63, no number of the

continuum is inherently incapable of finite definition, the same is true of the

parts of the integer sequence. It thus appears that no enumerable aggregate

is inherently incapable of being placed into correspondence with the numbers

of the integer sequence, by a finite set of rules, although a particular fixed

apparatus of definition may be insufficient for this purpose.

193. We proceed to consider those aggregates which consist of ordinal

numbers in their order of generation.

There are two distinct methods of establishing the existence of a class

of mathematical entities.

(1) Their existence, as definite objects for thought, may be shewn to

follow as a logical consequence of the existence of other entities already

recognized as existent, or of principles already recognized as valid
;
so that

the existence of the new entities in question cannot be denied without

coming into contradiction with truths already known, or at all events with

postulations already made. This method may be termed the genetic method.

(2) The existence of the entities may be directly postulated ;
and their

mutual relations, and their relations with other entities already assumed to

exist, may be defined by means of a complete system of definitions and pos-
*

See, for example, Borel, Annales de I ecole normale, (3), vol. xxv, p. 447.
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tulations. Accordingly, the objects in question are a relatively free creation

of our mental activity. The validity of the scheme thus set up is established

when it is shewn to be free from internal contradiction. Its utility is to be

judged by its applicability to the general purposes of the science, and by the

light it may throw upon the fundamental principles of that science, in virtue

of the scheme containing a generalization of what was previously known.

This method may be termed the method of postulation. It may, however, be

urged that the failure to discover contradictions within a scheme of postula-

tions is no proof that such contradictions do not exist, and that such proof

can only be supplied by the exhibition of a system of entities already assumed

to exist, such that the relations between them are in accordance with those

postulated in the scheme in question.

Both these methods have been employed by Cantor in his theory of trans -

finite numbers and order-types. In his earlier treatment of the subject, he

employed the second of the above methods. The existence of the new

number co, and of the limiting numbers of the second class, was postulated,

in accordance with the second principle of generation. Freedom from

contradiction, and utility in connection with the theory of sets of points,

which suggested the postulations, were relied upon as the grounds upon
which the system of new numbers was to be justified. The first number H,
of the third class, was introduced by a new postulation.

In his later and more abstract treatment of the subject, an account of

which has been given in the present chapter, Cantor applied the genetic
method. The existence of the number &&amp;gt; is not directly postulated, but is

taken to follow from the existence of the aggregate [n], of integral numbers
;

w is defined to be the order-type of this aggregate, and it is assumed that

such order-type is a definite object which can itself be an element of an

aggregate. The successive ordinal numbers of the successive classes are

obtained by assuming as a general principle, that an ordered aggregate

necessarily possesses a definite order-type which can be regarded as itself an

object, the ordinal number coming immediately after all those that are the

elements of the aggregate of which it is the order-type.

It will be seen later, that the assumptions that an ordered aggregate

necessarily possesses a definite order-type, and that it also possesses a

definite cardinal number, both of which can be regarded as objects, lead to

the contradiction pointed out by Burali-Forti. It appears, therefore, that

the class of entities, which is constituted by the ordinal numbers of all classes,

and the similar aggregate of aleph-numbers, do not satisfy the condition of

being subject to a scheme of relations which is free from contradiction.

In fact, the principle, in accordance with which their existence is inferred,

conflicts with the definition of the aggregates as containing respectively

every ordinal number, and every aleph-number. It would then appear,

162
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that the genetic process which led to the definition of the aggregates of all

ordinal numbers, and of all aleph-numbers, cannot be a valid one without

some restriction. Thus the principle that every ordered aggregate has a

definite order-type, which may be regarded as a permanent object of thought,

cannot be accepted as a universal principle to be used in a genetic mode of

establishment of the existence of a class of entities. A denial of the validity

of this principle does not however preclude the less ambitious procedure of

postulating the existence of definite ordinal numbers of a limited number of

classes, in accordance with Cantor s earlier method. So long as the postulation

of the existence of ordinal numbers does not go beyond some definite point,

no contradiction will arise, and the validity of the scheme, for purposes of

representation, will suffice to justify the postulations which are made. An

attempt to examine the structure of such a class of ordinal numbers, as that

of the &amp;lt;uth class, with cardinal number K^, or that of the flth class, with cardinal

number Nn ,
will lead to the conviction that such conceptions are unlikely to

prove capable of useful application in any branch of Analysis or of Geometry.

THE PARADOXES OF BURALI-FORTI AND RUSSELL.

194. In accordance with Cantor s general theory of ordinal numbers, and

of aleph-numbers, there exist two aggregates

1,2,3,... n, ... to, o&amp;gt; + l, ... n, n + 1, ... & ...

N , ND ... Nn ,
... Nu , X..H-I, ... NO, Nn+i, N/s&amp;gt; ;

the first, the aggregate of all ordinal numbers, which may be denoted by W :

and the second, that of all X cardinal numbers. These aggregates are similar

to one another, and they contain, respectively, every ordinal number, and every

cardinal number which belongs to a normally ordered aggregate.

The aggregate W is normally ordered. For, if W1 be any part of W
,
such

that W contains one or more elements of higher order than all the elements

of Wlf it follows that Wl is a part of some segment of W that also contains one

or more such elements. Since such segment is normally ordered, there exists

one element of that segment, and therefore of W, which immediately follows

the part-aggregate W^. It is thus seen that, since the conditions of 165 are

satisfied, W is normally ordered. In accordance with the principle which is

fundamental in the whole theory, that every normally ordered aggregate has

a definite order-type, which is its ordinal number, and has also a definite

cardinal number, the aggregate W has an ordinal number 7, and a cardinal

number N
y

. The ordinal number 7 must itself occur in the aggregate W,

and must therefore be the greatest ordinal number, i.e. the last element of

W. There can, however, be no last ordinal number; for, on the assumption of

the existence of 7, an aggregate, of ordinal number 7+ 1, can be formed, by

adding to W a new element e, of higher rank than all the elements of W~

Therefore a contradiction has been arrived at.



193, 194] Paradoxes of Burali-Forti and Russell 245

This contradiction in the conception of the aggregate W, of all order-types

of normally ordered aggregates, was pointed out by Burali-Forti*, but as is

stated by Jourdainf, it was discovered by Cantor in 1895, and communicated

by him to Hilbert in 1896, and to Dedekind in 1899. The contradiction has

been discussed by various writers, and the conclusions they draw from its

existence are not in full agreement with one another. Burali-Forti inferred

from it that ordinal numbers are not comparable with one another, but this

is refuted by Cantor s theorem in 168. Jourdain shews that W is normally

ordered, but concludes that it possesses neither order-type nor cardinal number.

He describes W as an &quot; inconsistent
&quot;

aggregate, a term which had been

previously employed by Cantor in the same connection. It would thus appear
that there are aggregates which have no order-type, and no cardinal number,

and that the above aggregates belong to such class. Such aggregates are

called inconsistent aggregates, in virtue of the fact that the act of synthesis,

by which they are formed, cannot be carried out without leading to a con

ception which contains an element of contradiction.

It was pointed out by Schoenflies^ and by Bernstein
,
that the hypothetical

aggregate TFlacks one property that belongs to all its segments, and to all normally
ordered aggregates, viz. that a new normally ordered aggregate can be formed

by the addition of a new element, of higher rank than all those of the original

aggregate. In fact the first principle of generation of the successive ordinal

numbers in Cantor s scheme is that to each ordinal number there follows a

next one, and it is clearly impossible that the aggregate of all ordinal numbers

can have an ordinal number that is subject to this principle. It thus appears
that W can have no ordinal number, or order-type. This being so, the question,
whether W can be properly said to be an aggregate, or not, depends on the

precise meaning assigned to the term aggregate. It would appear desirable

that such a limitation should be given to the definition of the term that such

hypothetical aggregates as W would not fall under the definition. All ordinal

numbers form a class, and thus doubt is thrown upon the advisability of

making the term aggregate synonymous with that of the &quot;

class
&quot;

of Logic.

Moreover, it would appear desirable that the definition of an aggregate should

be so restricted that every aggregate has a cardinal number and, if normally
ordered, an order-type. It has been pointed jj

out by Mirimanoff that the

antinomy of Burali-Forti would arise, even if the existence of all the ordinal

numbers in the scheme of Cantor be not admitted. Instead of W, the hypo
thetical aggregate of all existing ordinal numbers could be contemplated, and
the same reasoning would shew that it would be contradictory to ascribe an

* Rend, del circolo mat. di Palermo, vol. xi, p. 104.

t Phil. Mag., 1904; see also Hilbert, Jahresber. der Math. Vereinigung, vol. viu, p. 184.

Bericht. 2**r Theil, p. 27.

Bernstein, Math. Annalen, vol. LX, p. 187.

||
See L enseignement mat., Jan. to March, 1917.
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ordinal number, or order-type, to this aggregate. Let us assume, for example,
that the finite ordinal numbers were the only ordinal numbers whose existence

was admitted
;

it would then be contradictory to regard the totality of all

these ordinal numbers as having an ordinal number, or order-type; in fact

this totality would be an &quot;

inconsistent
&quot;

aggregate, in the sense employed by
Cantor and Jourdain.

The mode of generalizing the ordinal numbers in Cantor s scheme requires
a fresh postulation of existence, in the case of the lowest numbers of each of

the successive classes. Although the contradiction of Burali-Forti cannot be

invoked to shew that such a postulation leads to contradiction, as long as we
refrain from considering such an aggregate as that of all ordinal numbers, or

of all existing ordinal numbers, it cannot be directly shewn that at no stage
of the successive postulations does some contradiction arise. It would appear
then that the validity of the whole scheme, being subject to the possibility of

the discovery of contradictions at some stage or other, the existence of the

numbers in Cantor s scheme must be regarded, from the point of view of the

Mathematician, as a working hypothesis. The utility of such hypothesis must
be judged by its consequences, and its applications in Analysis.

195. The antinomy* of Russell depends upon the consideration that two

species of aggregates may be contemplated. An aggregate M, of thejfirst

species, does not contain M itself as an element
;
but an aggregate M of the

second species does contain M itself, as an element. An example of an aggre

gate of the second species is the aggregate of all aggregates. It is clear that

an aggregate of the second species contains an element which is itself an

aggregate of the second species. It follows that an aggregate, all of whose

elements are aggregates of the first species, is itself of the first species. The

aggregate which contains, as elements, all aggregates of the first species is

a notion essentially affected with contradiction. For it must be itself of

the first species, since all its elements are of that species ;
on the other hand,

it must be of the second species, since it must contain itself as element
;

;for the aggregate itself is one of the aggregates of the first species.

It thus appears that the aggregate of all aggregates of the first species
cannot exist as a notion free from contradiction.

This contradiction maybe considered in relation both to Cantor s definition

of an aggregate, and to the definition of an aggregate as a class. In accordance

with Cantor s definition, the elements of an aggregate, being logically prior

to the aggregate, must be definable in a manner which does not make use of

the aggregate itself in the definitions
;
and thus it would appear that no

aggregate which contained itself as an element would fall under Cantor s

* See Principles of Mathematics, vol. i, Chap. x.
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definition of an aggregate. On the other hand, the definition of an aggregate
as a class would not prima facie preclude the contemplation of such a con

ception as the class of all classes.

It is clear that the proper definition of an aggregate should be such as to

exclude all hypothetical aggregates which contain elements that cannot be

defined without employing the aggregate itself; in the language of Poincare,

non-predicative definitions should be excluded.

196. With a view to the elucidation and generalization of the antinomies

of Burali-Forti and Russell, a classification of aggregates has been given* by
Mirimanoff, according to the modes in which their elements are composed of

other elements. The elements m, of an aggregate 37, may be simple elements

which are not decomposable into other elements. On the other hand, an

element m may itself be an aggregate composed of elements e
;
thus m =

{e}.

Again, the elements e, of which in is composed, may themselves be aggregates

composed of other elements e
;
thus e = [e \.

It is clear that this process of decomposition of the elements of an aggre

gate into aggregates of other elements, and of these elements into aggre

gates of other aggregates, may proceed until only simple elements, no longer

decomposable, are obtained : or on the other hand the process may go on

indefinitely.

An aggregate is said, by Mirimanoff, to be an ordinary aggregate, when each

element m is such that, after a finite number of decompositions, simple un-

decomposable elements are obtained. An aggregate which does not possess
this property is said to be an extraordinary aggregate.

Two aggregates are said to be isomorphic when (1) they are equivalent, V,

i.e. when there is a (1, 1) correspondence between their elements, and (2) when,

m, m being two corresponding elements, which are decomposable, there is also

equivalence between the two aggregates of which they consist, and when such

equivalence also holds in case further decomposition can take place, and so on,

so long as any continued decomposition of elements can be made.

An aggregate is said to be of the firsj species if it is not isomorphic with

any of its elements, and it is said to be of the second species if it is isomor

phic with one at least of its elements. The hypothetical aggregate, which

consists of all aggregates of the first species, or also that of all ordinary

aggregates, involves the same contradiction as in the case of Russell s anti

nomy.

An aggregate of the second species is an extraordinary aggregate, but

an aggregate of the first species may also be extraordinary.
* L eweignement mat., Jan. to March, 1917, p. 42.
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THE MULTIPLICATIVE AXIOM.

197. An axiom, known variously as the &quot;multiplicative axiom,&quot; the &quot;prin

ciple of Zermelo,&quot; and the &quot;

general principle of selection,&quot; which can be ex

pressed in several equivalent forms, was first stated explicitly in connection

with a proof given by Zermelo*, in 1904, that every aggregate can be ordered

in normal order
; although it had been implied in the reasoning of various

writers in connection with special theorems in the theory of sets of points, and
in the theory of functions. The .axiom has been statedf by Zermelo in the

following form :

An aggregate S, which falls into an aggregate of separate parts A, B, C, ...,

each of which contains at least one element, possesses at least one part S, which

has in common with each of the parts A, B, C, ..., exactly one element.

In accordance with the definition, given in 149, of the product of a

finite, or infinite, set of aggregates, as an aggregate of which each element

consists of an association of elements, one from each of the aggregates of the

given set, the above principle is equivalent to the assertion that the product of

the aggregates of the given set contains at least one element
;
and thus the prin

ciple may be termed the &quot;multiplicative axiom,&quot; in that it asserts the existence

of the product.

The principle can be stated in the less objective form that a choice can be

made ofa single element, from each one of a set [M] of aggregatesM ;
an aggre

gate thus being formed by an infinite number of such acts of choice. When
viewed in this manner the principle is spoken of as the

&quot;

general principle of

selection
&quot;

(das Prinzip der Auswahl).

In the discussions to which this principle, or axiom, has given rise, much

divergence of opinion on the part of Mathematicians has emerged. Borel, who

pointed out thatZermelo s proof that an aggregate can be normally orderedsimply
establishes that this theorem is equivalent to the principle of selection, distin

guished | between an enumerable and an unenumerable set of acts of choice, and

rejected, as outside the domain of Mathematics, all reasoning founded upon
the supposition of an unenumerable set of acts of choice. The impossibility

of proving the principle was expressly stated by Zermelo, and emphasized by

Borel, and by Peano. Poincare, in the course of his discussion
||

of the
&quot;

Logistic
&quot;

of Peano and Russell, expressed the view that the principle,

although incapable of proof, is an indispensable axiom.

198. By some Mathematicians, the employment of an infinite set of acts

of choice, even if that set be enumerable, is rejected as outside the domain of

Mathematics, on the ground that the hypothetical entity, the existence of

which is asserted in such a case by the principle, is not properly defined.

* Math. Amialen, vol. LIX, p. 514. f Math. Annalen, vol. LXV, p. 110.

See Math. Annalen, vol. LX, p. 195. Rivista di Mat., vol. vin, No. 5, p. 145.

II
See the Revue de Metaphysique et de Morale, vols. xm and xiv.
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In the course of a discussion* by Hadamard, Borel, Baire, and Lebesgue,
the distinction was taken into account between independent acts of choice and

such as are dependent upon acts of choice that have been previously made.

In those special cases in which the aggregates are of such a nature that it

is possible effectively to define an aggregate which consists of one element

belonging to each of the given aggregates, the principle is not required as an

axiom, but such special cases may be regarded as instances in which the truth

of the principle is verified. In a case in which we are unable to give such

effective definition, the principle amounts to an assertion of the existence of

the aggregate in question, apart from any question of effective definition, and

at least asserts that we are warranted to make the same deductions as if we
were in possession of such effective definition. In this connection it may be

pointed out that there is a certain relativity in the notion of effective defini

tion, as has already been shewn ( 63) in the case of the definition of numbers
of the arithmetic continuum

;
in fact, the possibility of effective definition of

an object is relative to an apparatus of definition which cannot be considered

as once for all, and finally, fixed.

Even if the number of aggregates from which the selection is to be made
be finite, there remains a question as to the scope of the axiom. It is suf

ficient to consider whether, and in what sense, it is always possible to select

a single element from a single given aggregate. Whether this can be done

effectively will depend upon the mode in which the aggregate is defined.

For the possibility of such choice, it must in the first place be known that

the aggregate is not a null-aggregate, i.e. that it contains at least one ele

ment. The assumption of this knowledge being made, the effective determi
nation of an element may be impracticable, or difficult; but this will not

affect its logical possibility. It would appear, however, that there maybe cases

in which even the logical possibility of determination cannot be demonstrated;
and in such cases recourse must be had to the axiom of existence, if an
element of the aggregate in question is required for the purpose of any pro
cess of reasoning in which such element is employed.

Some of the objections raised to the axiom amount to the assertion that

the axiom is meaningless, if it is interpreted as asserting the existence of an

aggregate of which the elements cannot, even in theory, be effectively defined.

The difference of opinion upon the point, as to whether, or not, an aggregate
can be said to exist, when none of its elements can be effectively defined,
would appear to reveal a fundamental difference of view on a matter of

Ontology, which cannot be resolved within the domain of Mathematics, as

it involves an irreconcilable divergence of attitude in general Philosophy.
It was pointed out by Hadamard (loc. cit.) that the real question at issue is

*
&quot;

Cinque lettres sur la theorie des ensembles,&quot; Bull, de la Soc. Mat. tie France, vol. xxxm,
p. 261.
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whether it is possible to demonstrate the existence of mathematical entities

which cannot be precisely defined
;
a question which Hadamard himself answers

in the affirmative, though with this answer the other writers do not appear to

be in agreement. By some Mathematicians, the principle is accepted in a

pragmatic sense, as a useful instrument of Mathematical research, and as a

guide which suggests results that may be verifiable by other means, although
the principle cannot be regarded as standing upon an absolutely firm basis.

The case for the acceptance of the axiom rests partly upon the fact that

the postulation of its validity had been implicitly made, as self-evident, by
many writers, in various investigations in the theory of sets of points, and in

the theory of functions, before it was stated explicitly; and that it has since

not only proved fruitful in many further developments of those theories, but

that results obtained by its use have been verified in many important cases.

A detailed analysis has been given* by Sierpinski of general results in the

theories of sets of points, and of functions, which cannot be established

without the aid of the axiom, and of other cases in which the employment of

the axiom is not necessary. The method of G. H. Hardy ( 186), for the

construction of a set of points of cardinal number X, is a case in which the

principle of selection is required, since there exists an indefinite number of

sequences of the ordinal numbers, preceding a limiting ordinal number 7, of

each of which
&amp;lt;y

is the limiting number. It is not possible to give a norm

by which these sequences can be determined.

199. A limiting point P, of a set of points G, has, in 52, been defined

as a point such that in every neighbourhood of P there are points of G. It

has been pointed out by Sierpinski that, in the general case, the inference,

from this definition, that there exists a sequence P1} P.2 ,
... Pn ,

... of points
of G, which converges to P as sole limiting point, so that the distance PPn

converges to zero, as n is indefinitely increased, cannot be made without

having recourse to that case of Zermelo s axiom in which the selections are

made from an enumerable sequence of sets of points.

For simplicity, let us consider the case in which G is a linear set; this

differs in no essential respect from the case in which G is a set in p dimen

sions, where p &amp;gt; 1. Let us suppose that the point x = is a limiting point
of G, in accordance with the definition of 52. Let Gn be that part of G

which consists of points x that satisfy the conditions ^ | I &amp;lt;

-
. Thus

n + 1 n

Gn is in the two half-closed intervals ( , ,
-V

( , ). Consider now
\n + 1 nj \ n n + 1/

the sequence of sets Glt G2 ,
. . . Gn ,

. . . of which the sum is the relevant part of G.

The axiom ofZermelo asserts the existence of a set of points Pr ,
Pr+1 , ...Pn ,

...
,

* Bull, de Vacad. des Sciences de Cracovie, April May, 1918.
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such that Pn belongs to Gn ,
for all the values r, r+ 1, ... of /?. Unless it is

possible to define by a norm such a set of points, its existence can only be

assumed in virtue of the axiom. This set of points is a sequence such as is

required, which converges to the point x = 0.

There is one important case in which Zermelo s axiom is not required,

viz. when G contains a known enumerable set H, for example the set of

rational points, that is everywhere dense in G. The point Pn may then be

defined as that point of H, of lowest rank when H is arranged in enumerable

order of type &&amp;gt;,
which belongs to Gn .

It has been shewn conversely by Sierpinski that the following theorem

follows as a consequence of the assumption that, if P be a limiting point of

a set (r, in accordance with the definition in 52, there exists a sequence {Pn},
of points of G, which converges to P as its sole limiting point.

If G
l , G2 ,

... Gn ,
... be sets of points, no two of which, have an element in

common, there exists a sequence Pl ,
P2 ,

... Pn , of points, such that each one

belongs to one of the sets of {Gn }
and that no two of them belong to the same

set of{Gn }.

By means, for example, of the transformation

1 / v
C. i / *&amp;lt;

,
+ 2n +

2n(n + 1) \1 + x\

the set Gn can be put into correspondence with a set Qn ,
all the points of

which are interior to the interval f- , | . Let denote the set of points
\n n + IJ

%, given as the sum of all the sets Q1} Q2 ,
... Q,,., ...

;
then the point

= is

a limiting point of the set Q.

Now let it be assumed that there exists a sequence {qm},
of points of Q,

which converges to = as its sole limiting point. We may suppose that

there is only one of these points in any one set QH , for, if qm belongs to

a set of {Qn }
to which any one of the points q l , q2 ,

... qin_^ belongs, we may
remove qm from the sequence of points. Let us suppose that qn belongs to

Qn ;
then by applying the inverse transformation to that of x into

,
we

have a sequence of points P]; P2 , ... Pn , ... which belong to the sets

respectively.

200. The question of the justification of the assumption that every
infinite aggregate contains an enumerable aggregate as a part is related to

the principle of selection. It was assumed by Cantor that it is always possible
to pick out of a given aggregate, successively, elements that correspond to

the numbers of the integer sequence. In a large class of cases this can be

effected by means of a suitable norm, but in the general case an infinite
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number of acts of choice, each of which is affected by the choices already

made, are required. In case, however, a given aggregate M can be divided

into an enumerable set of parts M1} M2 ,
Ms , ...

,
no two of which have an

element in common, one element may be selected from each of these parts,

in accordance with the principle of selection; and thus the existence of the

enumerable part of M follows as a consequence of the principle. In case

M is an aggregate of points, in one or more dimensions, an enumerable set of

non-overlapping cells, or intervals, may be denned, each of which contains a

part of M; and we may take the parts M1} M2 ,
M3 , ..., of M, to be those parts

that are contained in the cells, or intervals, of the set.

MULTIPLE CORRESPONDENCE.

201. A propos of a criticism*, by Levi, of Bernstein s proof (see 185),

that the aggregate of all closed sets in the |)-dimensional continuum has the

power c of the continuum, Bernsteinf has endeavoured to avoid the difficulty

involved in the use of a correspondence which cannot be effectively defined,

by introducing the conception of
&quot;multiple equivalence.&quot; Thus, if there are

two aggregates M and N, for which an aggregate $ =
{&amp;lt;}

of reversible (1,1)

correspondences &amp;lt;f&amp;gt;

exists, in which no element is special (aiisgezeich.net), then

the two aggregates are said to be multiply equivalent. The cardinal number

&amp;lt; =/is then termed the multiplicity of the correspondence. In case the multi

plicity is unity, the aggregates are said to have a one-valued correspondence.

The difficulty of this conception is the same as that in the multiplicative axiom

itself, viz., that the aggregate &amp;lt;f&amp;gt; employed is such that no single element of it

is capable of definition, and that the elements are consequently indistinguish

able from one another.

THE NORMAL ORDERING OF AN AGGREGATE.

202. It was regarded by Cantor as highly probable that every aggregate
is capable of being normally ordered; and this is equivalent to the theorem

that every transfinite cardinal number is an aleph-number. If this principle

could be accepted as valid, the particular theorem would follow, that the arith

metic continuum is capable of being normally ordered; and the only question

which would remain open, as regards this aggregate, would be as to which

particular aleph-number is the cardinal number c of the continuum.

No proof of the correctness of his surmise was published by Cantor himself,

but a proof was given by Jourdain*, which depends upon an argument in which

the &quot;inconsistent&quot; aggregate W ( 194) was employed to shew that no cardinal

number can be greater than every aleph-number. Apart from the employment
of the concept of the aggregate W, which has been shewn to be affected with

contradiction, this proof involved implicitly the principle of selection.

* Lomb. 1st. Rend., (2), 1902, p. 863. t Gottinger Nachrichten, 1904, p. 557.

Phil. Mag., (6), vol. vn, p. 67; see also Math. Annalen, vol. LX, p. 465.
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A second, and more cogent, proof was given* by Zermelo, in connection

with which the axiom associated with his name was explicitly stated as

necessary for the purpose of his proof. He has later published t a new form

of the proof, together with a reply to criticisms of his earlier proof.

It is assumed that, in each part M , of a given aggregate M, one element

in, called the special (ausgezeich netes) element of M
,
can be chosen. The

possibility of doing this for all the parts of M follows from the axiom. Each

element M
,
of {M }, corresponds to a special element ra which belongs to M;

and this particular mode of distributing the elements of M upon the elements

of [M \
is called a

&quot;covering&quot; 7; the employment of a particular &quot;covering&quot; 7 is

essential to the proof. A 7-aggregate is then defined as follows: Let My be a

normally ordered aggregate consisting of different elements of M, such that, if

a be any arbitrarily chosen element of My ,
and if A be the segment of My

defined by a, which segment consists of all the elements ofMy that precede a,

then a is always the special element of M A. Every such aggregate My is a

7-aggregate. If every element of M which occurs in a 7-aggregate be called a

7-element of M, it is shewn that the aggregate Ly ,
of all 7-elements, can be

so ordered that it is itself a 7-aggregate, and contains all the elements of

the original aggregate M. It follows that M can be normally ordered.

It will be observed that the theorem that any aggregate can be normally
ordered does not assert the possibility of effectively carrying out, in the case

of any given aggregate, the process of arranging the elements of the aggregate
in normal order. The theorem must rather be regarded as an existence theorem,
deducible from certain postulates which include the multiplicative axiom.

In the later form of his proof, Zermelo states the theorem in the following
manner:

If there corresponds to each part of the aggregate M, one element of that

part, its special element, then the aggregate U (M), which contains as its

elements all parts of M, has one and only one element M, such that there

corresponds to each part P &amp;gt;

of M, one and only one element P
,
of M, such that

P
(1
has P as a part, and an element of P as its special element. The aggregateM is normally ordered by means of M.

The existence of the aggregate U (M) as a valid conception is assumed.

THE COMPARABILITY OF AGGREGATES.

203. From the theorem that every aggregate can be normally ordered, it

would follow that the cardinal number of any infinite aggregate must be an

aleph-number, or the equivalent theorem of the &quot;comparability of
aggregates,&quot;

that of any two aggregates one at least is equivalent to a part of the other. It

* Math. Annalen, vol. XLIX, p. 514. t Math. Annalen, vol. LXV, p. 107.
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has been proved* by Hartog, conversely, that if the comparability of every pair

of aggregates be assumed, the theorem that any aggregate can be normally

ordered can be deduced. This theorem is established on the basis of a system

of axioms given &quot;f&quot; by Zermelo.

It follows from Hartog s result, combined with Zermelo s theorem, that the

three principles of selection, of comparability of two aggregates, and of the

normal ordering of an aggregate, are completely equivalent to one another,

in that any two of them can be deduced from the third. In case none of the

three principles is assumed to be valid, Hartog s investigation proves that there

exists no aggregate whose cardinal number is greater than all the aleph-

numbers. The proof depends upon a classification of all the normally ordered

aggregates of which the elements are also elements of a given aggregate M;
the validity of the conception of the aggregate of all such normally ordered

aggregates, corresponding to a given aggregate M, being assumed.

204. The discussion of the fundamentals of the theory of aggregates, given

in the latter part of the present chapter, in which the divergence of view

amongst Mathematicians, as regards some parts of the theory, has been in

dicated, makes it clear that, for some time to come, a critical&quot; attitude is likely

to be maintained in some quarters as regards the theory of the transfinite, at

least in some of its developments. The extreme sceptical attitude has been

expressed by Poincare, in the* words &quot;II n y a pas d infini actuel; les Cantoriens

1 ont oublie, et ils sont tombes dans la contradiction.&quot; Even if the general

theory of classes of order-types and of aleph-numbers be regarded by many
Mathematicians as still in the region of speculation, nevertheless the debt

which Mathematical Science owes to the genius of G. Cantor will not be

materially diminished. The fundamental distinction between enumerable and

unenumerable aggregates, the interpretation of the arithmetic doctrine of

limits, the ordinal theory of the arithmetic continuum, and the conception

of the ordinal numbers of the second class, with their application to the theory

of sets of points, remain as permanent acquisitions, independently of the accept

ance of the whole of the higher developments of the abstract theory of aggre

gates. This order of ideas has become indispensable, for purposes of exact

formulation, in Analysis and in Geometry; it is constantly receiving new appli

cations, owing to its admirable power of providing the language requisite for

expressing results in the theory of functions with the highest degree of rigour

and generality. Cantor s creations have rendered inestimable service in formu

lating the limitations to which many results in Analysis, formerly supposed

to be universally valid, are subject. The outlying parts of the theory, although

they open up a most interesting field of investigation, from which much may
be hoped for in the future, do not appear as yet to be comparable in importance,

* Math. Annalen, vol. LXXVI, p. 438. t Math. Annalen, vol. LXV, p. 261.

J Revue de Metayh. et de Morale, vol. xiv, p. 316.
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for the general purposes of Analysis, with those parts which are accepted as

fully established by all except the most extreme finitists. The fact that the

general theory of aleph-numbers, as an abstract development of the theory of

order, has received but few applications in the theory of functions, differentiates

it from the theory of normally ordered enumerable aggregates, which has now
become a most useful instrument of discovery in the theory of functions of one

or more variables. yAll aggregates of points of a continuum, which are defined

by the methods in ordinary use, have either the power of the aggregate of

rational numbers, or else that of the arithmetic continuum itself.UThe theories

of these two kinds of aggregates, including as they do a complete arithmetic

theory of limits, would thus appear to afford a sufficient basis for all the ordinary

parts of Analysis.



CHAPTER V

FUNCTIONS OF A REAL VARIABLE

205. IF we suppose that an aggregate of real numbers is defined, the

aggregate being either enumerable, or of the power of the continuum
;
such an

aggregate is said to be the domain, or field, of a real variable. It is necessary

for the purposes of Analysis to be able to make statements applicable to each

and every real number of the aggregate, and which shall be valid for any

particular number that may, at will, be selected. This is done by employing the

real variable, denoted by some symbol other than those used to denote real

numbers
;

and the essential nature of the variable consists in its being

identifiable with any particular number of its domain. The symbols used for

denoting, variables differ from those employed in the case of numbers in being

non-systematic. Operations involving real variables # (1)

,
,v i2)

,
x (A]

, ..., with, or

without, particular numbers, are carried out in conformity with the same formal

laws as hold in the arithmetic of real numbers. The result of any such operation

is itself a variable with a domain of its own, which may, or may not, be identical

with that of any of the constituent variables.

The numbers being used to designate in the usual manner the points of

a set on a straight line, the variable may then be taken to refer to the points

of the set.

If the given set of points be bounded, in the sense explained in 47, then

the domain of the variable is said to be limited, or bounded. When the domain

of the variable is not limited, it is said to be unlimited, or unbounded, in one or

in both directions.

The variable is said to be continuous, in a given interval (a, b), when all the

points of the interval, including a and b, belong to the domain of the variable.

If the points a, b do not belong to the domain, but every internal point of the

interval does so belong, the variable is said to be continuous in the open interval

(a, b), or ivithin the interval (a, b). The corresponding definitions apply to the

case of an aggregate of any number p of dimensions, which is regarded as the

domain of n independent variables # u)
,
# &amp;lt;2)

,
... x (p)

. In this case a closed, or an

open, connex domain of p dimensions takes the place of a closed, or an open,

interval. A variable point (#
(1)

,a;
(2)

,
... x (f} \ of such a domain, is often con

veniently represented symbolically by a single variable x.
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The term &quot;variable&quot; has been commonly associated with the conception of

a point moving in a straight line or in a curve. It has however been pointed
out in the course of the discussions of the continuum, contained in the earlier

Chapters, that the continuum cannot legitimately be regarded as a synthetic
construction formed by a set of points determined successively. Successive

determination is applicable only in the case of any enumerable sequence which

may be defined within the continuum, and such a sequence may represent a

succession of positions of a point moving in a straight line. It is however un

necessary to proceed to a detailed analysis of the conception of motion, because

the Theory of Functions has no need of the conception of temporal succession.

The theory makes continual use of simply infinite sequences determined in the I

continuum
;
and any such sequence may be regarded as a series of distinct

determinations of the variable in which the elements are in logical succession,

each element after the first being preceded and succeeded by definite elements.

THE FUNCTIONAL RELATION.

206. If, to each point of the domain of the independent variable x, there

be made to correspond in any manner a definite number, so that all such numbers
form a new aggregate which can be regarded as the domain, or field, of a new
variable y, this variable y is said to be a (single-valued) function of x. The
variables cc,yare called the independent and the dependent variable respectively;
and the functional relation between these variables may be denoted symbolically

by the equation y=f(x). In this definition no restriction is made a priori as

regards the mode in which, corresponding to each value of x, the value of y is

assigned ;
and the conception of the functional relation contains nothing more

than the notion of determinate correspondence in its abstract form, free from

any implication as to the mode of specification of such correspondence. In any
particular case, however, the special functional relation must be assigned by
means of a set of prescribed rules or specifications, which may be of any kind

that shall suffice for the determination of the value of y corresponding to each

value of x. Such rules may, in any particular case, be embodied in a single
arithmetic formula, from which the value of y corresponding to each value of x
is arithmetically determinate

;
or the rules may be expressed by a set of

arithmetic formulae each one of which applies to a part of the domain of the

independent variable. In case these formulae be reducible to a set of mutually
independent formulae, that set must be a finite one. In case the function be
defined by an enumerably infinite set of formulae, each applicable to a part
of the domain, these formulae cannot be mutually independent, but must be

subject to some norm.

It should be observed that, when for any particular value of x the corre

sponding value of y is given by means of any arithmetic formula, the numerical

value of y is in general only formally determinate
;
for only a finite number

H. 17
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of elements of a convergent aggregate which defines the value of y can in

general be actually found, and thus the value of y can be specified only to

any required degree of approximation, but it is still regarded as perfectly de

terminate.

The domain of x consisting of a set (P) of points, the values of y, in the

case of a given functional relation y=f(x}, may be represented by points Q
on a linear interval; all such points forming a linear set (Q). The set (Q) is

said to be the functional image of the set (P), determined by the function /(#);

to each point of (P) therecorresponds a single point of (Q), iff(x) be a single-

valued function; but to each point of (Q) there may correspond a finite, or an

infinite, number of points of (P).

If # be employed to denote a variable point P (V1
,
# (2)

,
... # (p)

) in a p-

dimensional field, all that has been said will apply to the case of a function y, of

p independent variables. The linear set (Q) will be the functional image of the

^-dimensional set (P).

The perfectly general definition of a function which has been given above

is the culmination of a process of evolution which has proceeded largely in

connection with the study of the representation of functions by means of

trigonometrical series. By the older mathematicians, a function was under

stood to mean a single formula, at first usually only a power of the variable
;

but afterwards it was regarded as defined by any one analytical expression,

and was extended by Euler to include the case in which the function is given

implicitly by a formal relation between the two variables. In connection with

the problem of the determination of the forms of vibrating strings, which led

to the discussion of functions represented by trigonometrical series, the con

ception arose of a single function defined in different intervals by means of

different analytical expressions. The arbitrary nature of a function given by

a graph was distinctly recognized by Fourier
;
thus the notion of a function

was emancipated from the restriction that an a priori representation of it is

necessary by a single formula.

The idea that a function can be defined completely, in the case when the

domain of the independent variable is a finite continuous interval, by means of

a graph, arbitrarily drawn, leaves out of account the essentially unarithmetic

nature of geometrical intuition. A curve that is drawn is indistinguishable

by the perception from a sufficiently great number of discrete points ;
and

thus all that is really given by an arbitrarily drawn graph consists of more or

less arithmetically inexact values of the ordinates at those points of the #-axis

at which we are able to measure ordinates. In order that a curve may be

really known, sufficiently to serve for the purpose of defining a function, a series

of rules must be prescribed, by means of which the values of the ordinates can

be formally determined at all points of the a-axis. It is sometimes said, in order

to illustrate the generality of the functional relation, that a function is definable
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in the form of a table which specifies values of y corresponding to values of x,

this table being of a perfectly arbitrary character. The inadequacy of such

illustration is manifest, if we consider that, even if the table were an endless

one, as has been remarked in 187, no aggregate of y-values can be defined by
an endless set of numbers, apart from the production of a norm by which those

numbers are defined. Moreover, even if the table were subject to a definite

norm, it could only theoretically suffice to define a function of a variable whose

domain consisted of an enumerable set of points, and would be totally in

applicable to the case in which the variable has a continuous domain, unless

some special restrictive assumptions as to the nature of the function be in

troduced, by means of which the values of the function are made determinate

at the remaining points of the continuous domain.

It thus appears that an adequate definition of a function for a continuous

interval (a, 6) must take the form first given to it by Dirichlet*, viz. that
//

is

a single-valued function of the variable x, in the continuous interval (o,b} }
ivhen

a definite value of y corresponds to each value of x such that a ^ x b, no matter

in what form this correspondence is specified. A particular function is actually

defined when y is arithmetically defined for each value of x.

No elaborate theory is required for functions which retain their complete

generality, in accordance with the abstract definition given above, since few

deductions of importance can be made from that definition which will be valid

for all functions. When, however, the nature of a function is in some way re

stricted, either in the whole domain, or in the neighbourhoods of special points

of that domain, there is room for the development of a theory which shall deal

with the peculiarities that follow from such restriction upon the complete

generality of functions.

207. The functions defined in accordance with the above definition are

known as single-valued functions, since, to each value of x in the domain of x,

there corresponds a single value of y. The definition may be so generalized as

to be applicable to multiple-valued functions. This is done by replacing the

requirement that, to each value of x in the domain of x, there shall correspond
a single value of y, by the more general statement that, to each value of x

there shall correspond a definite aggregate of values of y. The aggregate of

values of y may, for any particular value of x, consist of a finite, or of an in

finite, set of numbers. A particular function is then defined when the aggregate
of values of y is arithmetically determinate for each value of x, in accordance

with the criteria for the determinancy of a linear aggregate which have been

developed in the theory of aggregates. Although the Theory of Functions, as

developed in the present work, is mainly concerned with single-valued functions,

it is necessary, or at least convenient, in the course of the examination of par
ticular functions and classes of functions, to make use of auxiliary functions

* See Dirichlet s Werke, vol. i, p. 135.

172
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which are multiple-valued at certain points of the domain of the independent
variable. Moreover, Dirichlet s definition, in its original form, has the incon

venience that it excludes from the category of functions those represented by

analytical expressions which, for particular values of the independent variable,

cease to define a single number. For example, an infinite series which, for par
ticular values of the variable, either diverges, or ceases to converge to a single

definite limit, does not define a single-valued function in accordance with

Dirichlet s definition, for the whole domain of the variable, and yet it is con

venient so to extend the meaning of the term function that a function may be

defined for the whole domain by such a series.

The distinction has been considered in detail by Broden* between those

functions for which the relation between the dependent variable y and the

independent variable x is formally the same for the whole domain of x, and

those functions for which the domain of x is divisible into a plurality of parts,

for which the forms of the relation between x and y are different. He
remarks that the distinction is one relating to the character of the definitions

rather than to the nature of the functions themselves; in the former case the

function is said to be homonomically defined, and, in the latter case, to be
^-

heteronomically defined. Broden has given a formal proof that, when a

function is heteronomically defined, the number of parts into which the

domain of x can be divided, so that the relations of y to x in any one part are

completely independent of the relations in the other parts, must be finite.

^
The Theory of Functions of a Real Variable is concerned with the

classification of functions, according as they possess various special properties,

e.g. continuity, differentiability, integrability, throughout the domain of the

independent variable, or at, or near, special points which form part of that

domain. The theory requires the introduction of precise arithmetical defini

tions of the scope and meaning of these characteristic properties, and is largely

concerned with the determination of criteria which shall suffice to decide, in

the case of a function defined in some special manner, what can be inferred

as regards the possession by such function of properties other than those that

are immediately apparent from the definition itself. Much of the theory is

concerned with a minute examination of functions, and of classes of functions,

which possess properties that do not occur in the case of those functions which

are employed in ordinary analysis and in its applications to Geometry and

Physics ;
and the theory has in consequence frequently been described as the

Pathology of Functions. It appears however, from the theory itself, that

many of those peculiarities, which from the point of view of traditional Analysis

would be described as exceptional, have no claim to be so described
;
that in

fact it is in the functions of ordinary Analysis that the abnormalities really

occur, such functions occupying an exceptional position in relation to a

* Acta Univ. Lund., vol. xxxni, 1897,
&quot; Functionentheoretische BemerkuDgen und Satze.&quot;
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scientific analysis of the properties of functions in general. An important
result of the labours of those who have developed the modern theory of

functions of a real variable has been that restrictive assumptions, which had

previously been unconsciously made in the processes of ordinary Analysis, have

been placed in a clear light ;
and it has been shewn that modes of reasoning

which had their origin in an uncritical application of ideas obtained from

spatial intuition would fail to yield correct results when applied to cases of

unrestricted generality ;
the unsoundness of the logical basis of such reasoning

being thereby demonstrated.

In ordinary Analysis the domain of the independent variable is taken

to be a limited, or unlimited, continuous interval. In the theory of functions,

on the other hand, it has been found advantageous to consider also the

properties of functions defined for a domain which is not a continuous one.

It appears, in particular, that a non-dense perfect set of points, or more &quot;

generally any closed set, is well suited to be the domain of a function, inasmuch |K%~

as, for such domains, the principal peculiarities of functions, such as continuity, *A

differentiability, &c., are capable of precise formulation, and can serve for
v&amp;gt;V

purposes of classification, exactly as in the case of functions defined for a , . .

continuous domain. Much of the recent progress in the subject is due to

a recognition of the parity of all perfect sets of points, not only as regards
their internal structure, but also in relation to their fitness for forming the

domains in which functions can be defined, without loss of any of the charac

teristic properties that serve for the classification of functions of a real variable,

or of several such variables.

EXAMPLES.

1. A function / (.1;) may be defined for the interval (0, 1) as follows :

for
?

*

&amp;gt;.*&amp;gt;-, /(*)-!*
and for #= 0,/(0) = 1,

n denoting any positive integer. In this case, the norm by which the function is denned is

expressible by an enumerable set of formulae which are however not independent of one
another.

2. A function may be denned as follows :

for
!&amp;gt;*&amp;gt;!, /(*)-| ;

for
1*&amp;gt;|,

/(*) = ! ;

forl&amp;gt;.r-i,/(.r)=f,...,

and in general,

for - &amp;gt; r &amp;gt; flr\
X

n= =n + V f(
&quot;TV

where Pn denotes the nth of the prime numbers 2, 3, 5, 7, .... If the function is to be

denned at the point #= 0, this may be done by assigning to /(O) any arbitrarily chosen

value we please. It will be observed that the values ~ are in this case not representable
*

by a single expression which involves n and x only, though they are definite single-valued
functions of these.
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3. Any number x, of the interval (0, 1), except 0, can be uniquely expressed in the form

I + I + ... +
I+...,

where bn has, for every value of a, one of the values 0, 1, and it is stipulated that all the bn

are not to be zero from and after any fixed value of n.

i

A multiple-valued function* may be defined by y= xn,
where n has all positive integral

values for which bn= 1. This is a homonomic definition, although no analytical expression
of a unitary character can be given for the representation of y.

FUNCTIONS OF A VARIABLE AGGREGATE.

208. The conception of the functional relation, as it has been described

above, has been restricted to that of a determinate correlation of the points of

a domain, linear, plane, spatial, or ^-dimensional, forming the domain of the in

dependent variable, with a set of numbers, or points, forming the domain of the

dependent variable. The modern development of the notion of the functional

relation has extended it to the more general case in which a prescribed

family of objects of any specified kind takes the place of the field of the

independent variable. If {0} denotes a family, or aggregate, of objects defined

in accordance with some norm, and if we have also a norm by means of which

a definite number is made to correspond to each member 0, of the family, a

variable y, identifiable with each such number, is regarded as a function of

the objects of the given family. The ordinary definition considered above

of a function of a variable x, or of a number p of variables, is the particular

case of the more general conception of a function, which arises when the

objects are single numbers, or points, belonging to a prescribed linear, or

p-dimensional, domain. Another case of the functional relation which has

recently become of considerable importance in Analysis is that in which each

of the objects consists of an enumerable set of numbers ar (1)

,
# (2)

,
... x (n}

,
....

Thus the functions considered may be regarded as functions of a point in

space of an infinite number of dimensions; the field of the independent
variable being any specified domain in such space. The particular case in

which the numbers x (l)
, x, ... x (n]

,
... are so restricted that the sum of their

squares forms a convergent series, in which case the domain of the point is

said to be in Hilbertian space, has recently been applied in connection with

the theory of integral equations. A theory of functions in Hilbertian space
can be developed in this connection.

In arithmetical analysis the most general conception of a function is that

in which the independent variable has as its field a family of sets of points,

either linear, plane, spatial, or jo-dimensional. Having given, by means of

an adequate definition, a family of sets of points, either discrete or continuous,

a function of the sets is defined by a norm which assigns a definite number

to each set of points of the given family. An important case is that in which

*
Broden, loc. cit., p. 4.
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the sets of points are all measurable; the measure of a set, as defined in

accordance with the theory developed in Chapter III, is then a function of

the variable set in a given family of such measurable- sets.

In connection with the modern theory of integration, more general functions

of measurable sets of points will emerge. The theory of functions of curves of

prescribed families, developed by Volterra and others, comes under this head.

The Calculus of Variations deals with the theory of maxima and minima

of functjons of continuous sets of points ;
the functions taking the analytical

form of integrals which determine a set of numbers corresponding to the

continuous sets of points belonging to prescribed families.

In the present work the ordinary case of functions of one variable, or of a

finite number of variables, will, for the most part, be the only one dealt with,

but incidentally, as in the case of the theory of integration, functions of sets of

points will be considered.

The present Chapter is concerned, in the first instance, with the properties

of functions of a single variable, of which the domain is an interval, or other

linear set of points. The case of functions of two or more variables, i.e. of

points belonging to a domain in plane, or higher dimensional, space, will also

be considered; especially in those respects in which the properties of such

functions are not an immediate extension of the properties of functions of a

single variable.

THE UPPER AND LOWER BOUNDARIES AND LIMITS OF FUNCTIONS.

209. A function y =f (x), being defined for the domain of x, we have seen

that the values of y form a set of points, determined as usual upon a linear

interval, which is called the functional image of that set of points which forms

the domain of x. In case the set of points, which represent the values of y,

is a bounded set, the function / (x) is said to be bounded in the domain of x.

When the set of values of y is bounded, either boundary may be a limiting

point, or only an extreme point, of the set. For convenience, and in accordance

with usage, the terms upper limit and lower limit will be applied to denote

the upper and lower boundaries of the derivative of this set. Thus the upper
and lower limits are the extreme limiting points of y in the domain of x.

Accordingly we may say that :

If the set of points y, which represents the functional image of a function

f (x), defined for a given domain of x, have an upper and a lower boundary,
then the function f (x) is said to be a bounded function, and the boundaries are

said to be the upper and lower boundaries off (x) in the domain of x. The

upper and lower limits of the function are the upper and lower boundaries of

the limiting points of the set ofpoints y.

The upper limit of a functionf (x) for its given domain may, or may not,

be attained, i.e. there may, or may not, be a value of x, in the domain of x,
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for which the functional value is equal to the upper, or to the lower limit.

This is the case whether, or not, the upper, or the lower, limit is identical with

the upper, or the lower, boundary. An upper, or a lower, boundary that is not

identical with the upper, or the lower, limit, must be attained.

In case y have no upper boundary, or no lower boundary, for the domain
of x, the function f(x) is said to be an unbounded function. In this case there

exist values of the function, of one sign, or of both signs, which are numerically

greater than any arbitrarily assigned number A.

When y has no upper boundary in the domain of x, the function is said to

have the improper boundary + oc
,
in the domain of x. Similarly, when y has

no lower boundary, it is said to have the improper boundary oc . It is

frequently said, for the sake of brevity, that the upper or the lower boundary
of the function is infinite.

The excess of the upper boundary of a function, in its domain, over its lower

boundary, is called the fluctuation (Schwankung) of the function in the domain.

In case the upper or the lower boundary is infinite, the function is said to

have an infinite fluctuation in its domain.

Instead of the whole of the domain of x, we may consider that part which

lies in a given interval (a, b), closed or open, and the preceding definitions

may be applied to this portion of the domain
;
thus :

The upper boundary of a functionf {x} in an interval (a, b}, closed or open,
is the upper boundary of the function when only those points of the domain of
x which lie in the interval (a, b) are taken into account. A similar definition

applies to the case of the upper limit, and also to the cases of the lower

boundary and the lower limit.

The excess of the upper boundary of f(x), in the closed, or open, interval

(a, b), over its lower boundary in that interval, is called the fluctuation of f(x)
in the closed, or open, interval (a, b).

In case one, or both, of the boundaries is infinite, the fluctuation of the

function in (a, b) is said to be infinite.

If the upper boundary of f(x) in (a, 6) is attained, i.e. if there exists a

value c of x such that /(c) is the upper boundary, where c is a point of the

domain in (a, 6), then this upper boundary is said to be the upper extreme of

the function in (a, b} ;
and a similar definition applies to the lower extreme.

If the end-points a, b of the interval be left out of account, in case they

belong to the domain of x, the fluctuation is called the fluctuation in the open
interval (a, b). This is sometimes spoken of as the inner fluctuation of the

function in (a, b), and is determinable as the limit of the fluctuation in the

interval (a + e, b e), when e is indefinitely diminished.

Precisely similar definitions are applicable to -the case of a function of p
variables

;
a cell (a, 6) taking the place of an interval (a, b}.
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210. In accordance with the definition which has been given for a function

in any domain, the value of the function at any particular point of the domain

has a definite finite value. It may happen that a point P, of the domain

of x, is such that, in any arbitrarily small neighbourhood of P, either the

upper, or the lower, boundary of the function, or both, may not exist
;
so that,

in any neighbourhood of P however small, there exist functional values

numerically greater than any number that rnay.be assigned. In that case, the

point P is said to be an infinity, or point of infinite discontinuity of the

function; although the function has a definite finite value at the point

P itself.

Although f(oc) is not properly defined at a point P (#), unless a definite

numerical value be assigned to /(#), nevertheless an improper definition of the

functional value at the point P is sometimes admitted, of the form -r.

- =
;

/()
in this case the function is said to possess an infinity at P. This infinite dis

continuity is said to be removable, provided that, when the functional value

at P is altered to some finite value, the function have finite upper and lower

boundaries in a sufficiently small neighbourhood of P.

There are other cases in which an improper definition of the functional value

at a point ao of the domain of x is admitted. The function may be defined by
means of an infinite series, of which the terms are given functions of x. This

series may diverge at the particular point fc
;
but it is nevertheless frequently

convenient to regard the series as defining the function for all values of x in

some interval which includes ac . The functional value at x is then regarded
as infinite, + oo

,
or oc .

In accordance with strict arithmetic theory, the function is regarded as

undefined at points where no definite finite value of the function is specified.

For the most part, in the theory which will be developed here, this restriction

will be rigorously adhered to. It will be found, however, that in cases, such as

in the theory of infinite series, in which it is convenient to admit improper
definitions of functions at particular points, no essential change in the main

results of the theory will be necessary.

In some cases it will be found convenient to remove the restriction that

at each point of the domain of the independent variable the function shall be

single-valued, and to define the function in such a manner that, at single points

or at each point of some set belonging to the domain of as, the function may
possess finite, or infinite, multiplicity. It will be found, in the cases in which

it is convenient to make this extension of the meaning of a function, that no

difficulty arises as regards the use of results primarily applicable to functions

which are single-valued at all points of the domain of the variable, without

exception.
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THE CONTINUITY OF FUNCTIONS.

211. Let the domain of the independent variable x be continuous, and

either bounded or unbounded; and denote the function y, at the point x, by

f(x). When the domain of x consists of the points of a continuous interval

(a, b), that interval will be taken as closed unless the contrary is stated.

The function f(x) is said to be continuous at the point a of the domain of x,

if, corrssponding to any arbitrarily chosen positive number e whatever, a positive

number B, dependent on e, exists, such that /( + ?;) -/(a) &amp;lt;e, for all
t
positive

or negative values of 77 which are numerically less than B, and which are such that

a + rjis in the domain of x. At an end-point of a limited domain, the values of 77

will have one sign only.

In accordance with this definition, a neighbourhood (a B, a + 8) of the

point a exists, such that the function, at any point in the interior of this

interval, differs numerically from its value at or, by less than e. It follows that

the inner fluctuation of the function in (a 8, a. + B) is less than 2e, and it is

obvious that the fluctuation in any interval interior to (a 8, a + B) is less than

2e. The condition of continuity of the function f(x) at the point a may thus

be stated to be that a neighbourhood of the point can be determined in which

the fluctuation of the function is as small as we please.

The above definition of continuity at a point is that due to Cauchy, and

is a particular case of the definition of continuity for a function of any number
of variables. If we denote by f(x

w
, x, ... x (v ]

} a function of the variables

x {l}

,
x (Z]

,
... x (p)

,
defined for any continuous domain, the condition of continuity

at the point (a
1

, a (2)

, ... a lp}
) is that, corresponding to every arbitrarily

chosen positive number e, a number B, dependent on e, can be found, such

that
:/(&amp;lt;&quot;

+ A 1

,
a&amp;lt;

2
&amp;gt; + h, ... a&amp;lt;*&amp;gt; + hw) -/(a (1

&amp;gt;,

a (2)

,
...

a&quot;) |

&amp;lt; e, provided
h (1)

, h, ... h (p} have any values which are numerically less than B. In this

case, a neighbourhood (ot B, a + B), of a point of a linear domain, is replaced

by an equilateral cell, which is a square in the case of a two-dimensional

domain.

The definition of continuity has been stated by Heine* in a form which

depends upon the notion of a convergent sequence of numbers or of points.

Let (Pl ,P2,...Pn ,...) be a convergent sequence of points in the given domain,
and of which P is the limiting point. The condition of continuity of the

function at P is that, for every such convergent aggregate which has P as

limiting point, the num\)ersf(P1),f(P2), ...f(Pn), ... form a convergent sequence
which represents the number f(P). It is easily seen that a function which is

continuous in accordance with Cauchy s definition is also continuous in accord

ance with that of Heine. For if the sequence Ply P2 ,
. . . Pn ,

... of points of the

* Crelle s Journal, vol. LXXIV, p. 182.
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domain of x converges to P (a), we may define a sequence of numbers

fli , Vz, iln , corresponding to these points, such that rjn ~ 0, as n ~ oo
,
and

such that PPn &amp;lt;rjn ,
it then follows by Cauchy s definition that, for a suffi

ciently large value of n, \f(x} /(a) |

&amp;lt; e, for all the values of x which corre

spond to the points Pn ,
Pn+i, Since this holds for all values of e, we see

that the sequence {/(-Pn)} converges to /(a).

That a function /(#), which is continuous at the point a, in accordance

with Heine s definition, is also continuous in accordance with that of Cauchy,
cannot* be proved in the general case without the employment of Zermelo s

axiom (see 197). To establish this equivalence, with the assumption of the

axiom, let H (e}

(77) denote the set of points within the interval (01 77, 01 + 77) for

which !/(#) /(a) = e. Assuming that there exists a set of points H (e)
(77), of

the domain of x, with e fixed, however small 77 may be, (which will be the case if

Cauchy s definition is not satisfied), we may consider a monotone sequence {i)n }

of values of 77 converging to zero. It is impossible that the sets H ie)

(r)n) should

be all identical, from and after a fixed value of n, for the intervals (a 77^, a + 77^)

have no points common to an infinite number of them except the point a which

does not belong to the sets. We may consequently, without loss of generality,

assume that the sets H (e}

(rjn) are all different from one another. Considering
the sets #&amp;lt;&amp;gt; (77^

-H &amp;lt;&quot;

(%), #&amp;lt;
(77.,)

-
#&amp;lt;&amp;gt; (773), . . . #&amp;lt;&amp;gt; (77.) -H^(r)n+1 ), . . ., a set of

points p i ,p.2 ,...pn ,... exists in accordance with the axiom, such that pn belongs
to H (e&amp;gt;

(f] }l ) H (f}

(r)n+1 ),
for every value of n. We have now \f(pn } /(a) = e,

for every value of n; and thus a sequence [pn ]
of points converging to a exists,

such that \f(pn)} does not converge to /(a), and hence Heine s definition of

continuity at the point a is not satisfied. It follows that, if Heine s definition

is satisfied, the set H {f)

(77) cannot exist for all values of 77; and thus that for a

sufficiently small value of
77, Cauchy s condition \f(x) /(a) |

&amp;lt; e is satisfied if

I

x a.
\

&amp;lt; 77, for all points x, of the domain of x.

A function w.hich is not continuous at a point a may satisfy the condition

that, in a neighbourhood of a, on the right, the fluctuation of the function is

as small as we please when the neighbourhood is small enough; the function is

then said to be continuous on the right at a. A similar definition applies to

continuity on the left.

A function is said to be continuous in the interval (a,b) if it satisfies the

condition of continuity at every point in the interval.

For a function that is continuous in the closed interval (a, b), the upper

boundary is identical with the upper limit, and the lower boundary is identical

with the lower limit of the function in the closed interval. This does not

necessarily hold for an open interval.

* See Sierpinski, Comptcs Rendus, Paris, vol. CLXIII, p. 688.
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212. The domain of the independent variable has hitherto been considered

to be continuous; it is however clear from a consideration of the definition of

continuity, either in Cauchy s or in Heine s form, that the definition is applic
able in case the domain of the independent variable is not continuous, but

consists of any set of points which contains limiting points that belong to the

set. It is, of course, only at such a limiting point that the question of con

tinuity arises; for, at an isolated point of the aggregate, there are no values of

the function, other than that at the point itself, in any sufficiently small neigh
bourhood of the point. If P be a point of the domain of x which is a limiting

point of the domain, the function is continuous at P when Cauchy s definition

of continuity is satisfied, those points only, in any neighbourhood of P, being
taken into account, which belong to the domain for which the function is

defined. If the function be continuous at every limiting point of the domain
of x it is said to be continuous relatively to the given domain; and thus the

notion of continuity of a function is applicable whatever be the domain of the

independent variable, except when it consists of an isolated set of points.

Let P1; P2 ,
P3 , ... be a convergent sequence of points of the domain of x,

of which Pw is the limiting point; and let Pw also belong to the domain of x.

Supposing the functional image, corresponding to /(#), to contain the points

Qi, Qs, Qs, which correspond to Pl5 P2 ,
P3 , ..., let Qlf Q2 , Qs ,

... form a con

vergent sequence of which the limiting point Q^ corresponds to P^. If this

condition be satisfied, however the convergent sequence be chosen in the domain
of x, the aggregate (Q), of values of y, is said to be a continuous functional

image of the domain (P) of x.

It is clear that the continuous functional image of a closed domain is itself

closed. For, corresponding to the points of a convergent sequence (Qi, Q*, Qa ,
.)&amp;gt;

in (Q), there corresponds an aggregate (Plf P2 , P3 ,
. . .), in (P), which must have

at least one limiting point, and all such limiting points belong to the domain

(P), and must correspond to the limiting point of (Q1 , Q2 , Q3 , . .
.),

which therefore

belongs to the aggregate (Q). Moreover if (P) be perfect, the continuous

functional image (Q) is perfect also; for, corresponding to any particular point

Q ,
of (Q), we may take a point F, of (P), for which Q is the image. P is the

limiting point of a convergent sequence of points of (P), and to this convergent

sequence there corresponds a convergent sequence in (Q), of which Q is the

limiting point. It has thus been shewn that (Q) contains no isolated points,
and therefore (Q) is perfect.

If (Q) be a continuous functional image of the closed set (P), and if only
one point of (P) correspond to each point of (Q), then (P) is a continuous

functional image of (Q).

To the points of any convergent sequence (Ql} Q2 , ...)&amp;gt;
in (Q), of which QM

is the limiting point, there corresponds a convergent sequence (P: , P.,, P3 , ...),

in (P), of vhich Pw is the limiting point; and Pw is the functional image of Qu .
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213. The theorem has been given by Weierstrass that, if (a, b) be any
interval containing points of the domain of a function, then one point at least

exists in the interval, which is such that, in any arbitrarily small neighbourhood

of that point, the upper boundary of the function is the same as the upper

boundary of the function in the whole interval (a, b).

This theorem holds for all functions without restriction, and it makes no

difference whether the whole interval (a, b), or only a set of points in that

interval, belongs to the domain of the independent variable.

Let a system {Dn }
of nets with half-closed meshes be fitted on to the interval

(a, b). If M be the upper boundary of the function in that part of the domain of

the independent variable contained in the closed interval (a, b), it is clear that

in none of the meshes dl ,ofD1 , can the upper boundary of the function be greater

than M, and that in one at least of these meshes the upper boundary of the

function must be M. Take the mesh d1 of lowest rank in Dl
for which this is

the case. In one at least of the meshes of _D2 that are contained in dl ,
the upper

boundary of the function must be M\ if there are more meshes than one that

satisfy this condition, take that one which is of lower rank than the others, and

let this mesh be dz . Proceeding in this manner, we obtain a sequence of meshes

di,d.2) ... dn ,
... each containing the next, and such that in each of them the

upper boundary of the function for all the parts of the domain in the mesh is M.

The single point P defined by this sequence of meshes satisfies the prescribed

condition
;
for any neighbourhood A, of P, will contain all the meshes d

n&amp;gt;
from

and after some value of n; therefore in this neighbourhood the upper boundary
of the function is M.

A similar result holds for the lower boundary of a function.

It is clear that this proof can be applied, in the case of functions of more

variables than one, to prove the corresponding theorem that one point exists

in a domain such that in its arbitrarily small neighbourhood the upper boundary
of such a function is the same as in a cell.

In the case of a function which is continuous in the interval (a, b), it

follows from the foregoing theorem that the upper and lower boundaries of the

function in (a, 6) are both finite, and thus that a function which is continuous

in an interval is bounded in that interval.

For consider that point x1} m (a. b), in the arbitrarily small neighbourhood
of which, (#1 e, xl + e), the upper boundary has the same value as for the whole

interval (a, 6). Since the function is continuous at xlt corresponding to a given
number 8, a number e can be determined such that /(#) /&quot;(^i) !

&amp;lt; ^ provided
x lies in (x^ e, xl + e); consequently the upper boundary off(x) in this interval

must be finite, and hence f(x) has a finite upper boundary in (a, 6). It may
be shewn in a similar manner that the function has a finite lower boundary.
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A function which is continuous in the closed interval (a, b) is such that its

upper limit and its lower limit are each actually attained at one point at least

in the interval.

For suppose, if possible, that /(#i) has a value A, different from M
;
and

consider an arbitrarily small interval (xl e, x1 -f- e) for which M is the upper
limit of the values of the function; then points exist in this interval for which

the function differs by less than an arbitrarily small number 8, from M. These

values of the function would differ from f(xi) by an amount which is not

arbitrarily small, and this would be inconsistent with the condition of continuity
of the function at the point x^ It follows that we must have f{xj = M.

Similarly it may be shewn that the lower limit m is reached at least once in

the interval (a, 6).

A function that is continuous in an open interval (a, b) may have no upper,

qr no lower, boundary.

CONTINUOUS FUNCTIONS DEFINED FOR A CONTINUOUS INTERVAL.

214. It will now be shewn that, iff(x) be continuous in the closed interval

(a,b), and iff(a), f(b) have opposite signs, then there is at least one value of x

in the interval, for which f(x) vanishes.

Let us suppose that /(a) &amp;lt; 0, /(&) &amp;gt;

;
and let a system of nets be fitted

on to the interval (a, 6). Since /(&) &amp;gt;0,
in a sufficiently small neighbourhood

(b e, b) of the point b, f(x) must be everywhere positive. If n be sufficiently

large, one or more meshes of Dn are interior to (b e, b), and in these meshes

f(x) is positive. There exists consequently a mesh dn of lowest rank in Dn ,

for which /(#) is negative at the left hand end-point, and such that f(x) is

positive at the right hand end-point; unless f(x) = Q at the left hand end-

point, in which case a point such as the theorem requires is determined : we

assume that this latter case does not arise. There is then among those meshes

ofDn+l which are contained in dn ,
one of lowest rank, such that/(#) is negative,

or zero, at its left hand end-point, and is positive at its right hand end-point.

Proceeding in this manner, we obtain a sequence dn , dn+l ,
. . . dn+m , . . . of meshes,

each of which contains the next, and such that, either, for some value of m,

f(x) is zero at the left hand end-point of dn+m ,
or else, such that, for the un

ending sequence of values ofm,f(x) is negative at the left hand end-point of

dn+m, and is positive at the right hand end-point. In this latter case, there

exists a point c, in all the meshes {dn+m }.
If/(c) were negative, in a sufficiently

small closed neighbourhood of c, f(x) would be everywhere positive; and this

is not possible, because dn+m would be interior to that neighbourhood, provided

m were sufficiently large. In a precisely similar manner, it is seen that /(c)

cannot be positive. Therefore /(c)
= 0, and thus the theorem is established.
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From this theorem we can deduce that, whatever valuesf (a), f(b) may have,

there must be in the interval (a, b) at least one value of as, for which f(x) has any

prescribed value lying betweenf(a) andf(b).

Let this value be C, and suppose/(a) &amp;lt; C
&amp;lt;f(b) ;

then the function/^) - C

is continuous in the given interval, is negative when x = a, and positive when

x = b
;
thus it vanishes at least once in the interval (a, b).

A continuous function has frequently been denned as a function such that,

if f(a), f(b) be its values at any two points a and b, then the function passes

through every value intermediate between /(a) and/(6), as # changes from a

to b. The property contained in this definition has been shewn above to hold

of every function which is continuous in accordance with Cauchy s definition
;

but the converse theorem does not, in general, hold. The definition just re

ferred to is accordingly not equivalent to that of Cauchy, which is here adopted
as the basis of the treatment of continuous functions. As an example of the

non-equivalence of the two definitions, we may consider the function definecf

by y = sin - ,
for #

&amp;lt; 0, and by y = 0, for x = 0. For this function there are
cu

values of x between a
(&amp;lt; 0) and b

(&amp;gt; 0) for which f(x) has any assigned values c

lying between /(a) and/(6) ;
but the function is not continuous, in accordance

with Cauchy s definition, in any interval (a, 6) which contains the point 0. It

is, in fact, easily seen that the point is a point of discontinuity of the function
;

for an arbitrarily small neighbourhood of the point contains points at which

the function has all values in the interval ( 1, 1).

As another example* of a function which satisfies the condition referred to,

but is discontinuous in accordance with Cauchy s definition, let the number #
in the interval (0, 1) be expressed as a decimal aia2a3 ... an ...

; then con

sider the decimal a-^a^a^a-, If this last decimal is not periodic, we take

/(#) = 0; if it is periodic, and the first period commences at o^^, we take

f(x) = a2 cW2GW4 The function so defined for the interval (0, 1), of x,

has every value between and 1, in every arbitrarily small interval in the

domain of x
;
thus the function is discontinuous at every point. A value of x

for which f(x) has any prescribed value Pip2 ... pn ... is

where a^az ... is any periodic decimal, the first period of which begins at a^^,
and A, B, ... K are arbitrarily chosen digits. Nevertheless there are values of

x, between a. and /3, at which the function takes any assigned value intermediate

between /(a) and/(/3).

* See Lebesgue, Lemons sur I integration, p. 90.
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CONTINUOUS FUNCTIONS DEFINED AT POINTS OF A SET.

215. It will now be shewn that, if a functionf (x), having prescribed values

at each point of an infinite set of points in the interval (a, b), be continuous in

that interval, then the values of the function are determinate at each point of the

derivative of the set.

Suppose a1} 2 , 3 ,
... a

n&amp;gt;
... to be a convergent sequence of points, for which

#! is the limiting point, and suppose /(i),/( 2),
... f(an ), ... to be known; it

will be shewn that these functional values form a convergent sequence whose

limit is f(n\). An interval (xl ,
x + 8) can always be found, corresponding

to any fixed number e, such that the function at any point of this interval

differs from /(a?j) by less than the arbitrarily small number e; this follows

from the continuity of the function. A number n can be found such that all

the points .n ,
an+1 ,

an+2 ,
... lie within the interval fa S, ^ + S). It follows

that \f(x1 ) /( n) I

and \f(a;l)f(an+1 )(, etc. are all less than e, which is

arbitrarily small; hence f(x^) is the limit of the sequence /( 1),/(a2 ), ,
and

thus f(%i) is determinate. From this special case it follows that, for all the

limiting points of a given set of points in (a, b), the values of the continuous

function are determinate. It thus appears that the function is determinate

for all points which belong to the derivative of the given set, for the points of

which the values of the function are known.

In particular, if a continuous function have prescribed values for points of a

set which is everywhere dense throughout the interval (a, b), then its values are

determinate for all points of the interval.

A special case of such a set would be that of the rational points within the

interval. It follows that a continuous function whose values are known for all

the rational points in an interval is determinate for all the irrational points.

A continuous function which is known to be constant for all the rational points
has the same constant value for all the irrational points in the interval.

It is clear that, if cells be employed, instead of intervals, the method in the

proof is applicable to shew that a continuous function of any number of variables

is determinate at; each point of the derivative of a set of points at which the

values of the continuous function are assigned.

A generalization of the above theorem is that, if a function is continuous

with reference to a domain which consists of a set (P), and is known for all

points of a sub-set which is everywhere dense in (P), then the function is

determinate for every point of (P). This may be seen by remembering that

every point of (P) is a limiting point of the sub-set, and applying the same

reasoning as before.

216. From the theorem established above, that a continuous function is

determinate when its values at an everywhere dense enumerable set of points

are prescribed, we may deduce that the cardinal number of the aggregate of all

continuousfunctions of a real variable is the cardinal number c, of the continuum.
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We may suppose the values of a function to be prescribed at the rational

points. The cardinal number of the aggregate of all functions defined for the

rational points only is the cardinal number of the ways of distributing on the ag

gregate of rational numbers the aggregate of numbers of the continuum. This

number is c
a

,
which has been shewn in 183 to be equal to c. Only some of the

distributions of this kind are such as will give rise to continuous functions;

hence the aggregate of all continuous functions is a part of the aggregate of

all possible distributions on the set of rational numbers of the numbers of the

continuum. It follows that the cardinal number of the aggregate of all con

tinuous functions is ^ c. Again, this cardinal number is ^ c
;
for among the

continuous functions are those which are constant, and everywhere equal to

any assigned number of the continuum; and thus the aggregate of all con

tinuous functions contains a part which has the cardinal number c. Since the

cardinal number is ^ c, and also ^ c, it is equal to c.

This theorem was established by Borel*, who also shewed that the aggre

gate of all analytical functions of two or more variables has the cardinal

number c.

The cardinal number of the aggregate of all functions of a real variable is

that of all distributions of the continuum upon itself; this is, in accordance

with the definition in 150, denoted by c6 , for which we may write/.

Each particular distribution of the numbers of the continuum on themselves

is definable by a definite norm, and corresponding to each such distribution

there is a definite function for a continuous domain. Let the aggregate of

all such functions be denoted by F: it will then be proved that the cardinal

numberft
of F, is &amp;gt; c.

First, F has a part which is equivalent to the continuum. This is at once

seen, since the functions /(#) = c, where c is any number of the continuum,
constitute such a part. It follows that/^ c.

Next, let it be assumed, if possible, that F is equivalent to a part of the

continuum. As has just been proved, such a part cannot have a cardinal

number &amp;lt; c
;
we therefore assume that F is equivalent to the set of numbers

of the continuum. This amounts to the assumption that F can be ordered in

the same type as the continuum, so that, to any assigned number of the con

tinuum, there corresponds a definite set of rules R
f , which defines a function

ft (x). The correspondence between and R^ must itself be defined by a set of

rules, so that when is assigned, R^ , and therefore the functionff (x\ is defined.

The aggregate {f( (x)} must contain every definable function of a real variable.

The number being assigned, f( (x} is producible ;
and its existence implies

that, at any assigned point f, the functional value /{ ( ) can be determined

arithmetically. We may take, for example, f = f ;
and thus, if is assigned,

* See Lemons sur la thorie des fonctions, p. 127.

H - 18
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/l(?) is known. We may regard ft () as a function of
;
for its value at any

point can be arithmetically determined, and it is therefore an element of the

aggregate F of all functions. With this understanding as to ft (), choose a

fixed number, say unity; then the function
&amp;lt;f&amp;gt; ()=ft () + 1 has a definite

norm
;
for we have only to add to the rules by which ft (f) is denned, the

further rule, that, at each point , unity is to be added to the value of ft ().

We have now a new definable function
(f&amp;gt; (x) ;

but this cannot possibly belong
to the aggregate F, for if it do so belong, there must be some one point ^
of the continuum, with which it corresponds ;

but
&amp;lt;j&amp;gt; (x) cannot be identical

with f^ (x\ for
&amp;lt;f&amp;gt; (^j) and/^ (^) differ by unity. Since

&amp;lt;f) () is not contained

in F, contrary to the hypothesis, it follows that F cannot be equivalent to the

continuum, and thus the theorem, f&amp;gt;c,
is established. It has therefore been

shewn that
f&amp;gt;c,

and consequently that the aggregate of all functions of a

real variable has a cardinal number f, greater than c.

UNIFORM CONTINUITY.

217. It will now be shewn that, if the domain of a; be a continuous interval,

then a continuous function is uniformly continuous through the domain of x.

It will be proved that a number 8 can be found, corresponding to any given e,

such that, for all values of oc, the fluctuation off(x) within the neighbourhood

{x 8, x + 8), or for all of this neighbourhood which lies within the domain, is

less than the number e. The essential point is that 8 is independent of x.

Consider a symmetrical system {Dn },
of nets with closed meshes, fitted on to

the interval (a, 6).

If e be a prescribed positive number, there must be some smallest integer

nI} such that, in each of the meshes of the net D
Hl ,

the fluctuation of/(#) is

&amp;lt; ^e. For suppose that no such integer n-^ exists
; then, however large n may

be taken, there is one mesh at least of Dn in which the fluctuation of f(x} is

^ \ e. Let D^ be the set of all the meshes of Dn for which this is the case; the

sequence of sets of meshes
Z&amp;gt;/,

D2 ,
. . . Dn , ..., each of which contains the next,

defines a closed set of points in all of them. Let P be such a point, and let

a neighbourhood A
,
of P, be constructed, within which the fluctuation of the

function is &amp;lt; e. This neighbourhood A will contain, in its interior, a mesh of

Dn ,
from and after some fixed value of n, and in each of these the fluctuation

of f(x) is = |e, and thus there is a contradiction in the assumption that such

a point as P exists. Therefore Dn cannot exist for all values of n, and thus, for

some integer n1} the fluctuation in every net of Dni is &amp;lt; ^e.

If x be any point of the closed interval (a, b), and the meshes of D
ni

be all

of breadth 28, the interval (x 8, x + 8), or the part of it that is in (a, b), is in

the interval formed by at most two consecutive meshes of D,h ,
and the inner

fluctuation of f(x) in (x 8, x + 8) is consequently &amp;lt; e.
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It has thus been shewn* that it is unnecessary, for a function of a real variable,

to draw a distinction, as has sometimes been done, between functions which are

uniformly, and those which are non-uniformly, continuous in the continuous

domain of x\ for all continuous functions are uniformly continuous.

The theorem may also be stated in the following form :

Iff(x) be continuous in the closed interval (a, 6), then, corresponding to any

arbitrarily chosen positive number e, a number rj can be determined, such that the

condition
!/&quot;(#! ) ~f(x-z) \

&amp;lt; e
&amp;gt;

*s satisfied, for any two points x^, x.2 ,
in (a, b), such

that
\
x-i x.2 &amp;lt; 77.

The following theorem can be immediately deduced :

If a function be continuous in a finite interval, then the interval can be

divided into a finite number of sub-intervals, in every one of which the fluctua

tion of the function is less than a prescribed positive number.

It is in fact clear that, if e be the prescribed number, the condition is

satisfied when the interval is subdivided in any manner such that the length
of the greatest of the sub-intervals is &amp;lt; 77.

Another proof of the above theorem, in an extended form, will be given in

234, by employing the Heine-Borel theorem.

It is clear that the above proof applies also to the case in which the domain

of x is not a continuum, but is any closed set; because the essential point of

the proof depends upon the limiting points all belonging to the domain. Those

meshes of the nets which contain no points of the domain of x are disregarded.
For domains which are not closed the proof does not apply; thus a function

which is continuous, relatively to an aggregate which is not closed, is not

necessarily uniformly continuous.

In the case of a function of p variables, when the domain of the variables

is a closed set, the neighbourhood (xl 8, x2 8, ...xp 8; ^ + 8, %
2
+ 8,...

Ap + 8), of the point (xl} xz , ..., xp), may be ( 49) denoted by (x 8, x + 8).

The condition of uniform continuity takes then the same form as in the case

p= 1. If we take the cell in which the domain is contained to have its edges
all equal, and employ a system of nets in which the edges of each mesh are

all equal, the above proof can be applied to shew that a function that is con

tinuous in a domain that consists of a closed set of points is uniformly con

tinuous.

* This theorem was first stated and proved by Heine; see Crelle s Journal, vol. LXXI (1870),

p. 361, and vol. LXXIV (1872), p. 188.

182
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ABSOLUTE CONTINUITY.

218. A function f(x), defined in the closed interval (a, b), is said to be abso

lutely continuous in (a, b) if, corresponding to an arbitrarily chosen positive

number e, another positive number can be so determined that, in every enumerable,

or finite, set of non-overlapping intervals (xlt #/), (#2 , *\ (xn, #
)&amp;gt;

,
*w

the interval (a, b), and such that the total measure of the intervals is &amp;lt; ??, the

sum, or limiting sum, ^ \f(xr} /(#/) j

is &amp;lt; e.

ii

It is clear that a function which is absolutely continuous in (a, 6) is also

continuous, in accordance with the definition of 211; but the converse does

not hold. We may take the set of intervals to consist of a single interval of

length &amp;lt; 17; thus the condition of uniform continuity is satisfied.

It is easily seen that an equivalent form of the definition is that, in every

non-overlapping set of intervals of total measure &amp;lt; 77, the sum, or limiting sum,

of the fluctuations of the function in the intervals is &amp;lt; e.

THE CONTINUITY OF UNBOUNDED FUNCTIONS.

219. Let it be assumed that the continuous function
(f&amp;gt;

(x), defined in the

interval (a, b\ of x, has 1 and - 1 for its upper and lower boundaries, these

being, in virtue of the continuity of the function, also its upper and lower limits.

Consider the function
/&amp;lt;

= -

_. ?,
^ \

&amp;gt;

from which it follows that

&amp;lt;f&amp;gt; (x)
= (y

;
;
the functions

&amp;lt;j&amp;gt; (x),f(x) have the same sign at each point

x. When
4&amp;gt;(x)

= 1, we may suppose the improper value x to be assigned to

/O); and when
&amp;lt;/&amp;gt;O)

= -l, we may suppose the improper value - x to be

assigned to /(a). In this manner, by adjoining to the real numbers the two

elements x ,
- x

,
we ensure that a (1, 1) correspondence exists, without ex

ception, between the values of $ (x),f(x). thus, to the closed interval (- 1, 1),

there now corresponds the closed interval (- x ,
x

), and, in the correspondence

so defined, the relative order of two elements is preserved without change ;

thus, as
&amp;lt;/&amp;gt;O)

increases steadily from - 1 to 1, /(a?) increases steadily from

x to x .

The function f(x) is continuous for any finite value ,
of x, which is not

such that
(j&amp;gt;

(a), has one of the values 1, 1, 0.

provided f(x} and /(a) have the same sign. A neighbourhood of a can be so

determined that, at every point of that neighbourhood, 1 -
&amp;lt;O)!

&amp;gt;^



218,219] Continuity of unboundedfunctions 277

h is some positive number so chosen that 1
&amp;lt;f&amp;gt;

(a) &amp;gt; h, and also such that

(f&amp;gt;(x) &amp;lt;f&amp;gt;(a)&amp;lt;h

2
e, where e is an arbitrarily chosen positive number. In

this neighbourhood we have then ;/(#)/() &amp;lt; e, and thus f(x) is con

tinuous at or.

If $ (a)
= 0, we have

| &amp;lt;/&amp;gt; (a) j &amp;lt; e, in a sufficiently small neighbourhood of a,

and therefore |/(a) |

&amp;lt;

y
-

&amp;lt; 2e, if e &amp;lt; |. Hence f(x) is continuous at a.

At a point o at which
&amp;lt;(#)

= !, the function /(V) has the value oc . If

JV be an arbitrarily large number, a neighbourhood of o exists in which
_^V

&amp;lt;j&amp;gt; (a;) &amp;gt; ^
---

,
in virtue of the continuity of &amp;lt; (x), at a; so that /(o) &amp;gt; N in

that neighbourhood. In a similar manner, it may be shewn that, at a point a,

at which /(a) = 1, a neighbourhood of a exists such that/ (a) &amp;lt; N.

It is convenient to extend the definition of continuity of a function at a

point in such wise that the points at which f(x) has the values oo
,

oo are

points of continuity of the function, corresponding to the continuity of the

function &amp;lt; (x) at such points.

We are thus led to the following definition of the continuity of an un
bounded function at a point in the neighbourhood of which the function has

indefinitely great values.

A functionf (ac) is said to be continuous, in the extended sense, at a point a,

when, corresponding to any arbitrarily chosen positive number N, a neigh
bourhood of a exists, such that, at every point of that neighbourhood, f(x} &amp;gt; N.
It is also said to be continuous at a, if the above conditions be replaced by

f(x) &amp;lt; N. The value of the function at a may be regarded as oo
,
in the first

case, and oc in the second case.

An unbounded function f(x) is regarded as continuous in the interval

(a, b\ for which it is defined, if it is continuous at every point f(x) in the

neighbourhood of which the function is bounded, and is continuous, in the

extended sense, at every other point.

Thus, in the above case, the unbounded function f(x), continuous in this

sense, corresponds to
&amp;lt;/&amp;gt; (x) which is continuous in the more restricted sense of

the term. It can easily be seen that the continuity of
(f&amp;gt; (x) is a consequence

of that of /(#).

In the above extension of the conception of a continuous function to the
case of unbounded functions, the points oo and - oo have been regarded as
distinct.

It is however possible to regard these points as not distinct from one

another, so that when we consider the functions
/(&amp;gt;),

-J ,,a value at which
/()

/O) = corresponds to a single value + x
,
of ^
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In this case a function f(x) is said to be continuous at a point a. for which,

corresponding to each arbitrarily chosen positive number N, a neighbourhood of
a exists, in the whole of which \f(x) \

&amp;gt; N.

It is clear that this condition may be satisfied in cases in which the con

dition of continuity is not satisfied when oo and x are regarded as distinct

values of a function.
L v*- &amp;lt;m K*r ^e

THE LIMITS OF A FUNCTION AT A POINT.

220. Let o be a limiting point of the set of points which forms the domain
of the independent variable x

;
the point a may, or may not, itself belong to

the domain of x. Let (a, a + h} be a neighbourhood of a on the right, and let

U(h\ L(h) denote the upper and lower limits of a given function /(#) for all

the points of the domain of x which are interior Jo the interval (, a + h). It

will be observed that /(a), if it exists, is not reckoned amongst the functional

values of which U (h), L(h) are the upper and lower limits.

Let a sequence of diminishing values be assigned to h, which converges to

zero; denoting this sequence by h lt h, h
3&amp;gt; ...; the corresponding numbers

U(h-i), U (h 2 ), ... U(hn\ ... form a sequence of which the members do not in

crease, and therefore they have in general a definite lower limit, which is

called the upper limit off(x) at a. on the right. It is easily seen that this

y 1 limit is independent of the particular sequence {hn }, employed in defining it. It

may happen that all the upper limits U (h) are infinite, in which case we say
that the upper limit of f(x) at a on the right is 4- oc

;
or it may happen that

the sequence U^), U(h 2),
... U(hn ), ... has no lower limit, in which case we

say that the upper limit of f(x) at a on the right is oc . In any case, the

finite, or infinite, upper limit of /(#) at a, on the right, is denoted byy(a + 0).

The numbers L(hj}, L(h^), . . . L(hn ),
. . . form a sequence of which the elements

do not diminish, and they have an upper limit, which is called the lower limit

ff(a
^)&amp;gt;Jit

o?? the right, and may, as in the former case, have infinite values

oc
, or oo . This limit is denoted by /(a 4- 0).

Corresponding definitions apply to the left of the point a
;
and the limits

of/(a?) at a on the left are denoted by /(a - 0), /(a - 0) respectively. In case

the point a is a limiting point of the domain of x, on one side only, the two
limits of the function at a on the other side are non-existent.

In defining f(a + 6) it is immaterial whether we employ the upper limit,

or the upper boundary, othe function in the open interval (a, a + h). If U(h)
be the upper limit, and U (h} the upper boundary, all except a finite number
of values of /(a?) in the open interval (a, a + h) are such that f(x} &amp;lt; U(h) + e^;
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where e^ is an arbitrarily chosen positive number. A number li &amp;lt; h can be so

chosen that U(h ) ^ U(h } &amp;lt; V(h) + e/(
. If this be done in such a manner that

lim eh = 0, it follows that U(k) and U (h) have the same lower limit, as h - 0.

A similar remark applies to/(a + 0), /(a 0), /(a 0).

The definitions of the upper and lower limits at a point a may be stated

shortly as follows:

The upper limit f (a. + 0) of a function at a, on the right, is the limit of
the upper limit of f(x) in the. open interval (a, a + h), when h is indefinitely

diminished.

The lower limit f (a + 0) of a function at a, on the right, is the limit of

the lower limit of f(v) in the open interval (a, a + A), when h is indefinitely

diminished.

The definitions for the left of a may be stated in a precisely similar manner.

It is to be observed that the four functional limits /(a + 0), /(a + 0),

/( -
0), /( - 0) are entirely independent of /(a), in case a belongs to the

domain for which f(x} is defined. Any arbitrary alteration in the value of

/(a) will not affect these four limits of/(#), at a.

The conditions that the point a may be a point of continuity of the

function/0) are that/(a + 0), f(a^-_0},f(a~-~0),f(a
-
0\f(a) should all have

the same finite value.

It may happen that /(a), /(a + 0), /(a + 0) have one and the same finite

value, but that either, or both, of /(a 0), /(a 0) have not this value; in

this case /(a?) is said to be continuous at a, on the right. Continuity at a, on

the left, is defined in a similar manner.

If the four functional limits at a be all finite and equal, but /(a) have a

different value, then the function is said to have a removable discontinuity at

the point . In this case the function would be made continuous at a merely

by properly altering the value of/(a).

The four functional limits at the point x = are usually denoted by

/(+0), /(+ 0),/(- 0), /(- 0) respectively.

If, at a point a, /(a) =/(a + 0) =/(a + 0) =/(a -
0) =/(a-0) = + oo

, or

if / (a), and all the four limits, are x
,
the function is said to be continuous

at a, in the extended sense of the term
;
the distinction between 4- oo and

oc being preserved.

In case /(a) =/(a + 0) =/(a + 0) = + oc
,
or x

, the function is said to

be continuous at a, on the right, in the extended sense of the term.



280 Functions of a real variable [CH. v

The four numbers /(# + 0), f(x + Q), f(x 0), f(x 0), which are de

pendent on #, may be regarded as defining functions of x called the upper,
and the lower, right hand, or left hand, limiting functions associated with /(#).

The upper associated function A (x) may be defined to be a function

whose value at x is the greater of the two numbersf(x + 6), f(x 0); and the

lower associated function a (x) may be defined to be a function whose value

at x is the lesser of the two numbers f(x + 0), f(x 0).

The greatest of the three numbers f(x), f(x + 0),/(# 0) may be regarded
as the value, at x, of a function M (x}, called the maximal function associated

withf(x).

The least of the three numbers f(x},f(x + 0), f(x - 0) may be regarded
as the value, at x, of a function m (x), called the minimal function; associated
with f(x).

221. If the upper and lower limits of f(x) at a, on the right, have t,he

same value, this common value is called the limit of f(x) at a, on the right,
and is denoted* by/(a + 0). If the upper and lower limits of f(x) at a, on
the left, have the same value, this is called the limit of f(x) at a, on the left,

and is denoted by /(a - 0). Either of the limits, .on the right, or left, at a

point, when such limit exists, may be either finite or infinite.

The limit at # = 0, on the right, is denoted by /(+0); and the corre

sponding, limit on the left is denoted by /( 0).

The limit at a point P, on one side, may be also defined as follows : Let

(Pi, Po, PS, ) be any convergent sequence of points belonging to the domain
of x, which is such that a, or P, is its limiting point, and such that all the

points of the sequence are on the one side of P. The values of / (x) at

PI, PZ, PZ, form an aggregate which may be a convergent sequence; let us

suppose it to be so, and also that its limit has a value which is independent
of the particular sequence, which is however subject to the conditions above
stated. In that case, this limit is denoted by /(a + 0), or by/(a- 0), as the
case may be, and is called the limit off(x) at a, on the right or left.

It may be observed that the necessary and sufficient condition for the

existence of a definite finite limit, on the right, at a, is that, corresponding to

every arbitrarily small number e, a neighbourhood (a, a + 8) can be found, such

that the difference of the values of the function at every pair of points of the

domain of x, which are in the interior of this interval, is numerically less

than e.

* This notation was introduced by Dirichlet
; see Werke, vol. i, p. 156.
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The necessary and sufficient condition that /(a + 0) should exist, and be

equal to 4- oo
, is that, if A be an arbitrarily chosen positive number, 8 can be

so determined that at every point interior to (a, a + 8) the condition f(x) &amp;gt; A
is satisfied. In order that /(a + 0) may exist, and be equal to x

, the corre

sponding condition is that/(#) &amp;lt; A.

It is possible that one of the limits /( + 0), /(a -
0) may exist and not

the other. If the domain of x be either a continuous interval, or a perfect set

of points, a may be taken to be at any point of the domain.

When the condition for the existence of/(a + 0), or of/(a- 0), at a point
a, is not satisfied, the convergent sequence (P, , P2 , . . . Pn ,

. . .), of which P (a) is

the limiting point, may be such that/(P1),/(P2 ), ...f(Pn), ... is either not a

convergent sequence, or else that its limit depends upon the particular choice

of the points P, ,
P2 , ... Pn ,

.... In this case the fluctuation of/(a?) within an

arbitrarily small neighbourhood (a, a + 8), on the one side of a, is either a

finite number which has not zero for its limit, when 8 is indefinitely diminished,
or else it is indefinitely great, ho.wever small 8 may be.

222. If x1} x2 ,
x3 ,

... xn ,
... be a convergent sequence of points belonging

to the domain of x, with a for its limiting point, then the sequence
/(^iX/O^s), ---/(Xi), may not be convergent; but, if it be convergent, its

limit may have either (1) a single value independent of the mode in which the

convergent sequence is chosen, in which case a is either a point of continuity
f /(#) or a point of removable discontinuity of the function; or (2) one

of two values, in which case both
the^ limits /(a 4- 0), /(a 0) exist: or

(3) one of a finite, or an indefinitely great, number of values, which all lie

between the greatest and least of the four functional limits at a.

-If the sequence /(a?,), /(#2), .../(*), ... be not convergent, by omitting a
certain set of the numbers of the sequence, we shall obtain a convergent
sequence, or else one which diverges to -f oo

,
or to - x . We can therefore

without loss of generality suppose that a^, a^, ... a?n , ... are so chosen that
this is the case.

The aggregate of all possible values of the limits of such a sequence
/(#i), y(a?2), .../(#), ..., for all sequences [xn ]

which converge to a, each of
which limits has a finite value, or is oo

,
or -x, is called the aggregate of

functiona^ limits at the point or. Of the numbers
&amp;lt;r,,

x.2 , ... xn ,
... an infinite

number are on one side of a; we may therefore without loss of generality
assume that #1, #s , ... a?B , ... are all on the same side of a.

It will be shewn that the aggregate of functional limits at a is a closed set

(which may be finite), provided, in case any functional limit is infinite, we
regard the point x ,

or - x
, as belonging to the set.

Suppose U is the limit to which such a sequence converges. If the

aggregate of all values of IT is not finite, let U,,U,,... Un ,
... be a convergent
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sequence of values of U, of which Uu is the limit. It will be shewn that Uu is

itself a value of U. First suppose that Uu is finite. Let Ur be the limit of a

sequence {f(xn
(r)

)\,
for n = 1, 2, 3, ...; we may choose r so large that

for this, and all greater, values of r. We can then choose n so that

for that, and all greater, values of n. It follows that, for all sufficiently large
values of r and n,

\
U^ f(xn (r)

) \

&amp;lt; e.

As e is arbitrarily small, we can obtain a sequence of numbers as, such

as asn
(r
\ for which f(xn

(r)
} converges to Uu ,

whilst the numbers xn(r]

converge
to a. Hence Uu belongs itself to the aggregate of functional limits.

In case Um is infinite, we can choose r so that Ur
\

&amp;gt; A, an arbitrarily
chosen number; then, as before, n can be so chosen that Ur f (xn

(r)

) \&amp;lt;^e,

and thus j/(#
(r)

)
j

&amp;gt; A e. Taking an increasing sequence of values of A,
and a diminishing sequence of values of e, we obtain a sequence of points
xn (r)

,
for which j/(#

(r)

)| is divergent.

It thus appears that the aggregate of functional limits at a point a is

closed, in the ordinary sense, when the upper and lower functional limits, at a,

are all finite; and that, when this is not the case, the set will be closed if we

regard one, or both, of the points oc
,

oo as belonging to it.

The aggregate of functional limits may be finite, or may consist of a

closed set, of any type as regards density.

223. If the domain of x be unbounded, in one, or in both, directions, it may
happen that a point #!(&amp;gt;())

of the domain can be found, corresponding to

every arbitrarily chosen positive number e, such that the difference between
the values of /(#), for any two values of x which are both greater than xlt is

numerically less than e. In this case the function has a definite limit, as x is

increased indefinitely in its domain; and this is called the limit of f(x) for

x ~ oo . Under a corresponding condition f(x) may have a definite limit for

x-^ oc .

If, as x increases, a point xl of the domain of x, corresponding to each

assigned positive number A, chosen as great as we please, can be found, such

that/ (a?) &amp;gt; A, for all values of x which belong to the domain, and are &amp;gt; xlt then

the limit off (x) is said to be oo
,
as x is increased indefinitely. If/(#) &amp;lt; A,

for all such values of aclt then the limit of f(x) is said to be - oc . Similar

definitions apply to the case in which x has indefinitely great values in the

negative direction.

In case the limit /(a + 0), at a point a on the right, do not exist as a

definite number, and be not infinite with a fixed sign, it is frequently
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convenient to regard / (a + 0) as still existent, but indeterminate, and

capable of all values belonging to some closed set of which f(a + 0), /&quot;(a-t-0)

are the extreme values. It is then said that /(a + 0) is indefinite in value,

and that /(a + 0), /(a + 0) are its limits
ofindetermin&amp;lt;n&amp;gt;c&amp;gt;/.

A similar remark

applies to /(a 0), which may also be either definite, or indefinite, with

f(a ),/(- 0) as its limits of indeterminancy. One, or both, of the limits of

irideterminancy, in either case, may be infinite.

THE DISCONTINUITIES OF FUNCTIONS.

224. Let us suppose the domain of a; to include all points in a sufficiently

small neighbourhood of a point a
; or, in any case, let a be a limiting point of

the domain of x.

The fluctuation of the function f(x) in the closed, or open, neighbourhood
(a 8, a + 8) of the point a, depends in general upon 8, but cannot increase as

8 is diminished. It therefore has a lower limit, for values of 8 which converge
to zero. This limit, which may be zero, finite, or indefinitely great, is called

the saltus (Sprung), or measure of discontinuity, of the function /(a?), at a;

thus:

The saltus, or measure of discontinuity, of a function f(x), at a point a, is

the limit of the fluctuation of the function in a neighbourhood (a &, a + 8), as

8 converges to zero.

The upper boundary of the function f(x) in the interval (a -8, a + 8) has a

lower limit, as 8 is indefinitely diminished, which is called the maximum M(oi),

of the function f(x), at a (see 220).

The lower boundary of the function, in the same interval, has an upper limit,

as 8 is indefinitely diminished, which is called the minimum m(a\ of f(x), at a.

Either the maximum or the minimum at a point may be indefinitely great.

The saltus of f(x) at a is easily seen to be the excess of the maximum at \

a over the minimum.

It is clear that the maximum of /(#), at a, is the greatest of the numbers

/(a + 0), /(a 0),/(a), and that the minimum is the least of the numbers

/(a + 0), /( 0), /(a); and thus that the saltus at a is the excess of the greatest

over the least of the numbers /(a + 0), /(a + 0), /(a - 0), /(a - 0), /(a).

At a point of continuity of f(x) the saltus is zero. Any point at which
the saltus has a finite value

(&amp;gt;0),
or is indefinitely great, is called a point of

discontinuity of
/(#)&amp;gt;

and in the latter case it is said to be a point of infinite

discontinuity.
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If the closed neighbourhood (a, a + S), on the right of a, be taken, the lower

limit of the fluctuation in this neighbourhood when B is indefinitely diminished

is called the saltus at a, on the right. This is equivalent to the excess of the

greatest over the least of the three numbers /(a + 0), /(a 4-0), /(a). A cor

responding definition applies to the saltus at a on the left.

225. The points of discontinuity ofa function may be classified as follows :

(1) If both the limits /(a + 0), /(a-0) exist, and have values which differ

from one another, the point a is said to be a point of discontinuity of the first

\kind, or a point of ordinary discontinuity.
,*

The difference between the greatest and least of the three numbers

/ (a 4- 0),/(a 0),/(a) is the saltus, or measure of discontinuity, of the function

at a. If a be not a point of the domain of x, j/(a + 0) /(a 0) |

measures

the saltus at a; and if a be a point of the domain, and /(a) lies between

/(a + 0) and/(a - 0), then the saltus is also measured by j /(a + 0) -/(a - 0) |.

When/(a) does not lie between/(a + 0) and/(a - 0), the function is said

to have an external saltus at a.

In every case, the saltus on the right is measured by ]/( + 0) /(a) j
,

and that on the left by ;/(a-0)-/(a) .

Whether there be an external saltus at a, or not, the number

is said to measure the oscillation (Schwingung) at a. The oscillation at a

point differs from the saltus in that the functional value /(a), at the point, is

in the former case disregarded.

If /(a)=/(o-0), whilst /(a)^/(a + 0), the function is said to be

ordinarily discontinuous at a on the right. If / (a) =^/ (a
-

0), whilst

/(0 =/(a + 0), the function is said to have an ordinary discontinuity at a

on the left.

It may happen that/(o + 0),/(a- 0) have equal values which differ from

/(a). In that case the discontinuity at a is removable (see 220); since by
merely altering the functional value at the one point a, the function can be
made continuous at the point.

(2) If neither of the limits /(a + 0),/(a
-

0) exists, the discontinuity at

a. is said to be of the second kind.

The oscillation* at a is measured by the excess of the greater of the two

numbers /(a + 0), /(-) over tne lesser of the two numbers /(a + 0),

/(a 0), the value of/(a) being left out of account.

The differences /(a +0)-/(q + 6), /(a -Q)-/(a -0) may be spoken of

as the oscillation at a on the right, and on the left, respectively.

* This definition of the &quot;

Schwingung
&quot;

is given by Pasch in his Einleitung in die Di/erential-
und Integralrechnung, p. 139.
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By Dini*, a definition of the saltus is adopted which differs from the one

which we have employed ;
he takes the greatest of the four differences

l/(a + 0)-/(a) as the measure of the saltus, the greater of the two

differences /(a+0)/(a) \ being taken as the measure of the saltus on the

right.

(3) It may happen that one of the two limits /(a + 0), /(a- 0) exists,

whilst the other does not. In this case, the point a may be said to be a point

of mixed discontinuity.

If /(a) exist, and be equal to that one of the two limits /(a + 0), /(a 0)

which exists, then the function is continuous at a on one side, and has a dis

continuity of the second kind on the other side.

(4) If one or more of the four limits f(a 0) be indefinitely great, the

point a is one of infinite discontinuity.

Under infinite discontinuities is sometimes included the case .in which

/(a) is defined by l//(a) = 0, or when/(#) is defined as the limiting sum of

a series which, for the value a, becomes divergent.

226. In an arbitrarily small neighbourhood (a, a + h), on the right of a

point a at which the limits f(a + 0), /(a + 0) have different values, there

must be an infinite number of points at which f(x] &amp;gt;f(a
+ 0) e, where e is

an arbitrarily small fixed number.

For, if there were only a finite number of such points in (a, a + h), h could

be chosen so small that all such points would be excluded from the neigh

bourhood; thus, in a sufficiently small neighbourhood (a, a + h), we should have

at every internal point /(#) g/(a + 0) e
;
and then the upper limit at a on

the right could not be/(a+ 0). In a similar manner it can be shewn that, in

the arbitrarily small neighbourhood (a, a + h), there must be an infinite number
of points at which /(a?) &amp;lt; /(g-f-0) + e.

In this case we say that, in the arbitrarily small neighbourhood of a, on

the right, the function makes an infinite number of finite oscillations. In

case of the infinity of one, or of both, of the limits /(a-t-0) and/ (a. + 0), and,

in the latter case, only if they be of opposite signs, the function makes an

infinite number of infinite oscillations in the arbitrarily small neighbourhood
of a. A similar remark applies to the case in which /(a 0), /(a 0) have

unequal values. It has thus been shewn that :

A point of discontinuity of the second kind is one such that, in its arbi

trarily small neighbourhood, the fitnction makes an infinite number offinite or

infinite oscillations.

* See Grundlagen, p. 55.
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In an arbitrarily small neighbourhood on either side of a point of

discontinuity of the first kind, the function may make an infinite number
of oscillations; but since the neighbourhood can be chosen so small that
the fluctuation of the function in its interior is arbitrarily small, the

oscillations, when they are infinite in number, are arbitrarily small, sufficiently
near the point.

EXAMPLES.

1 . Let/ (x}
= sin x\x, when x ^ 0, and f(x)= A, when x= 0.

In this case /( + 0)= /( -0) = 1,/(0) =A ; thus f(x] has a removable discontinuity at

,&amp;lt;;

= 0, unless .4 = 1, in which case the function is continuous in any interval.

2. Let/(.r)= ;
we have then f(a+0)=x , /(a-0)= - x, and f(a) is undefined.& CL

3. Let /(#) = (#-) sin-
;
then /(a + 0)= 0, /(a-0)=0. This function is con-

(JL

tinuous at x= a, and makes an infinite number of oscillations in any neighbourhood of

that point.

4. If / (x) cosec
,
then

x a x a

/( + 0) = oc, /(q+0)=-x, /(a-0) = x, /(a-0)=-x.
This function has an infinite discontinuity of the second kind at the point .

! 1
5. If /(*)- we have /( + 0)

= x, /(-0) = 0. If f (x}= _,,
then /( + 0)=0,

1-e*

6. If/ (x)
= sin x, lim f(x) is indeterminate, the limits of indeterminancy being +1, - 1.

In the case f(x] = x sin x, the corresponding limits of indeterminancy are +00, x .

7. Let y= E(x\ where E(x] denotes the integral part of x. This function is dis

continuous when x has an integral value n
; we then have E(n Q)=nl, E(n) = n &amp;gt;

8. Let (x) denote the positive or negative excess of x over the nearest integer ; and
when x exceeds an integer by ,

let (A-)
= O. This function is continuous except for values

x= n + ,
where n is an integer. We have (n -f |)

=
0, (n+ 1

-
0) = , (n + i+ 0)= -

.

ORDINARY DISCONTINUITIES.

227. Although the points of discontinuity of the first kind have, in ac

cordance with usage, been spoken of above as ordinary discontinuities, it will

be shewn that they are, in a sense, more exceptional than discontinuities of

the second kind. The following theorem will be established:

The set of points at which a function f(x) has ordinary discontinuities is

enumerable (or finite, or absent}; whereas the set of points of discontinuity of
the second kind may be unenumerable.
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Let & be a positive number, and let Sk denote that set of points of ordinary

discontinuity in (a, b) at which the saltus of f(x) is &amp;gt; k. If the set 8k be not

finite, let a be a point of its derivative. Any neighbourhood of a contains points

of 8k ,
and therefore contains pairs of points, both on the same side of a, such

that the difference of the values of f(x) at the points of such a pair is nu

merically &amp;gt; k. It follows that the point a must be a point of discontinuity of

the second kind, and thus that a is not a point of Sk ;
and therefore the set Sk

is an isolated set, and is consequently enumerable. If k1} kz , ... be a sequence

of diminishing numbers that converges to zero, all the sets S
kl ,
S

ks ,
. . . are

enumerable (or finite, or non-existing), and therefore their outer limiting set,

which contains all the points at which f(x) has an ordinary discontinuity, is

enumerable (or finite, or absent).

THE SYMMETRY OF FUNCTIONAL LIMITS.

228. The question as to the nature ofthe set ofpoints at which a function/(#)

has functional limits, on one side, which differ in value from the corresponding

functional limits on the other side has been investigated* by W. H. Young.

The general result obtained is that:

Except at points ofan enumerable set, the upper and lower limits of afunction,
on the right, are equal to the upper and lower limits respectively, on the left, and

there is no external saltus.

Let us consider the set of points Gkt ^ at which

/0 + 0) -/(ff~0) &amp;gt; k, f(x + 0) &amp;gt; A ;

where A and k are positive numbers. If the set Gk,A is not enumerable, it con

tains a component H, each point of which is a limiting point on both sides

( 89). It follows that, at each point of H, f(x 0) = A ;
and therefore

f(x + 0) &amp;gt;A + k, at each point of H. Similarly, it is seen that, at each point of H,

f(x + 0) &amp;gt; A + 2fc
;
and by repeating the process we have f(x + 0) &amp;gt; A + nk,

whatever value n may have. It then follows that at the points QfH,f(x+ 0)=+ GO ,

and therefore /(# 0) = + oc
;
which is contrary to the condition

(a?-0 &amp;gt; k.

Therefore the set G
k&amp;gt;
4 is enumerable. Giving to A the values in a sequence of

decreasing numbers diverging to GO
,
we see that the set of all points at which

f(x + 0) f(x 0) &amp;gt; k is enumerable. Next, letting k have the values of the

numbers in a decreasing sequence converging to zero, we see that the set of

points at which f(x -1-0) -f(x 0) &amp;gt;0 is enumerable. Similarly, it may be

shewn that the set of points at which f(x 0) f(x + 0) &amp;gt; is enumerable.

Therefore, except at the points of an enumerable set, we have/(&-+ 0) =f(x 0).

* See Quarterly Journal of Math., vol. xxxix, p. 67.
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By considering the function /(#), for which an upper limit is obtained

by changing the sign of the corresponding lower limit of f(x), we see that

f(x + 0) =/(# 0), except at the points of an enumerable set.

Therefore f(x + 0) =f(x - 0) and f(x + 0) =/(#-0), except for values of

x belonging to an enumerable set.

In the proof of the above theorem f(x) may be substituted for /(#+ 0),

without affecting the reasoning. It then follows that the set of points at which

f(x}&amp;gt;f(x 0) is an enumerable set. By changing /(&) into /(#), it then

follows that the set at which f(x) &amp;lt;f(x 0) is also enumerable. Similarly

the sets at which f(x) &amp;gt;f(x
+ 0), and at which f(x) &amp;lt;/Q

+ 0),are enumerable.

Hence, except at the points of an enumerable set, we have

and

The theorem has now been completely established.

Also, it follows that :

The set of points at which there is a removable discontinuity is enumerable

(or finite, or absent}.

FUNCTIONS CONTINUOUS IN AN OPEN INTERVAL.

229. The theorem that a function that is continuous in a closed interval

(a, 6) attains its upper and lower boundaries (which are also limits), each at one

point in the interval, may be extended to the case of a function which is con

tinuous only in an open interval (a, b).

We have in that case the following theorem :

If a function f(x) be continuous in an open interval (a, b), and if f(a + 0),

f(b 0) are both less than the upper boundary of the function in the interval,

there is one interior point at least at which the function attains the value of its

upper boundary. Similarly iff(a + 0), f(b 0) are both greater than the lower

boundary of the function in the interval, there is one interior point at least at

which the function attains the value of its lower boundary.

For e, e may be so chosen that, for a &amp;lt; x ^ a + e, and for b e x
&amp;lt;b, the

upper boundaries of the function are less than in (a, b). The original theorem

may then be applied to the closed interval (a + e, b
e&quot;),

and the result follows.

The theorem of 214 may also be extended to the case of a function that is

continuous in an open interval (a, 6). We have the following theorem:

If f(x} be continuous in the open interval (a, b), and if any one of the

functional limits at a is of opposite sign to any one of those at b, there is at least

one point of the open interval at which f(x) has the value zero.
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Let /(a + 0) A S/(a + 0), and f(b -0)^B /(6 - 0), where 4 and

are any functional limits at a and b, not necessarily extreme limits; and

suppose A &amp;lt; 0, B &amp;gt; 0. Positive numbers e, e can be so determined that

if the theorem of 214 be applied to the closed interval (a + e, b e ) the result

follows.

IfA,B satisfy the conditions/(a + 0) ^ A Zf(a + 0), f(b - 0) ^B^f(b-0),
there is at least one value of x in the open interval at which f(x) has a prescribed
value C, lying between A and B.

For the theorem just proved can be applied to the function /(a?)
- C.

Iff(x) be continuous in the open interval (a, b), the aggregate offunctional
limits, on the right at a, contains every number in the interval (/(a + 0), /(a + 0)).

Let c be a number such that /(a + 0) &amp;gt; c
&amp;gt;f(a + 0), and let e be less than

/ (a + 0)
-

c, and than c -/(a + 0) ;
thus f(a + 0) - e &amp;gt; c

&amp;gt;f(a + 0) + e.

In an interval (a, a- + h), where a + h&amp;lt;b, there is a set ef points GV1
,
at each

point of which /(a + 0) + e
&amp;gt;J\x) &amp;gt;f(a

+ 0)
-

e, and another set Gh
m

, at each

point of which /(a + 0) + e
&amp;gt;/(*) &amp;gt;/(o+0)- e. Let be the upper boundary

of the set Gh
(l
\ and 2 the upper boundary of the set Gh

{2}
. We have then,

since f(x) is continuous at and f2 ,

-
e,

-
e.

In the closed interval of which
, |2 are the end-points, since c lies between

i) /(la), there is a set of points at which the function is equal to c. This
set must be closed

;
if f be its upper boundary, we have /() = c

;
where is a

definite point in (a, a + h). If now we assign to h successively the values in a

monotone sequence that converges to zero, we obtain a sequence of points
that converges to a, and at each point of the sequence the value of f(ac) is c.

Thus the aggregate of functional limits at a includes the number c. This

sequence of values of is determinate, and its construction does not involve

the use of the principle of selection.

If we assign to e the values in a monotone sequence that converges to zero,

there will be a corresponding sequence of values of such that, in that sequence,

/(,) converges to f(a + 0). Similarly the sequence /(&amp;gt;)
will converge to

/(a + 0).

H. 19
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SEMI-CONTINUOUS FUNCTIONS.

230. The condition of continuity ofa function/(#), at a point x, namely that,

if e be any prescribed positive number, an open interval (xh,x+h} exists

such that, for any point x in it, /(X) -/(#) &amp;lt; e, can be divided into two

separate conditions, viz. that/(# ) &amp;lt;f(x) + e, and that

/(0 &amp;gt;/()-

It is possible that, at a point a?, .one of these conditions may be satisfied and

not the other. This consideration gives rise to the definition of a property

called semi-continuity.

If
&amp;lt;/&amp;gt;(#)

be a function defined for a continuous domain, and if, corre

sponding to every arbitrarily chosen positive number e, an open neighbour
hood (x h, x + h) of a particular point (x) .

can be determined such that,

for every point x in this open interval, the condition, &amp;lt; (x) j&amp;gt;(ac)
+ e, is

satisfied; then the point x is said to be a point* of upper semi-continuity of

the function
&amp;lt;/&amp;gt;

(x).

If an open neighbourhood of the point x can be determined, for each e,

such that
(f) (x } &amp;gt;

&amp;lt;f&amp;gt;
(x) e, then the point x is said to be a point of lower

semi-continuity of the function
&amp;lt;/&amp;gt;

(x).

That a point x may be a point of continuity of the function
&amp;lt;/&amp;gt; (x\ it is

necessary that both the above conditions be satisfied.

A function may have upper, or lower, semi-continuity at a point, on the

right, or on the left.

If every point of the domain (a, b), for which the function
&amp;lt;/&amp;gt;

(x) is defined,

/ is a point of upper semi-continuity, then the function
&amp;lt;f&amp;gt;

(x) is said to be an

\ upper semi-continuous function.

A similar definition applies to a lower semi-continuous function.

It is clear that, if
&amp;lt;/&amp;gt;

(x) be a lower semi-continuous function, then &amp;lt; {x)

is an upper semi-continuous function. Thus the properties of the one class of

functions may easily be extended to the other class.

If f (x} be a function, defined for the interval (a, b), and if M (x}, m (x}

denote the maximum and the minimum off(x) at the point x, then M (x) is an

upper semi-continuous function, and m (x) is a lower semi-continuous function.

For a neighbourhood (x h, x + h) of any point x can be determined, such

that the value (see 224) of f(x\ at every point in this neighbourhood, is

less than M(x) + e, where e is a prescribed positive number. At every point

in (x h
1 ,x + h^), where /?j is chosen &amp;lt; h, the value of the function M (x} is less

than M (x) + e. Since this holds for every value of e, the function M (x) is

upper semi-continuous at x.

* See Baire s memoir &quot; Sur les fonctions des variables reelles,&quot; Annali di Mat. (3 A), vol. in,

1899.
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It is clear that the function m(x), where in (x) denotes the minimum of

f(x) at the point x, is a lower semi-continuous function.

The saltus M (x) m (x), of the function / (a?), may be taken to be the &quot;~\

value of a function, &&amp;gt; (x}, which is called the saltus-function off(x).

The saltus-function a&amp;gt; (x} of any function f (x) is an upper semi-continuous

function.

For M(x) and m(x} are both upper semi-continuous functions, and it is

easily seen that the sum of two such functions belongs to the same class.

Instead of considering the functions M(x), m (x} we may consider the upper
and lower associated functions A (x}, a (x} (see 220). It can be proved in the

same manner as in the cases ofM (x), m (x) that the upper associated function

A (x) is upper semi-continuous, and that the lower associated function a
(./;)

is

lower semi-continuous.

The functionf(x + 0) is upper semi-continuous on the right, and/(#
is lower semi-continuous on the right.

If &amp;lt;f) (x) be any upper semi-continuous function, then the set of points for
which

(f&amp;gt; (x} = a is a closed set, where a is any fixed number.

For let S be a set of points at which the condition
&amp;lt;j)(x)^a

is satisfied,

and let P be a limiting point of S. Let us suppose that, if possible, (P) &amp;lt; a
;

then a neighbourhood of P can be determined, such that at every point in it

.the value of
&amp;lt;j&amp;gt;

(x) is less than a, and hence this neighbourhood cannot contain

any of the points of S; but this is contrary to the hypothesis that P is a

limiting point of S. It follows that
&amp;lt;j&amp;gt;
(P) = a, and thus that the set of points for

which $ (x) ^ a contains all its limiting points, and is therefore a closed set.

It can be shewn, in a similar manner, or it can be deduced from the above

theorem, that the set ofpoints for which ^ (x) ^ a, is a closed set; where ty (x) is

any lower semi-continuous function.

If we apply the theorem proved above to the saltus-function co (x), of any
function f(x), we obtain the following theorem:

Having given any function f(x} defined for a continuous domain, the

saltus-function w (x) is such that the set of points for which to (x) ^ a, forms a
closed set.

231. In an open interval, f(x) and the minimal function m (x) ha-ve the

same lower boundary.

For, if there are points at which f(x) is between A e, A + e; at any such

point m (x) ^ A + e. IfA is the lower boundary off(x), we see that the lower

boundary of m (x) is ^ A, since e is arbitrarily small. Again if there are points
at which m (x) is between A -

e, A + e, there must be a point at which f(x)
is also between these numbers; hence ifA is the lower boundary of m (x\ the

192
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lower boundary of/ (x) is&amp;lt;A + e, arid is therefore ^ A . The two inequalities

shew that f(x) and m (x) have the same lower boundaries.

If
&amp;lt;fr (x) is an upper semi-continuous function, defined in the interval (a, b),

the set ofpoints at which a&amp;gt; (x) ^ a is non-dense in the interval (a, b).

We have in this case M(x) = &amp;lt;f&amp;gt;(x),

and thus &&amp;gt; (x)
=

&amp;lt;f&amp;gt;
(x)

- m (x). If

possible, let there be an open interval in which at every point &amp;lt;j&amp;gt;(x) -m(x) ^tr;

and thus m (x) ^(f&amp;gt;(x)
a. If a be a point of the interval, and e ( &amp;lt; o-) be arbi

trarily chosen, a point x
1
in an arbitrarily small neighbourhood of a, contained

in the interval, exists such that &amp;lt; (X) &amp;lt; m (a) + e
j&amp;gt;
(a)

-
(&amp;lt;r

-
e). In an

arbitrarily small neighbourhood of xl} also contained in the open interval, a

point x2 can be determined such that
&amp;lt;j&amp;gt; (#2) &amp;lt; &amp;lt; (#1)

-
(or e), or that

&amp;lt;/&amp;gt;Gr
2) ()- 2

(&amp;lt;7-e).

Proceeding in this manner, a point xn , arbitrarily near to a, can be so determined

that
4&amp;gt;(xn )&amp;lt; &amp;lt;/&amp;gt; (a)

- n (a-
-

e), for any integer n; and thus
&amp;lt;f&amp;gt;(x

n) is an arbi

trarily great negative number. It follows that there exists an everywhere

dense set of points at which
(f&amp;gt;(x}&amp;lt;-A,

where A is an assigned positive

number. For, if /3 be a point at which
&amp;lt;/&amp;gt;

(x) &amp;lt;

- A ,
where A &amp;gt; A, a neighbour

hood of /3 exists in which &amp;lt; (x} &amp;lt;

- A + e &amp;lt;

- A, if e be chosen &amp;lt; A - A.

This neighbourhood contains no points of the set for which
&amp;lt;f&amp;gt;(x)^-A.

Since the points are everywhere dense, we see that, in any interval, a sub-

interval exists which contains no points at which
(f&amp;gt;(x)

^ A, and thus the

set of such points is non-dense. Giving to A the values in a divergent

sequence of increasing numbers, and remembering that $ (x) is finite at

every point, we see that the points of the continuum (a, b) are divided into

the sum of sets of a sequence of non-dense sets. But this is impossible, since

the continuum does not form a set of the first category. It follows that there

cannot exist an everywhere dense set of points, corresponding to each positive

number A, such that
&amp;lt;f&amp;gt;(x)&amp;lt;-A.

Thus no open interval exists in which

&&amp;gt; (x) ^ a-, and therefore the set of points at which w(x)^a- is non-dense. We
have now the equivalent form of the above theorem :

The points of discontinuity of cm upper semi-continuous function form a

set of the first category.

232. If &amp;lt;/&amp;gt;
O) be an upper semi-continuous function, and if,

at every point

of the interval (a, b), the minimum of &amp;lt;j&amp;gt;
(x) be zero, then there exists a set of

points, everywhere dense in the interval, at which $ (x) is itself zero.

To the interval (a, 6), the field of the variable x, let there be fitted on

a system of nets with closed meshes. Let P be the centre of a mesh dn ,
of Dn :

then since the minimum of
&amp;lt;/&amp;gt;(

at P is zero, a mesh d^n-^ &amp;gt;n),
of the

sequence of meshes which defines P, must be such that in every point of dn,

we have ^
&amp;lt;f&amp;gt;

(x) &amp;lt; e/2. Another mesh d
?i2 ,

contained in dni ,
can be so deter-
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mined that, for all points of it, ^ (x) &amp;lt; e/2
2

;
and so on. We have then a

sequence of meshes d
ni ,

c?
n2 ,

... each of which contains the next, and such

that, in d
rif ,

we have ^
&amp;lt;/&amp;gt;(V)

&amp;lt; e/2
1

. This sequence defines a point P (x), in all

of them, for which ^ $ (x) &amp;lt; e/2
r

,
for every value of r. Therefore

&amp;lt;/&amp;gt;
(x)

= 0;

and every mesh dn contains a point such as x. It is thus seen that &amp;lt; (x)

vanishes at the points of an everywhere dense set.

In particular, we see that, if co (x) be the saltus-function of any given func
tion f(x\ and if a&amp;gt; (x) has its minimum equal to zero at every point of the domain

of x, then co (x) vanishes at an everywhere dense set of points. The points of this

set are the points of continuity off(x).

233. If infinite values of a function are admitted, the function f(x) may
still be regarded as semi-continuous, when it is infinite.

Consider a function f(x) which has infinite values
;
the function

is bounded, and the values 1, 1 correspond to values + oc
,

oc respectively,
of f(x).

We have f(x } -f(x} = ^ J^?&quot;^

provided &amp;lt;j&amp;gt; (x).
&amp;lt;/&amp;gt;
(x) have the same sign ;

hence if
&amp;lt;/&amp;gt;

(x } tf&amp;gt;(x}&amp;lt; e, then

Therefore, if
cj&amp;gt;(x)

is upper semi-continuous at a, so also isf(x). In case
&amp;lt;/&amp;gt;

(x)

is positive, and $(x ) negative, &amp;lt;/&amp;gt;(# ) &amp;lt;

&amp;lt;(#)&amp;gt;
and then f(x) &amp;lt;f(x).

lff(x) = oo
,
we have &amp;lt; (x)

= 1, and at all other points &amp;lt; (x) ^ (f&amp;gt;(x);
there

fore a point where f(x) = + x is a point where $ (x) is upper semi-con

tinuous
;
and similarly where/(#) = oo

,
&amp;lt; (x) is lower semi-continuous.

It is therefore convenient to regard f(x) as upper semi-continuous, where

it has the value + oo
,
and lower semi-continuous where it is oo

;
the corre

spondence with
&amp;lt;f&amp;gt; (x) being thus preserved.

234. The following theorem is a generalization* of the theorem of 217,

that a continuous function is uniformly continuous in its closed domain.

Iff(x) be bounded in the interval (a, 6), and if k be a number greater than

the upper boundary of &amp;lt;a(x)
in (a, b), there exists a positive number a, such that,

in every closed sub-interval in (a, b) of length not exceeding a, the fluctuation of

f(x) is &amp;lt; k.

It is convenient to assume that, for values of x that are &amp;lt; a, f(x) is defined

to be equal to /(a), and that, for values of x that are &amp;gt; b,f(x) =/(&).

* See Baire, loc. cit., p. 15.
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If x be any point in (a, b), the fluctuation of/0) in the interval (x-h, x+ h)
is &amp;lt; k, provided h be sufficiently small. The upper boundary of all values of

h for which this is the case may be denoted by Ji. If 6 be a fixed number
such that

0&amp;lt;^&amp;lt;1,
the fluctuation of the function in the closed interval

(x 6h, x + 6h} is &amp;lt; k. Corresponding to each point x in (a, b\ a definite

interval may be assigned, viz. the interval (x 6h, x + 6h\ or the part of

it which is interior to (a, b). By the Heine-Borel theorem, a finite set

of these intervals exists, such that every point of (a, b) is interior to at least

one of these intervals. The end-points of the intervals of this finite set A
form a finite set of points in (a, 6) ;

let a be the smallest of the distances be
tween consecutive points of this set. Any closed interval whatever, in (a, b),

of length not exceeding a is in one of the intervals of the finite set A. There

fore, in such an interval, the fluctuation off(x) is &amp;lt; k.

The corresponding theorem for the case of a bounded function defined in

a cell of two or more dimensions may be stated as follows :

If a function be bounded in a cell (a, b) of any number of dimensions, and

if k be a number greater than the upper boundary of the saltus-function in the

whole cell, there exists a positive number a such that, in every closed cell con

tained in (a, b}, of span not exceeding a, the fluctuation of the function is &amp;lt; k.

The proof is a modification of that given above for the case of a linear inter

val. There is shewn to exist a finite set of closed cells, such that in each of them
the fluctuation of the function is &amp;lt; k, and such that each point in the cell (a, b)
is interior to one of the cells of the finite set. If we project on the edges of

(a, b) all the edges of the cells of this finite set, we have on each edge of

(a, b) a finite set of points. The number a can then be taken to be the least

distance between consecutive points of these finite sets, when all the points
on all the edges of (a, b) are taken into account. Any cell whatever, in (a, b),

of span not exceeding a will.be in one of the cells of the finite set, and there

fore the fluctuation of the function in such a cell is &amp;lt; k.

The definitions of semi-continuity given above, and the theorems estab

lished, are applicable when the domain of the variable x is not an interval

(a, b), but any closed set of points. In that case, we regard functional values

in any interval as only existing at those points in the interval which belong
to the domain of x.

Moreover, the definitions and theorems are applicable to the case of

functions of a number p of variables. In this case, instead of an interval

(x fi, x + h) used in defining semi-continuous functions and the saltus-

function, we may employ the
&quot;sphere&quot;

\ or ^

according as the neighbourhood is open or closed, or else a cell may be

employed.
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EXAMPLE.

If* f(x} be any function, $ (x) its maximum, and ty(x] its minimum at the point x, and

g (x) be any continuous function, then
(j&amp;gt;

(x) +g (&), ^(x}+g (x) are the maxima and minima

at x, of f(x} +g (x}. Also the functions &amp;lt; (of) -/(#), /O) - ^ (x) have each, in any domain,

the minimum zero.

APPROXIMATE CONTINUITY.

235. A function f(x) is saidf to be approximately continuous at a point a

of the domain (a, b) of the variable x, when, corresponding to each arbitrarily

chosen number e, the set of points x for which \f(x) /(a) j

&amp;lt; e has the metric

density unity at the point a.

The necessary and sufficient condition that the function f(x) should be ap

proximately continuous at the point a is that it should be continuous, at a., rela

tively to a set ofpoints G which has the metric density unity at the point a.

The condition in the theorem is sufficient
;
for there then exists a number

h, such that, in the interval (a h, cc + h), the condition \f(x) f(a) \

&amp;lt; e is

satisfied for every point x that belongs to G. This part of G has the same

metric density at a as G itself.

To shew that the condition is necessary, let it be assumed that the set

G (a, e) of points at which \f(x) /(a) i &amp;lt; e has the metric density 1 at the

point a, whatever value e may. have.

Let |en }
be a sequence of decreasing values of e that converges to zero ;

for each ? a number hn (&amp;lt;h n^} can be so determined that the measure of

the part of G(a, ew) in the interval (a hn ,
a + hn) is &amp;gt;2An (l en ).

The

numbers hn may, if necessary, be so altered that hn+l/hn &amp;lt; l/en ,
for every

value of n.

Let Fn be the part of G (a, en) that is in the two intervals (a + nhn+l ,
a + hn\

(a
- h n ,

a nhn+l ); then Fn+m is a part of G(a, en+m), and therefore of G(a, e?l).

If G be the set M(Flt F2 ,
...Fn ,...), then the set G has the metric density 1

at the point a, since m(Fn )&amp;gt;
2An (l 2en ).

Let x
l ,x2 ,...xm ,... be a sequence of

numbers converging (increasing, or decreasing) to a, and such that all of them

are points of G. Each one of them xm belongs to one of the sets FI, F 2&amp;gt;

. . . Fn ,
. . .

;

say to Fn. It is clear that the numbers m increase as m does so, and that m ~ oc

as m ~ x .

We have then \f(xm} /(a) j

&amp;lt; e^ ;
and therefore the sequence {/(#,)} con

verges to /(a). Hence
&quot;/(#)

is continuous relatively to G] also G has the

metric density 1 at the point or.

*
Baire, loc. cit., p. 9.

t Denjoy, Bull, de la-Soc. Math, de France, vol. XLIII, p. 165.
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THE CLASSIFICATION OF DISCONTINUOUS FUNCTIONS.

236. Let us suppose a function to be defined for all points in a continuous

interval (a, b) ;
at each point x, the saltus of the function has a finite value, or

is indefinitely great, its value being zero at a point of continuity. With a view
to the classification of functions, in accordance with the distribution of the

points of continuity, and of discontinuity, in the interval (a, b), the question
arises, what is the most general distribution of the points of continuity ?

The answer to this question is contained in the theorem :

The points of continuity, if they exist, of a function defined for a continuous

interval, form an ordinary inner limiting set.

Pi

To prove this theorekn, let e be a fixed positive number, and enclose each

point P, of continuity of a function f(x), in an interval so chosen that the

fluctuation of f(x) therein is &amp;lt; e
;

all the points of continuity are then en

closed in a set of intervals which in general overlap ;
let these intervals be

replaced by the equivalent set A
,
of non-overlapping intervals. Imagine these

sets A6 constructed, corresponding to a sequence of diminishing values of e

which converges to zero
; there exists then a set of points which are interior

to intervals of all these sets of intervals, since this set of points includes all

the points of continuity of /(#) If Q be any point which belongs to the

inner limiting set so defined, Q must be a point of continuity of f(x) ; for,

corresponding to any arbitrarily small number en , Q is in the interior of some
interval in which the fluctuation of the function is &amp;lt; eM , and thus Q is a point
of continuity of the function.

In accordance with the theorems which have been obtained in 97, re

lating to ordinary inner limiting sets, the points of continuity of a function

may form an enumerable set which contains no component dense in itself, or

else they form a set of the cardinal number of the continuum. In the latter

case the set is a residual set, provided it be everywhere dense. For the closed

set at which w(x} ^ e, will, for every value of e, be non-dense; and the points
of discontinuity accordingly form a set of the first category.

These results lead to the following classification* of functions:

(1) A function may have no points of continuity ;
it is then said to be

totally discontinuous.

(2) The points of continuity may form an enumerable set which has no

component dense in itself.

(3) The set of points of continuity may be of the cardinal number of the

continuum, and be

* See a paper by W. H. Young, Wiener Sitzungsber., vol. cxn, Abt. na, p. 1307.
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(a) non-dense
;

(6) everywhere dense and unclosed, in which case the function is said

to be a point-wise discontinuous function ;

(c) everywhere dense and closed, in which case the function is con-

tinnous
;

(d) everywhere dense in each interval of a set, and non-dense in each

interval of another set external to the former one.

This last case (d) is not essentially distinct from the former ones.

By Hankel and others the term &quot;

totally discontinuous
&quot;

has been applied

to all functions which are neither continuous nor point-wise discontinuous.

237. It has been shewn by W. H. Young that a function can be con

structed which is continuous at every point of any given ordinary inner limit-

ing set of points, and is discontinuous at every other point of the interval.

Let E denote an ordinary inner limiting set, and let the function f(x} be

defined as follows :

(1) At every point ac, of E, let/(#) = x.

(2) It has been shewn that a sequence of sets of non-overlapping

open intervals can be constructed such that the only points, each of which is

in an interval of every set, are the points of E. Let Q be a limiting point of

E which does not belong to E
;
then a number n exists such that Q is in an .

interval of the (n l)
th

set, but not in one of the intervals of the wth
set. Let

this interval of the (n l)
th set be of length dQ ;

and at the point Q let

f(x) = XQ + e
ndQ ,

where e is a fixed positive number less than unity; in the

case n = 1, we put dQ = e.

(3) If R be a point which does not belong either to E or to its derivative,

it must lie between two definite points A, B both of which belong to E or to

E
, and such that no point of -E or of E lies between A and B. If XR be a

rational number, let f(xR )
= xA or XB , according as R is nearer to A or to B

;

when XR is irrational, \etf(xR}
= xB ;

and if R be the middle point of AB, let

It is clear that the function so defined is discontinuous at every internal

point of the interval AB, and at the end-point A it is continuous, ,
or dis

continuous, on the right, according as A does, or does not, belong to E;
a similar result holds for B. It has thus been shewn that the function is

discontinuous at every point which does not belong to E.

To shew that, at any point P, of E, the function is continuous, consider

those intervals, one of each set in the sequence, which contain the point P :

the lengths of these intervals will have a lower limit d, which may be zero.
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In every interior point of d we have f(x) = x
;
and thus, if P be interior

to d, P is a point of continuity of the function. If P be an end-point of d, it

is certainly continuous on the side towards the interval
;
and we have to

shew that it is also continuous on the other side. Choose an arbitrarily small

number a, and an arbitrarily large integer m ;
then a number n1 &amp;gt;m can

be found such that the n^ interval, and all subsequent intervals of the sequence
which contain P, are of length between d and d + cr. The piece of one of these

intervals which is not a portion of d is of length &amp;lt;cr\ suppose that Q is a

point in this piece which belongs to E but not to E: then

f(vp}-f(Q} = xP -xQ -e
ndQ &amp;lt;

|

a- + em (d + a) \

since n^nl &amp;gt; m, and dQ &amp;lt;d + o: From this, there follows

if m be chosen sufficiently great. If R be an interior point of an interval

AB which contains in its interior no point of E\ or of E, and if the points

A, B be both so near to P that their distances from it are less than a; we
have f(p) /(MR) \

&amp;lt;
&amp;lt;r,

in virtue of the definition of f(%R) ,
also if only

one of the ends A, B be within the interval of length &amp;lt; d + a, which has been

chosen, then an interval further on in the sequence can always be found

such that the middle point of AB is exterior to it, and thus the inequality

\f(xp)f(xR ) &amp;lt; a holds as in the former case. It has now been shewn

that, for any arbitrarily chosen
&amp;lt;7,

a neighbourhood of P can be found such

that, for all points x in it,
| f(xp)f(x) \

&amp;lt; 3a
;
therefore P is a point of

continuity of the function. The case in which d = does not require separate
treatment.

EXAMPLES.

1.* Let G denote a non-dense perfect set of points in the segment (0, 1), such that

the end-points of the complementary intervals are rational points. Let/ (x) be defined

thus : At every irrational point inside an interval complementary to G, let f(x)=x ; at

every rational point of such interval, let /(#) be equal to the value of x at the middle

point of the interval
;
and at every point external to a complementary interval, let /(a?) = 1.

This function is discontinuous except at the middle points of the intervals complementary
to G

; thus the set of points of continuity is an enumerable set which contains no com

ponent dense in itself.

2.* With the same non-dense perfect set as in Ex. 1, let AB be a complementary
interval of G, and M its middle point. At every rational point of AM except M, let

f(x)=xA ,
and at every rational point of MB except M, let /(X}=XB ,

also at all points of

(0, 1), except those for which the functional value has been already specified, let f(x)=x.
In this case the points of continuity are non-dense, and of the power of the continuum.

* See W. fl. Young, loc. cit.
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POINT-WISE DISCONTINUOUS FUNCTIONS.

238. A function being defined for the continuous domain (a, 6), it has

been shewn in 230 that, if k be any fixed positive number, those points, at

ivhich the saltus of the function is = k,form a closed set. k *

This theorem follows immediately from the property of semi-continuous

functions established in 230, by considering the saltus-function. It may also

be proved directly as follows :

If P be a limiting point of the set for which the saltus is = k, then in any

arbitrarily small neighbourhood of P there are points of the set
;
hence the

fluctuation of the function in this neighbourhood is ^ k, and therefore the

saltus at P is = k.

Moreover, such a limiting point P, of the set of points at which the saltus

is 2 k, must be a point of discontinuity of the second kind, at least on one

side of P. If, at P, the function have a limit on the right, a neighbourhood
PQ can be found such that the inner fluctuation in PQ is &amp;lt; k; hence inside PQ
there can be no point at which the saltus is = k

;
and therefore P is not a

limiting point on the right, of the set for which the saltus is ^ k. A similar

remark applies to the left of P.

We have already, in 236, defined a point-wise discontinuous function as

one of which the points of continuity are everywhere dense and unclosed in

the domain of the function; this definition is that given by Dini*, and is

equivalent to the following definition given by Hankelf :

A point-wise discontinuous function is one for which those points at which

the saltus is ~ k, an arbitrarily chosen positive number, form a non-dense set

K, whatever value k may have.
/

That this set is closed has been shewn above.

To prove the equivalence of the two definitions, let it be assumed that
f

in any arbitrarily chosen sub-interval (a, /3), a point of continuity x
l can be

found. A. neighbourhood can be found for xlt internal to (a, /3), in which the \

fluctuation of the function is &amp;lt; k, and this neighbourhood can contain no

point at which the saltus is ^ k
;
hence the points at which the saltus is ^ k

form a non-dense set K, since, interior to any sub-interval, a sub-interval can

be found which contains no point of the set K.

Conversely, choose a descending sequence of values of k, say fa, k.2 ,
ks ,

...

which converges to zero, and let Kl} K2 ,
K3 ,

... be the corresponding non-

dense closed sets, each of which necessarily contains the preceding one
;
then

the set M (Kl} K^, K3 , ...) is the set of all the discontinuities of the function.

*
See Grundlagen, p. 81.

I Math. Annalen, vol. xx, p. 90. This is a reproduction of Hankel s Univ. Programm,
Tubingen, 1870, entitled &quot;

Uiitersuchungen iiber die unendlich oft oscillierenden und unstetigen
Fnnctionen.&quot;
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In accordance with 93, this set is of the first category, and the comple
mentary set, which is the set of points of continuity of the function, is every
where dense, and has the cardinal number of the continuum, being a set of
the second category, of the kind that is called a residual set.

It will be observed that the set of all the points of discontinuity may be
either everywhere dense, or non-dense, in the whole or part of the domain of

the variable. This set may be finite, enumerably infinite, or of the power of

the continuum.

In accordance with the theorem proved in 231, an upper semi-continuous
function can only be point-wise discontinuous.

The set K, although non-dense, is not necessarily of content zero. By
Harnack*, the term point-wise discontinuous function was only used for such
functions as possess the property that the set K, for each value of k, has
content zero. It will be seen that this latter case is of special importance in

connection with the theory of Riemann integration.

It has already been shewn, in 236, that the points of continuity of the

point-wise discontinuous function form an ordinary inner limiting set
;
and if

ft}, taj,...fti -pf

be the sets of intervals complementary to the closed sets Klt Kz ,
... Kn , ...,

they form a sequence of sets of non-overlapping intervals which define the set

of points of continuity as their inner limiting set.

The whole theory of point-wise discontinuous functions is applicable to

the case in which the domain of the variable is not a continuum, but is any
perfect set. In this case also, the points of continuity of a point-wise
discontinuous function are everywhere dense relatively to the perfect domain,
and the points at which the measure of discontinuity is ^ k form a closed

set, non-dense relatively to the domain of the variable. That this is the case

may be shewn by making the points of the perfect set correspond in order to

the points of a continuous interval, as explained in 96. The points of dis

continuity, and those of continuity, relatively to the perfect domain, are sets

of the first and second category respectively, relative to that domain.

239. An important class of functions is that in which each function has

ordinary discontinuities only ; the domain of the functions being either a con
tinuous interval, or a perfect set of points.

Afunction which has only ordinary discontinuities ispoint-wise discontinuous.

The set of points at which the saltus is ^ k must be finite. For if it were
not finite it would have a limiting point which would be a point of discontinuity
of the second kind

;
and this does not exist. It thus follows that the set of

points of discontinuity is a non-dense enumerable set.

*
Math. Annalen, vol. xix, p. 242, and vol. xxiv, p. 218.
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A monotone function is one such that, for every pair of values xlf x2 of the

variable, such that x^&amp;gt;oc^, the condition /(#2) =/(^ i) ** satisfied; or else, for

every such pair the conditionf (x2) ^f(xl ) is satisfied.

In the former case the function is said to be monotone non-diminishing, and

in the latter case monotone non-increasing. Since a monotone function has

no oscillations in the neighbourhood of any point, every discontinuity is an

ordinary one. It follows that :

^l monotone function is point-wise discontinuous (or continuous}. Its points

of discontinuity form an enumerable set. The points at which the saltus is

^ k
(&amp;gt; 0)form a finite set.

The domain of the variable being either a continuous interval or any perfect

set, let us suppose that, at every point, the oscillation (see 225) of the function,

both on the right, and on the left, is &amp;lt; k; there can then only be a finite number
of points at which the saltus is = k

;
i.e. the set K is finite.

For ifK were not finite, it must contain a limiting point P, which has been

shewn, in 238, to be a point of discontinuity of the second kind. Any arbitrarily

small neighbourhood of P, on one side at least, must therefore contain points

at which the saltus is = k, and hence the oscillation at P on this side could

not be &amp;lt; k.

The domain can therefore be divided into a finite number of parts within

each of which there is no point at which the saltus is =k\ and it follows that

the domain can be divided into a finite number of parts, within each of which

the fluctuation of the function is &amp;lt; k.

If, at each point of a set which is everywhere dense in the domain of the

variable, there exist a limit of the function on one side at least, then the function
is either point-wise discontinuous, or else it is continuous.

In any interval, containing points of the domain, a point can be found which

has a neighbourhood, on one side at least, in which the inner fluctuation is &amp;lt;k ;

within such neighbourhood the saltus is everywhere &amp;lt; k ; hence the points
of K are non-dense in the domain, and thus the function is either point-wise

discontinuous, or else it is continuous.

If a function be defined for a continuous interval, and all the points of dis

continuity be ordinary ones, at least on one side, then the set K, ofpoints at which

the saltus is = k,-is a set of content zero.

The set K can be resolved into a perfect set G and an enumerable set
;
the

set G contains points which are limiting points on both sides, and at such

points the oscillation both on the right and on the left must be = k
; it follows

that the set G is non-existent, and that K is therefore an enumerable closed

set, which has necessarily content zero.
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The theorem still holds if there be points of discontinuity of the second kind
which form a closed set of content zero, for these points may be enclosed in

a finite number of intervals whose sum is arbitrarily small
;
the theorem can

then be applied to each of the remaining intervals of the domain.

240. It has been shewn in 222 that the aggregate of functional limits of

a function, at any point, is a closed set.

A point-wise discontinuous function* can be so constructed that, at a point
#, the aggregate offunctional limits is a prescribed closed set G.

To establish this theorem, we observe that, if G be unenumerable, it may
be replaced by an enumerable set Glt everywhere dense in G. Let

V V V
1&amp;gt; 2, 3)

denote the set Glt arranged in the order-type &&amp;gt;.

Next, choose an enumerable sequence oclt xz ,
... xn , ... of values of x having

the single limiting point x
;
and arrange the sequence [xn ]

in the order-type
t

2
. The sequence {xn } may thus be split up into an enumerable set of sequences

[xlr ], {XZT}, ... {%}, ... each of which has the limit a? . The function f(x) may
be defined by the specifications, that f(x) = 0, for all values of as which do not

belong to the sets [xlr ], [xzr], ...; and that /(?.) = vsr ,
where vn , VK ,... vsr ,

...

is a sequence chosen so as to converge to the limit Vs . The function f(x) so

defined is continuous at every point except ac
,
xlt ... xn , ..., and it has the

required property ;
since the points of 6rlf and therefore of G, are all values of

the aggregate of functional limits at the point x .

EXAMPLES.

l.t If/(#), &amp;lt; (x} be two point-wise discontinuous functions defined for the same interval,
there is an everywhere dense set of points at each of which both functions are continuous.

This theorem follows at once from the fact that the points common to two residual sets also

form a residual set, and that this holds for every sub-interval contained in the given interval.

2. Let (#) denote the positive or negative excess of x above the integer nearest to it, and
if x be half-way between two successive integers, let (x} =0. Let a function J /(#) be defined

for the interval (0, 1) as the limit of

(x) (2*0 (3a?) (nx)

1 4 9~ %2~

when n is indefinitely increased. The function /(#) is a point-wise discontinuous function,
in which the set K, of points at which the saltus is

&amp;gt;,
is finite for each positive value of k

It can be proved that, if x= mj2n, where m and 2n are relative primes, then

IV

^ v\4^wT
fft

* This theorem was given by Bettazzi, see Rendiconti di Palermo, vol. vi, p. 173.

t See Volterra, Giornale di Mat., vol. xix, 1881.

J See Eiemann s Ges. Werke, p. 242.
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For values of x not of the above form, f(x) is continuous. The number of points of K is the

number of irreducible proper fractions having even denominators 2/i, such that n-
2
/8n

2 &amp;gt; k.

The set of all the points of discontinuity is everywhere dense in the interval (0, 1).

3. Let* y= c, for all rational values of x
;
and y = d, for all irrational values of x. This

function is totally discontinuous.

4. Lett /(#)= !, for all values of x in the interval (0, 1), except x= , (n= l, 2, 3, ...),
if

for which/(.r) = 0. At each of the points (
)
there is a saltus equal to unity. This function

is point-wise discontinuous, and the content of K is zero, for every value of k.

5. Int the interval (
-

,
1

J
of x, let /(&) = !

;
in the interval (xf,

-

),
let /(#) = -

;

\z J \z 2/ 2

and in general, in the interval (sjrnj ^ } ,
let / (x)

= . In this case the point-wise dis-
\z -2 J 2

continuous function f(x) is such that the number of points at which the saltus is ^ k is

finite for every value of k &amp;gt; 0.

6. The I points of a continuous interval (0, 1) may be put into correspondence with the

points of a non-dense set of points, dense in itself, contained in an interval (a, b), in such a

manner that the relative order of two points of the interval (0, 1) is the same as that of

the corresponding points in (a, 6). Such a correspondence is denned by a point-wise dis

continuous monotone function y=f(x).

7. Let the numbers of the interval (0, 1) be expressed as finite or infinite decimals

x= -a
l
a2a3 ... an ..., and let/(A-)

=
( ^ )

+
(

~
)

+.... The function f(x) is monotone, and
\iu/ \i (J(J/

is discontinuous for every value of x represented by a finite decimal. The set of points K,
for a given value of k, is finite. The function f(x) defined by f(x)= Qaflaflas . . . has similar

properties.

8.
1 1

Let the points of the interval (0, 1) be represented by decimals, and consider the

set O of those points for which only the digits and 1 occur in the decimal representation,

excluding those points for which all the figures are 0, from and after some fixed place.
The set G is non-dense in the interval (0, 1), and has the cardinal number c. Any point
#

,
of #0, is represented by -av a^a3 ... an ..., where an is or 1. Let be a fixed point

&i&2 & of G
,
and let

x$ denote ^ + 2|=
&amp;gt;

c
1
c2 ... cn ... ; so that cn = an + 2bn . With

fixed, let the set of all points x^
be denoted by G^ ;

the points of G^ are all different from
those of G

,
and for two values

,
of

,
the sets Gt, G*, have no point in common. For

the two numbers GI c2 . . . cn . . ., c{c ... cn ... are identical only when cn= cn ,
which holds only

when an= an ,
and bn=bn . If we read off in the dyad scale the decimal representation of

,

we obtain, by giving all the values in GO, every point in (0, 1) except the point 0, and
these once only ;

let the point which, by thus using the dyad scale, corresponds to
,
be

denoted by (). Now let /(*) be defined by the rules /(^)
= (), /(* )

=
0, and /O) = for

all other values of x. The point-wise discontinuous function /(.r) so defined for the interval

(0, 1) is such that, at all the points of the enumerable set G
f ,

the saltus is () ; the set of
all the points of discontinuity is non-dense in (0, 1) ; and f(x) is constant, and =0, in an

everywhere dense set of linear intervals.

*
Dirichlet s Werke, p. 132. f Haukel, Math. Annalen, vol. xx.

J Harnack, Math. Annulen, vol. xxin. Peano, Riv. di Mat., vol. i.

II Schoenflies, Gottinger Nachrichten, 1899.
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9.* Let the points .v, of the interval (0, 1), be expressed as radix-fractions in the scale

of 3. Let 6 be the set of points for which all the figures of the radix-fraction are and 1,

excepting those points for which all the figures are 0, after some fixed place. Let Gn consist

of all the points which contain the digit 2 in at most the first n places, but are also such

that the nth figure is 2
; then Gn is non-dense, and of cardinal number c. There are left

only those points for which the radix-fractions contain the digit 2 an infinite number of

times
;
and these points belong to a set ff, for which the radix-fractions contain an infinite

number of digits other than 2, or to a set (?, for each point of which every digit is 2, from

and after some fixed one. Each point of G can be represented by a terminating radix-fraction

which contains only a finite number of 2 s, and can be added to a Gn . Let G
,
G

l , G2 , ...,

when so increased, become 6r
,
G

1 ,
G2 ,

...
;
and take a sequence of decreasing numbers

ffoi 9\i ff2, Let the function/^) be defined by the rules f(x}=gn ,
if x is a point of (?,

and/(#)=0 for all points of H. The point-wise discontinuous function f(x) is continuous

at all the points of H, and the points of discontinuity are everywhere dense in (0, 1), and
of cardinal number c.

DEFINITION OF POINT-WISE DISCONTINUOUS FUNCTIONS BY EXTENSION.

241. Let us suppose a function f(x) to be defined for a domain which

consists of a set of points which is dense in itself, but not closed
;
and further

let us assume that f(x) is continuous in this domain. The new domain

obtained by adding to the original domain those of its limiting points which

do not belong to it may be spoken of as the extended domain. It has been

pointed out in 222 that, at a point a, of the extended domain, which does not

belong to the original domain, there is an aggregate of functional limits

which is certainly a closed set, and may consist of a finite, or an infinite, set

of numbers.

Let us now define a function
&amp;lt;(#),

for the extended domain, in the

following manner: At each point of the original domain, which may be

called a primary point, let
&amp;lt;/&amp;gt;(#)=/(#);

at each point a, which may be called

a secondary point, and which does not belong to the original domain, attribute

to &amp;lt; (x) the values contained in the aggregate of functional limits of f(x)
at a

;
this function

&amp;lt;/&amp;gt;
(#) may then be multiple-valued at any secondary

point. The new function
&amp;lt;(#),

defined for the extended domain, may be

spoken of as the function obtained by extension of f(x); and those points for

which
&amp;lt;$&amp;gt;(x)

is multiple-valued are regarded as points of discontinuity at

which the measure of discontinuity is the excess of the greatest over the

least value of the function at that point.

It will be shewn that the extended function &amp;lt;/&amp;gt;
(x) is point-wise discontinuous

in the extended domain, unless it be continuous. This gives rise to a method of

constructing point-wise discontinuous functions which has been employed by
Broden in various special cases. Since we may so choose the original domain

*
Schoenflies, Gottinger Nachrichten, 1899.
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that it shall consist of an enumerable set of points, the method includes

one for the construction of a point-wise discontinuous function from an

enumerable set of specifications.

To prove that the extended function
&amp;lt;(#)

is at most point-wise dis

continuous, it is sufficient to shew that &amp;lt; (x} is continuous at all points of the

original domain G, which is a set that is everywhere dense in the extended
domain G .

Let a; be a point of G, and let it be the limiting point of a convergent

sequence (#/, x2 ,
x3 , ...), of which all the points belong to G . Consider the

aggregate {(#/), &amp;lt;/&amp;gt;),
.

..}, where $&amp;lt;&amp;gt;! ),&amp;lt;(&amp;gt;/),
have any of the values which

belong to the points #/, #2 ,
x3 ,

.... Now a point xn ,
of G, can be found such

that xn xn
|

&amp;lt; i]n ,
and

j &amp;lt;/&amp;gt;(#,/) /(#) |

&amp;lt; en ,
where

rjn ,
en are independent

arbitrarily small numbers. If we take a sequence of values of 77, such that

7
?i

&amp;gt;/
n-2&amp;gt; *?3, ,

with zero as its limit, and also a similar sequence of the

e numbers, then the sequence (#1} xz ,
x.A , ...} has the same limit x as the

sequence (#/, x2 ,
x3 , ...); and the aggregate {&amp;lt;(#/), &amp;lt;t&amp;gt;(x

a ) t ...} has the same
limit as the convergent aggregate {/(#,), f(x2), ...}, viz. f(x) or

&amp;lt;/&amp;gt;(;
and

thus the theorem is established.

It will be observed that the values of &amp;lt; (x) at all the secondary points in

an arbitrarily small neighbourhood of a secondary point a depend only on
the values of f(x) in that same neighbourhood ;

it follows therefore that a. is

a point of continuity or of .discontinuity of $ (x), according as the aggregate
of functional limits of f(x) at a consists of one number or of more. In
the latter case the measure of discontinuity of

&amp;lt;f&amp;gt;(x)

at is the excess of

the greatest over the least of the numbers belonging to the values of
&amp;lt;f&amp;gt; (x) at

the point.

It has been shewn ( 240) that a point-wise discontinuous function can be
so constructed that, at a given secondary point, the values of the function

may be an arbitrarily assigned closed set.

242. Although a class of point-wise discontinuous functions may be ob
tained by extension of a continuous function defined for a primary domain,
dense in itself but unclosed, yet not every point-wise discontinuous function

can be generated in this manner.

Let /(#) be a point-wise discontinuous function in a domain which is

either a continuum or a perfect set of points.
&amp;lt;

Consider the function &amp;lt; (x), obtained by taking the values off(x) as given
only at its points of continuity, and extending this function to the complete
domain, in the manner explained above.

At each point of discontinuity of f(x) there is a saltus kf, and at that

point the function
&amp;lt;f&amp;gt; (x), obtained by extending the set of values of f(x) at

H - 20
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its point of continuity, has a measure of discontinuity k&amp;lt;t&amp;gt;,

which will be zero

in case
&amp;lt;/&amp;gt;(*) be continuous at the point; but in any case the condition^ kf

is satisfied, since, within any neighbourhood of the point, the fluctuation of

&amp;lt;f)
(x) cannot be greater than that off(x).

If k^ = at any point of discontinuity of /(#), that point may be said to

be a point of unessential discontinuity of the function /(#); and if kj, &amp;gt; 0,

the point is one of essential discontinuity.

Let now a function ^ (x} be defined for the whole domain as follows :

At every point of continuity of /(#), and at every point of discontinuity

at which kf
= k$ ,

let % (x)
=

;
at each point at which kf &amp;gt; k^ ,

let

X () = kf~ k&amp;lt;t&amp;gt;

.

The function % (x) is not necessarily continuous at every point at which it

is zero. At a point x at which
&amp;lt;/&amp;gt;(#)

is continuous, the measure of dis

continuity of % (x) is kf, or ^ (o^) ;
but this is not necessarily the case if

&amp;lt;/&amp;gt;
(&)

/be not continuous at x-^. This function %(#) may be called a point-wise

I discontinuous null-function.
I

&quot;&quot;**&quot;

_

By subtracting from f(x) a function ^ (x) which never exceeds, at any

point x, in absolute value, the value of % (x), we obtain a function fa (x), of

which the measure of discontinuity is everywhere = k$ (x).

The function* fa(x) may be spoken of as the most nearly continuous

function associated with f(x).

It thus appears that a point-wise discontinuous function can always be

expressed as the sum of a point-wise discontinuous null-function and the

most nearly continuous function associated with the given function.

The latter function fa(x) has only those discontinuities which necessarily

arise from the values of the given function at its points of continuity,

and is independent of the parts of the discontinuities which arise out

of the functional values of f(x) at the points of discontinuity. The null-

function depends upon the unessential parts of the discontinuity of f(&).

EXAMPLES.

l.f Let /(#)=0, for #=0, -, , 5,...; and for all other positive and negative
TT 2iTf on

values of x, let f(x) = cos -
. The function $ (#), associated with /(*), agrees with cos - at

every point except x= Q, where
&amp;lt;f) (x) is represented by ( 1, +1). The measure of

1 1 1

discontinuity Tcf is zero except at
, , ,..., where /=!, and at #= 0, where &/=2;

7T 2t 7T O 7T

* This definition is not in complete agreement with that of Schoenflies, see Bericht, p. 134, to

whom the term is due. Some erroneous statements of Schoenflies, in this connection, were pointed

out and corrected by Habn; see Monatshefte f. Math., vol. xvi, p. 312.

t See Hahn, loc. cit.
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vanishes except at -
, --,..., where it is 1

; it vanishes at x=0, but is discontinuous at

the measure kj, vanishes everywhere except at z= 0, where # = 2. The function

vanishes e

that point.

2.* Let/(#) vanish except at the points #= g, , 7, ... -,..., where /(#) = !. The
O 4 ?i

function
(f) (x) is everywhere zero, and thus k$ is everywhere zero. The function

t (.2?)
is

everywhere zero, and kf is zero except at 0, 5, -, ... -,..., where kf=\. In this cage03 ?i

/(*)-*!(*)-/(*).

3.* A point-wise discontinuous function /(#) can be constructed + such that the

function
&amp;lt;j&amp;gt;(js) may have, at a point x

,
the values belonging to a prescribed closed set G,

in accordance with Bettazzi s theorem ( 240). If G be unenumerable, choose an enumer
able set GI, dense in G, and let gl , g-2 , &amp;lt;73 , ... be the points of 6^. Take a set of intervals

{dn},
where 8n is (x + , ^o + s^r,), and define /(A-) as follows: in 8^ 83 ,

85 , 6&amp;gt;,
...

\ * ^ /

let/Or)^ ;
in 82 ,

S6 ,
810 ,

... let/(*?)=#, ;
in 84 ,

8 12 , 830, ... let /(a?) =^3 ;
in general/ (x)=gn ,

in the first free interval, and in every second of the following free intervals
;
further let

f(x)=gi, for X&amp;lt;.XQ. The function f(x) is point-wise discontinuous, the points of dis

continuity being x
()
and the points .r + . The function

(f&amp;gt; (x) has two values at the points
2t

XQ + ;
and at XQ it has all the values of GI ,

and therefore all those of G.
*

*

FUNCTIONS OF BOUNDED VARIATION.

243. Let us suppose that the interval (a, b), for which a function f(x) is

denned, is divided into a number of parts

I vL/Q j ^l) V^l J ^2/ I&quot;-
1

/* lj wyj . (w^ i | &quot;)l))
VV llv3jL C &Q t/1

^ ^yi ^
j

these parts forming a net with closed meshes.

Consider the sum

or

//&quot;
f/&amp;lt;e function be such that the sum S

[/&quot;(^r) ~f(xr-\) is less than some
r=l

fixed positive number, for all possible nets, the function f(x} is said to be of

bounded^, variation (a variation bornee) in the interval (a, b).

The function f(x} being of bounded variation, there must exist a number
which may be denoted by Va

b
f(x), such that, for every net,

r=l

* See Habn, loc. cit.

t This is contrary to a statement of Schoenflies, see Bericht, vol. i, p. 135.

J See Jordan s Cours d Analyse, vol. i, p. 55.

202
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and such that, if e be an arbitrarily chosen positive number, a net

(X , X}), (#1, X.j), (&n 1&amp;gt;

Xn ),

where XQ
=

a, xn = b, can be so determined that

The number Va
b
f(x) which satisfies these conditions is defined to be the

total variation of/(#) in the interval (a, b).

In case the function is not of bounded variation in (a, b), Va
b
f(x) may be

regarded as infinite, and it will be possible to determine a net, for which

r=l

where N is an arbitrarily chosen positive number.

A function of bounded variation has only oraj^^_Pp^n ^s of discontinuity.

Accordingly the set of points of discontinuity of such a function is

f c* -
3 enumerable.

To see that this statement is correct, let us suppose that, at a point ,
in

(a, b), the upper and lower limits of the function on one side, say the right,

have different values ;
thus let /(( + 0) be &amp;gt; /(g + 0). If 17

be an arbitrarily

chosen positive number, in the neighbourhood of there is an indefinitely

great number of points at which f(x) &amp;gt;/(+ 0) 77, and also such a set at

which f(x) &amp;lt;/(
+ 0) + 77.

It follows that an indefinitely great number of

non-overlapping intervals exists, in each of which the absolute value of the

difference of the functional values at the end-points is

which is a positive number tc, provided 77 be chosen to be less than

A set of m intervals can be so chosen that, if their end-points belong to

r = n

those of a net, their contribution to 2 \f(xr)-f(xr_l )\ is&amp;gt;ra. Since m
r=l

may be taken as large as we please, it is clear that the function cannot have

bounded variation.

r=n

It is obvious that/(6) -f(a)= 2 \f(xr}-f(xr^}}\ now let the terms in
r=I

the sum on the right-hand side be divided into two parts, those for which

f(xr)f(xr^} is positive, and those for which it is negative. Thus

where, in 21? those values of r are taken for which f(xr}-f(xr-i) is positive,

and in 22 ,
those terms for which it is negative.
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If the function is of bounded variation, the value of

2i {/W -/K-i)} - S 2 {/(*,) -/(*v-i)}

cannot exceed F
rt

6
/*(#) Thus

& {/&amp;lt;*) -/(*r-i)}

and - 2 2 {/(O -/&amp;lt;&amp;gt;,-,)}

It follows that the two sums

are both bounded, for all nets fitted on to (a, b).

Choosing a neb fitted on to (a, b}, for which

T /(av) -f(xr-^
\

&amp;gt; IV /
-

e,

we see that 2j {/(*,-) /(#,- -i)} &amp;gt; i {
Va

b

f(x ) +/(^) ~f(a )
~ e

l

It follows that the numbers

are the upper boundaries of

^ {/W -/(^,-1)l,
- S 2 {/W -/(av-i)}

for all possible nets fitted on to the interval (a, 6).

Denoting these upper boundaries by Pa
b
f(x), N^f(x} respectively,we have

-/(a) ^ Pa6
/(a?)

- W/(*)-
The numbers Pa

b
f(x), Na

b
f(x} may be called the total positive variation,

and the total negative variation, off(x) in (a, b).

The following definition* of a function of bounded variation is equivalent

to the one given above :

If any set of non-overlapping intervals, finite, or indefinitely great, in

number, be defined in (a, b), and the sum. or limiting sum, of /(/3) /(a) \,for

all the intervals (a, /3) of the set, be less than some fixed number, independent of
the particular set of intervals, the function f(x) is said to have bounded varia

tion in (a, b).

In the first place, we see that a function which satisfies this definition

must satisfy the definition employed above. For we may take the set of

intervals to be those of any net fitted on to (a, b). Conversely, if the first

definition is satisfied by f(x), we may arrange any infinite set of non-over

lapping intervals in order of descending magnitude of /(/3) /() and any
finite part of the set containing the first m of the intervals is part of a net in

(a, 6); and thus 2 |/(/3) -/(a) !, for these m intervals, is less than Va
b
f(x}. As

this holds whatever value m may have, we see that the second definition is

satisfied by/(#).

* See W. H. Young, Quarterly Journal, vol. XLII, p. 57.
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FUNCTION OF BOUNDED VARIATION EXPRESSED AS THE DIFFERENCE

OF TWO MONOTONE FUNCTIONS.

244. It is clear that, if x be any point in (a, b), a function f(x) which

has bounded variation in (a, 6) has also bounded variation in (a. x) ;
and

consequently the positive, and the negative, variations of the function in

(a, x) are also bounded.

The three numbers which represent these total variations may be denoted

by Va
x
f(%), Pa

x
f(%), Na

x
f(x); and they may be regarded as functions of x.

They satisfy the relations

Va*f(x) = Pa*f(x} + Na
x
f(x\

f(x) -/(a) = Pa
x
f(x}

- Na*f(x).

It is clear that, if x &amp;gt; x, we have Pa
x
f(x) ^ Pa

x
f(x\ Na

x&amp;gt;

f(x) ^ Na*f(x);
and thus the two functions Pa

x
f(x), Na

x
f(x) are monotone non-diminishing

functions, in (a, b). For simplicity, we denote these functions by P(x), N(x)
respectively.

Since f(x) = [P (x) +f(a) + k}
-
[N(x) + k}

and f(x) = {V
- N (x)} -{k -P (x) -/(a)],

where k, k are arbitrarily chosen numbers, we see that :

Every function of bounded variation can be expressed, in an indefinitely

great number of ways, as the difference of two monotone functions, both of which

are non-diminishing, or both of which are non-increasing.

This theorem expresses the cardinal property of functions . of bounded
variation. It is of great value in Analysis, as, by means of it, properties of

monotone functions can be immediately extended to the wide class of functions

of bounded variation.

The converse theorem holds that :

The difference of two bounded monotone functions, both non-diminishing ,
or

both non-increasing, is a function of bounded variation.

For, consider such a function f(x) = P(x) N (x), where P (x), N (x) are

non-diminishing ; then, in any interval (a, /3), we have

Hence, in any net fitted on to (a, b), the sum of the absolute values of the

differences of the values off (as) at the ends of the meshes (a, /3) is

and thus the theorem is established.
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It has now been shewn that it is necessary and sufficient, in order that a

function may be of bounded variation in the interval for which it is defined,

that it can be expressed as the difference of two bounded monotone non

diminishing (or non-increasing) functions.

The sum, difference, or product, of two functions of bounded variation is

also of bounded variation.

If /; (X )
= P, (x)

- N, (x), /2 (*)
= P2 (x)

- N2 (x), the theorem follows at

once from the relations

/, (x) +/8 (x)
=

{P, (x) + P2 (*))
-

{N, (x) + N, (x)},

/; (x) -/, (x) = |P, (x) +N2 (x)}
-
{P2 (x) 4- N, (x)},

FUNCTIONS OF BOUNDED TOTAL FLUCTUATION.

245. If, in the net (# , a^), (^ ,
#2) . . . (%_!, ^n )&amp;gt;

where a; = a, ; =
6, we take

=

the sum of the fluctuations in the closed meshes of the net, viz. 2 ( Ur Lr),
r=\

where Ur ,
Lr are the upper and lower boundaries of f(x) in the closed mesh

( r-i,
*&amp;gt;)&amp;gt;

then if this sum does not exceed some fixed positive number, inde

pendent of the particular net, the function f(x) is said to have bounded total ) . r

fluctuation in the interval (a, b). If Fa
b
f(x) be the number such that, for

\&quot;
i

every net,
r

?(Ur -Lr)^Fa*f(x),
r=l .

and such that a net can be fitted on to (a, b) for which

T (7,- 1*) &amp;gt;?/()-&amp;lt;
r = l

where e is an arbitrarily chosen positive number, then Fa
b
f(x) is termed*

the total fluctuation of/(#) in (a, b) ;
and it is finite for a function of bounded

total fluctuation.

It will appear that the class of functions of bounded total fluctuation is

identical with that of functions of bounded variation.

In order that a function may have bounded total fluctuation it is sufficient

that ^(Ur L,.), when taken over the successive nets of a given system of nets,

should have a definite limit. Moreover the limit for the system of nets is

^ F*f(x\ and W/CO-
This limit may be called the total fluctuation of f(x) for the particular

system of nets.

*
See Study, Math. Annalen, vol. XLVII, p. 55. It was shewn by Study that the definitions of

functions of bounded total fluctuation, and of bounded variation, are equivalent to one another.



312 Functions of a real variable [CH. v

It is clear that, if an interval (a, ft) be divided into two parts (a, 7) (7, ft),

the sum of the fluctuations in (a, 7), (7, ft) cannot be less than the fluctuation

in (a, ft). Hence, if we consider the successive nets Dlt D2 , ..., of a system of

nets, the sum of the fluctuations in the meshes of Dm is ^ the sum in the

meshes of Dm+l . Thus, as we proceed through the successive nets of the

system, the sums of the fluctuations in the meshes of a net form a sequence
of non-diminishing numbers which have a finite upper limit, unless they
increase indefinitely. Assume the former to be the case. Let us now consider a

second system of nets D/, D.2 ,
. . . Dm , .... Suppose 77 to be a number less than

the breadth of all the meshes of Dm ;
and let the two nets Dr ,

Dm be super

imposed to form a net (Dr ,
Dm ). We may suppose r so large that Dr contains

no mesh of breadth
&amp;gt;?;.

A mesh dr ,
of Dr ,

with fluctuation Fr ,
will contain

not more than two meshes of the net (Dr ,
Dm ),

with fluctuations F
ri ,
F

f2 ;

we have then Fr ^ Fri
+FT2

^ 2Fr . Now every mesh of Dm is made up of

meshes of Dr and of meshes of (Dr ,
Dm ). Therefore the sum of the fluctua

tions in the meshes of Dm is ^ the sum of the fluctuations in the undivided

meshes of Dr together with the sum of the fluctuations such as F
Tl , FT2

. It

follows that the sum of the fluctuations in the meshes of Dm cannot exceed

twice the sum of the fluctuations in the meshes of Dr . Since a number r can

be determined so as to correspond to each number m, we see that the limit of

the sum of the fluctuations in Dmf

,
as m ~ oc

, cannot exceed twice the limit of

the sum of the fluctuations in Dr ,
as r ~ x . If X be the former limit, and X

the latter, we have X ^ 2X. Thus, if X is finite, for any system of nets, it is

finite for any other system of nets.

Since a net can be so chosen that the sum of the fl uctuations in its meshes
is less than Fa

b
f(x) by less than an arbitrarily chosen number, a system of

nets can be so chosen that the limit of the sums for the nets is Fa
b
f(x). It

thus follows that, for any other system of nets, the limit of the sum of the

fluctuations is ^ ^ Fa
b
f(x), and ^ Fa

b
f(x).

246. Since the absolute value of the difference of the functional values

at the end-points of an interval (a, ft) cannot exceed the fluctuation in the
r=w

closed interval, it is clear that the sum ^ \f(xr) -/(#r-i) &amp;gt; cannot exceed the
r=l

sum of the fluctuations in the intervals. It follows that, if a function is of

bounded total fluctuation, it is also of bounded variation.

If a function have at no point an external_saltus, the total fluctuation, and
the total variation, have one and the same value, when estimated as the limiting
values over a system of nets; and that value is independent of the particular

system of nets.

In accordance with this theorem, Vc
b
f(x) and Fa

b
f(x) are equal to one
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another, and are the limits of the sums 2 /(av) /(av-i) ;
,
2 ( Ur

- Lr}, over a

net Dn ,
of a system of nets, as n ~ oc .

To prove the theorem, let Vm (r\ Fmm denote \f(xr}-f(xr_l } |, (Ur -L r)

for a mesh 4, of a net Dr . We have clearly Fm(r) ^ FmM . It will be shewn that

for the net Dr+8 ,
where s is sufficiently large, 2 F (r+8) ^ 2 -P (r)

,
the summation

referring to all the meshes of Dr+g that are in the mesh dr ,
of the net Dr . In

the case in which Ur ,
Lr are the functional values at the ends of dr ,

we have

Ur Lr
=

\f(Vr) /(#r-i)i- When this is not the case, one at least of f(xr\

/(tfV-i) is between Ur and Lr . If e be an arbitrarily chosen positive number,

there are two points of dr , say , 2 ,
for one of which the functional value is

&amp;gt;Ur -e, and for the other &amp;lt; //,. + e. There must exist a neighbourhood of
,

on one side at least, at every point of which the functional value is &amp;gt; Ur 2e;

for otherwise the functional limit at would be &amp;lt; Ur
-

e, on both sides, and

this cannot be the case if there is no external saltus at . It follows that,

if s be sufficiently large, there must be an end-point of a mesh of Dr+s at

which the functional value is &amp;gt; Ur 2e. Similarly we see that, if s be suffi

ciently large, there is an end-point of a mesh of Dr+s ,
at which the functional

value is &amp;lt; Lr + 2e
;
and one at least of these end-points is not an end-point of

the mesh dr . The number s can accordingly be so chosen that, for all the

meshes of the net Dr+s which are in the mesh dr of Dr ,
the sum of the absolute

values of the differences of the functional values is &amp;gt; Ur L r 4e. Thus the

number s can be so chosen that the sum of the absolute values of the

differences of the functions for those meshes of Dr+s that are in the mesh dr is

&amp;gt; Ur Lr 4e + W ;
where W is the absolute difference between the functional

value at one of the end-points of dr and the functional value at one of those

end-points of a mesh of Dr+s at which it is &amp;gt; Ur
- 2e or &amp;lt; L r + 2e. If e be so

chosen that W &amp;gt; 4e, (which can be done, because the functional value at the

end-point of dr in question is not equal to Ur or L,.,) we see that the sum of

the absolute differences of the functional values in those meshes of Dr+s that

are in dr is &amp;gt; Ur Lr . Moreover s can be so chosen that this holds good for

each mesh dr ,
of the net D,.; and thus, for such value of s, we have V (&amp;gt;

+f)
&amp;gt; F r&amp;gt;

.

This inequality combined with the inequality V (r] ^ F (r] shews that

liin F&quot;

1 = lim F* 1
&quot;

1
-&quot; ^ lim F

;
lira F&amp;lt;

r
&amp;gt; &amp;lt; lim F{r

\
r~oo r~oo r~3 j-~oo r~

and thus that the two limits lim F(r)
,
lim FM have the same value, finite or

r * r ~

infinite.

In order to complete the proof of the theorem it must be shewn that the

limit of the sum of the fluctuations in the meshes of a net belonging to a

system of nets is the same for all systems of nets
; there being as before no

external saltus at any point.

If possible, let the limit for a particular system of nets have a value G,

less than Fa
b
f(x). A net can be defined, for which the sum of the fluctuations
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in the m meshes is &amp;gt; G; say G + a. Let this net D be superimposed on the

net Dr ,
of the system of nets

;
we may suppose r so great that not more

than one of the end-points of the meshes of D is in any one of the meshes of

Dr . Let us suppose that one of these end-points is x, and that it falls in the

mesh 8, of Dr , dividing it into two parts 8 and 8&quot;
;

let F (8) be the fluctua

tion in 8. Since there is no external saltus, if 8, and consequently 8 and 8&quot;
y

are sufficiently small, we have

where Gj is less than the arbitrarily chosen number
rj. Moreover, 8 and 8&quot;

being sufficiently small,

F(8 )
=

\ f(x)-f(x -
0)

I

+ G2 ,
where G. &amp;lt; rh

F(8&quot;)
= \f(x) -f(x + 0) + G,, where G3 &amp;lt; rj.

Now r may be chosen so great, and consequently all the meshes of Dr so

small, that these conditions are satisfied for all the meshes of D . We have

then F(S ) + F(8&quot;)
- F(8) = G2 + G3

- G1} since f(x) is between /(a; + 0) and

/O -
0). Hence the sum 2 F (8 ) + 2F (8&quot;)

- 2 F (8) &amp;lt; 2 (m - 1) rj, the sum
mation being taken for all those meshes which contain one of the m 1

points x; moreover 2 F (8 ) + 2F (8&quot;)

- 2 F (8)
&amp;gt;

0. Therefore the sum of the

fluctuations in the net obtained by superimposing D and Dr is &amp;lt; G + 2 (m 1) r).

But the sum of these fluctuations is certainly = G + a, and since 77 is arbitrarily

small and independent of m, these two conditions are incompatible with one

another; thus a must be zero. It follows that G cannot be less then Fa
b
f(x}.

Thus, in every system of nets, the limit of the sum of the fluctuations in the

meshes of a net is Fa
b
f(x). It then follows, from the first part of the theorem,

that the limit of the sum of the absolute differences of the functional values

for the meshes of any net is Va
b
/(#), or Fa

b
f(x}.

In case there be points at which there is an external saltus, the preceding

proof can still be applied to shew that the limit of the sums of the fluctuations

in two systems of nets has the same value for the two systems, provided no

point at which there is an external saltus be an end-point of a mesh in either

system. Moreover, in case there be an external saltus at the point x, the value

of F(8) is either j/O) -/O + O) j

+ G^ or f(x)-f(x-0)\ + Gl ,
and we

see that F (8 ) + F(8&quot;)
- F (8)

= GZ + G3
- G l + s(x), where s(x) denotes the

external saltus at x, and is equal to the smaller of the two numbers

It is clear that, for a function with bounded total fluctuation, the sums of

the saltus on the right, and on the left, 2 /(#+0) -f(x)\, 2j/(#-0)-/(#)j,
for all the points of discontinuity, are finite, and there can therefore be only

a finite number of points at which the external saltus exceeds an arbitrarily

chosen number /3. If we take these points, say n 1 in number, to be the

points x above, of D
,
we see that the sum of the fluctuations in the meshes of
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the net obtained by superimposing D and Dr is 1 F(&) + 3 + 7, where ^ is

the sum of those external saltuses, all of which are greater than /3 ;
and 7 is

the sum of the n- 1 numbers Ga +G3-G1} and is therefore arbitrarily small.

It thus appears that the total fluctuation for a system of nets such that no

end-point of any of the nets is a point at which there is an external saltus is

the number ^ (^ F b
f(x)}, the lower boundary of the limiting sum for all

systems of nets. If those points at which the external saltus is &amp;gt; /3 be end-

points of meshes of nets of the system, the limit of the sum of the fluctuations

in a net of the system is fi + Sp. If a sequence of descending values be given

to /?, the sum Sp converges to a fixed number, which is the sum, or the

limiting sum, of all the external saltuses. Thus we have the following theorem :

If a function with bounded total fluctuation be such that there are points at

which the function has an external saltus, then the difference Fa
b
f(x]

- ^ between

the upper and lower boundaries of the limiting sum of the fluctuations in the

nets of a system is equal to the sum of the external saltuses. If a system of

nets be such that no point at which there is an external saltus is an end-point

of any mesh of any of the nets, for such a system the limiting sum of the

fluctuations in the meshes of a net is p. If however every point at which there

is an external saltus is an end-point of a mesh of nets of the system, the limiting

sum is then Fa
b
f(x).

247. It has now been shewn that, for a function without points at

which there is an external saltus, the total variation and the total fluctuation

over any system of nets are identical, being both finite, or both infinite, and

that they are independent of the particular system of nets employed.

If f(x] have an external saltus at each point of some set 8, the total

variation of f(x), when extended over a system of nets such that no point of

8 is an end-point of any mesh, is identical with the total fluctuation of that

function &amp;lt; (x) which differs from/(#) only in having the functional values at

the points of 8 so altered that the external saltus is at every point of 8

removed. The total fluctuation of
&amp;lt;/&amp;gt;

(x) is obtained by removing from
/u,
the total

fluctuation off(x) over such a system of nets, that is the number Fa
b
f(x) ^

which is the sum of the external saltuses. Thus the total fluctuation of
&amp;lt;/&amp;gt;

(x)

is 2/m Fn
b
f(x). If, on the other hand, we employ a system of nets such that

every point of 8 is an end-point of meshes of the nets, the total variation and

the total fluctuation off(x) have the common value Fa
b
f(x).

It thus appears that, for a function of bounded total fluctuation, which has

points with an external saltus, the total variation over a system of nets is

Fa
b
f(x), or 2/tt Fa

b
f(x), or has some value between these two numbers,

according to the particular system of nets employed.

The necessary and sufficient conditions that a function f(x) may have

bounded variation and bounded fluctuation in (a, b) are that
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(1) The points of discontinuity must all be of the first species, i.e.

f(x + Q),f(x 0) must everywhere exist.

(2) The sum of the absolute values of the external saltuses must be
finite.

(3) A system of nets must exist for which the sum of the absolute

values of the differences of the functional values at the end-points of the

meshes of a net must be less than some fixed number, for all the nets of the

system.

248. The following theorem will now be established:

The necessary and sufficient condition that a function f(x) is of bounded
total fluctuation is that it can be expressed as the difference of two bounded
monotone functions, either of which can be non-increasing or non-diminishing.

A comparison of this theorem with that in 244, for functions of bounded
variation, gives a second proof that the two classes of functions are identical.

To prove the theorem
;

let Fa
x be the upper boundary of the total fluctua

tion in the interval (a, x). We then see that/ (x +h)-f (x) ^ Fx
x+h ^Fa

x+h-Fa
x

;

it follows that Fa
x

f(x) is a monotone non-diminishing function. The function

Fax +/(*) has the same property, since f(x + h) -f(x) ^ - Fx
x+h ^ Fa

x - Fa
x+h

.

Therefore, if fa (x)
= {Fa

x
+/(*)}, fa(x} = \[Fa

x
-f(x}}, the function

/&amp;lt;

can be expressed as the difference of the two non-diminishing monotone
functions fa (x), fa (x).

Conversely, let f(x) = fa (x)
-

fa (x); where fa (x), fa (x) are bounded non-

diminishing monotone functions. In any interval, the fluctuation of f(x)
cannot exceed the sum of the fluctuations of fa (x) and fa (x). It then follows

that the total fluctuation of/(#) in (a, b) cannot exceed

EXAMPLES.

1.* The function denned by /(#) = # sin -,/(0) = 0, is not of bounded total fluctuation

in the interval (0, !/), although it is continuous in the interval. For, in the interval

( l l \ 1

l
11

:^&quot;^ ;-)&amp;gt;
sin - attains the value (-1) &quot;,

and thus the fluctuation in this interval
\? *f~ ITT fTTy X

is at least equal to l/( + )r. The total fluctuation in the interval
( , J is at least
\Sn 7T/

nd it is well known that this

increases without limit when s is indefinitely increased
; therefore the total fluctuation in

(0, I/TT) is not finite.

*
Lebesgue, Lemons sur I integration, p. 56.
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2.* The function defined by/(.r)
=

. &amp;lt;;

2 sin -^,/(0)
=

0, is continuous in any interval con

taining ,;= 0, and is everywhere differentiate, but is not of bounded total fluctuation.

3.t The function denned by/(.r)=j?
2 sin (#~s),/(0)= 0, is of bounded total fluctuation

in the interval (0, I/TT*). In the interval [-= 5,
--

:), the function has a single
\(r+l7r)? (/)*/

maximum, or else a single minimum, and the absolute value of the function at this point

is at

finite.

3 a oo 1

is at most ll(rn)*. The total fluctuation in (0, I/TT*) cannot exceed 22-
n ,

which is

RESOLUTION OF A FUNCTION OF BOUNDED VARIATION.

249. If f(x] have bounded variation in the interval (a, b), it can be ex

pressed by P(x} N(x], where P(x), N(x) are the positive, and the negative,
variations respectively off(x) in the interval (a, x). Let J; &amp;gt;, ...,... be the

points of discontinuity of P (x), and let s (x) denote the sum

where the summation is taken for those points that are in the closed interval

(a, x). Thus s(#)is a bounded non-diminishing monotone function. Since the

sum 2 {P( + 0) P (0)} is convergent, the sum can be divided into two
b

parts, the one a finite sum

2 {P ( + 0)-P (f-0)}, and the other {P( + 0)- P( -
0)},

b,m b, m+ l

where m is chosen so great as to include the indices of all those points of the

finite set at which P ( + 0) P ( 0) ^ e and is also so great that the second

sum is &amp;lt; e; where e is an arbitrarily chosen positive number.

We also have s(x) = Z }P(f + O)-P(f-O)} +-17 (a?); where, in the first

x, m

sum, only those of the set
, f2 , w occur which are in the closed interval

(a, x\ and where 77 (#) ^rj(b)&amp;lt; e. Let us consider the function P (x) s (x}, or

P (a)
- 2 {P (| + 0)

- P (f
-

0)}
-

77 O). At a point ar, at which P
(a,-) has a

x, m

saltus &amp;lt; e, the saltus of P (x) s (x) is &amp;lt; 2e
;
for the saltus of 77 (#) cannot

exceed e, and the function S {P ( + 0)
- P (f 0)} is continuous. At a point

z, m

of the finite set at which P (*) has a saltus ^ e, P (x)
- S [P ( + 0)

- P (
-

0)]
r,x

is continuous. Therefore the saltus of P (x) s (x) is everywhere &amp;lt; 2e. Since

e is arbitrary, it follows that P (x} s (x) is continuous in the closed interval

(a, b). A similar result holds for the function JV (x). Therefore /(#) is the sum
of a continuous function &amp;lt; (x), of bounded variation in (a, b), and of a function

*
Lebesgue, Annali di Mat. (3 A), vol. vn, p. 270.

f Lebesgue, Lemons sur I integration, p. 56.
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s (x) s (x), which may be denoted by % (x). The function ^ (x) is of bounded

variation, and has the same points of discontinuity as f(x). We have

f(x} = &amp;lt;f&amp;gt; (x) + ^ (x), where ^ (x} denotes

The result obtained may be stated as follows:

A function of bounded variation in the interval (a, b) is the sum of a con

tinuous function of bounded variation and of a function of bounded variation

with the same discontinuities as the given function, of which the total

variation is the sum of the saltuses of the given function at its points of dis

continuity.

RECTIFIABLE CURVES.

250. Let t be a variable defined for all values in a continuous interval

(t , ti), and let fi(t), f-2 (t) be two single-valued and bounded functions of t,

denned in the interval (t , ^); the equations #=/i (t), y=f(t} may be said to

define an arc of a plane curve, in a generalized sense of the term. Let a net

TO, T1} T2 ,
... rn ,

where TO
= t ,

rn = t1} be fitted on to the interval (t , tj), then

the points on the curve corresponding to the end-points of the meshes of the

net may be denoted by P ,
P1 ,

... Pn ,
and we consider the unclosed polygon

of which the sides are PQP l , P]P2 ,
Pn-\Pn, inscribed in the arc of the curve.

The length of the polygonal line P P1P2 ... Pn ,
measured by

r = n ,

2 {(xr
- xr_^f + (yr

-
y.,-0

2

} *,
r = \

depends upon the particular net that has been fitted on to (t , ,), and may be

described as the length of a polygonal arc inscribed in the arc of curve.

If the arc be such that the lengths of all the inscribed polygonal arcs have a

finite upper boundary, the curve is said to be rectifiable, and the length of the arc

is defined to be the value of that upper boundary. Otherwise the length of the arc

is regarded as infinite.

This general definition is due to Peano*. An earlier definition given by

\1 Jordan^, and in the case of an arc defined by an equation yf(x}, by ScheefferJ,

is of a less general character, as it requires that the lengths of any sequence of

polygonal arcs should converge to a fixed limit, independent of the particular

sequence, provided the polygonal arcs correspond to a system of nets fitted on

to (t , j). It will be shewn that when the arc is continuous, the definition 01

Peano is equivalent to that of Jordan and Scheeffer.

* Eend. Lined (4), vol. vi, 1, p. 54. See also Lebesgue, Ann. di Mat. (3 A), vol. vn, p. 282,

where a more general definition is introduced.

t Comptes Bendus, vol. xcn (1881), p. 228; and Cours rf Analyse, vol. in, p. 594.

J Acta Hath., vol. v, p. 49. See also Study, Math. Annalen, vol. XLVII, p. 298.
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The following theorem will be established:

The necessary and sufficient condition that the arc defined by a; =/i (t),

y =ft (t^for t ^ t tlt may be rectifiable is that the functions/t (t),fz (i) should

be of bounded variation in the interval (t , ^).

We see that

1_
^2&amp;gt;r-^

\yr
-
yr_! !}

S [(arr
- xr_^ + (yr

-
Jfr-iW*

^ {|aV-#r-i + y^-2/r-l!};

by taking the sums of all the expressions for r= 1, 2, 3, . . . w, it is clear that the

necessary and sufficient condition that the perimeter of the unclosed polygon
should be less than some fixed positive number is that this should also hold as

rn r-n

regards 2 \xr xr^ , and 2 yr yr_j
j
;
and this is equivalent to the condition

r-l r- = l

stated in the theorem.

From the known character of functions of bounded variation, it is seen that

a curve that is rectifiable in the interval (t , t^) is also rectifiable in any interval

contained in ( , ^).

251. In case the functions /i (t), /2 (t) are both continuous in the interval

( ,&amp;lt;i),
it will be shewn that the lengths of the polygonal arcs of any sequence,

such that the greatest side of a polygon converges to zero, converge to the

length I of the curve, as above defined, whenever the curve is rectifiable. To
establish this result the following theorem will be proved:

If the continuous arc defined by x = yj (t), y =f2 (t), t t ^tlt be rectifiable,

and of length I, then, corresponding to an arbitrarily chosen positive number e,

a positive number d can be determined, so that the perimeter of any unclosed

polygon inscribed in the arc is &amp;gt; I e, provided all the sides of the polygon are &amp;lt; d.

The assumption that the arc is rectifiable, and of length /, implies that a

net D can be fitted on to the interval (t , ^), such that the length of the corre

sponding polygonal arc inscribed in the curve is &amp;gt; I ^e. Let D be any other

net fitted on to the interval
( , tj). The net (D , D) obtained by superimposing

the two nets D ,D, is such that the corresponding polygonal arc has a length
&amp;gt;l \. Since the functions

_/! (t), f2 (t) are continuous, if 77 be a prescribed

positive number, a number 8 can be determined so that, in any interval of t less

than 8, the fluctuations of /j (t),f (t) are both less than 77. We shall suppose
D so chosen that all its meshes are of breadth less than 8. Let s be the number
of meshes in D

;
we consider the excess of the length of the polygonal arc

corresponding to (D , D) over that which corresponds to D. Consider an end-

point tu of the meshes of D
,
that is contained in the interior of a mesh of D;

we can suppose the meshes of D so small that only one such point can be con-
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tained in a mesh of D, and we also suppose all the meshes of D to be less

than 8. If tr , tr+l be that mesh of D, we see that the excess of the sum of the

chords joining t
r&amp;gt;

tu and (tu ,
tr+1 ) over that joining tr ,

tr+1 is

1 1

&amp;lt; Xr-Xu
\

+
\
Xr+i-Xu

\

~^ Xr-Xr+l \

+
| yr-yu 1

+
! yr+i- # i

~^ ^r
~ ^ +1

and this is less than 4??.

We now see that the perimeter of the polygonal line which corresponds

to D is &amp;gt; I
- e - 4s 77.

If 77 is so chosen that 4s 77 &amp;lt; e, the length of the polygonal arc that corre

sponds to D is &amp;gt; I e. In order that this may be the case, D has only to satisfy

the condition that the maximum breadth of its meshes is less than some fixed

number S, and this condition will be satisfied if the greatest side of the corre

sponding polygonal line is less than some fixed number d.

If s denote the length of the arc corresponding to (t , t), where t &amp;lt; t ^ tly

s is a continuous monotone function of t\ and it is clear that x and y may be

regarded as functions of s, say x = &amp;lt; (s), y = ty (s). Since A#/As, Ay/As cannot

be numerically greater than 1, all the derivatives of $ (s), -fy* (s) are bounded, and

in the interval (1, 1). It will be shewn in 298 that, for all values of s in the

linear interval (0, 1), with the possible exception of those belonging to a set of

cite d \i

measure zero, the differential coefficients -j-,^r exist, and are finite. The above
as as

theory is applicable, without essential change, to the case of a &quot;curve&quot; in three-

dimensional space, defined by x =fl (t), y =/2 (t), z =f3 (t).

The case of an arc of a curve y =/(#), defined for the interval (a, 6), of x f

may be considered as the particular case of the above which arises when t is

identical with x. We see then that, the necessary and sufficient condition that

the arc defined by y = f(x], a ^ x ^ b, may be rectifiable is that the function

/(./) is of bounded variation in the interval (a, 6).

EXAMPLES.

1 2r+ l
1. In* the interval (0, 1), let /(#) =^) when x is any of the points , and let

2i

/(#)=(), at all other points. In accordance with Peano s definition, the length of the arc i&

cc 2n-1
1+22 2^-

= 2. According to the definition of Jordan and Scheeffer, the arc is not rectifi-
n=i 2-n

able; for a net can be fitted on to the interval (0, 1), such that all its end-points are

represented by irrational values of x, except the points 0, 1
;
the length of the correspond

ing polygonal arc is 1 .

2. An arc of the curve y= x sin - which contains the origin is not rectifiable
;
but a similar

arc of the curve y= .r
2 sin (a- ~$) is rectifiable.

* See Schoenflies, Bericht, vol. n, p. 243.
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THE VARIATION OF A FUNCTION OF BOUNDED VARIATION

OVER A LINEAR SET OF POINTS.

252. Let $ (x) be a bounded monotone non-diminishing function, defined

for the interval (a, b), of #. If =
&amp;lt;f&amp;gt; (x), the segment (a, 6) has a functional image

on a segment of which the end-points are
&amp;lt;/&amp;gt;

(a), &amp;lt; (b) respectively, on which the

points are represented. If &amp;lt; (#) be continuous, the functional image consists

of all the points of the interval
(&amp;lt; (a), &amp;lt; (b)), of

;
but if

&amp;lt;f&amp;gt; (x) be discontinuous

at a point x, there are no points of the functional image in the closed interval

($ (x 0), &amp;lt;f&amp;gt; (x + 0}) except the single point (f&amp;gt;
(x). We may now suppose that,

to each point x, at which $ (x) is continuous, there corresponds the point =&amp;lt;(#)

on the ^-segment, but that, to each point x
,
at which &amp;lt; (x} is discontinuous,

there corresponds the closed interval ($ (x 0),
&amp;lt;/&amp;gt;

(x + 0)) on the ^-segment.
If Ow denote any set of points in the ^-segment (a, b), there is a corresponding
set 6r (f) in the ^-segment; to any point of G (x

\ at which &amp;lt; (x} is discontinuous,

there corresponds a component of G^\ consisting of all the points of a closed

interval. If G (x] consists of all the points of a closed interval, 6r (f) consists of all

the points of a closed interval. Similarly, if G (x] consists of the points of an open

interval, G (& consists also of the points of an open interval. It now follows that,

if G (x] be measurable (B), on the ^-segment, G^ is measurable (B), on the /

^-segment. If G (x) be any measurable set, it is contained in a set Gfx
\ and it

contains a set G,}
x]

,
such that G^x] and G x) are measurable (B), and that the

set Gfx) - G2
(x} has the measure zero. The two sets G^, G^ are both measur

able (B), but it is not necessarily the case that G^ GJ& has measure zero.

Unless GI (X} and G.2
(x} can be so chosen that the measure ofG^ G^ is zero, the

set G is not necessarily measurable. Even if the function (x} be continuous

in (a, b), it is not necessarily the case that there corresponds a measurable

set G^ to any measurable set G (x}
. Only when &amp;lt;f&amp;gt;

(x) is such that, to every #-set

of measure zero, there corresponds a -set of measure zero, is G^ necessarily

measurable when G (x] is measurable.

In general, there corresponds to a measurable set G(x] a set G^, with exterior

and interior measures m e (G^),

The exterior and the interior measures of the set G^, on the ^-segment, which

corresponds to the set G, on the x-segment, are defined to be the upper and lower

variations respectively, of the function &amp;lt; (x) over the set G ; these may be denoted

by F &amp;lt;

&amp;gt;&amp;lt;(#),
V (G

&amp;gt;(f&amp;gt;(x) respectively. In case V ((!)

^(x] = V (G)
&amp;lt;f&amp;gt;(x),

their

common value V(0]
&amp;lt; (x) is said to be the variation of the monotone function &amp;lt;fr (x)

over the set ofpoints G.

It is clear from the definition that

V ^ (x) + V p
&amp;lt;f&amp;gt; (x)

=
&amp;lt;/&amp;gt;

(b)
-

&amp;lt;f&amp;gt; (a).

H. 21
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If G (x) be measurable (B), since Q^ is also measurable (B), it follows that

4&amp;gt;(x)
has a definite variation over the set G (x}

. The variation of
&amp;lt;/&amp;gt;

(x) over a

closed interval (a, /3), contained in (a, b), is
&amp;lt;/&amp;gt; (/:? + 0) $ (a 0); and the varia

tion over the open interval (a, /3) is &amp;lt; (/3
-

0) &amp;lt; (a + 0). In case a = a, we

take &amp;lt; (a 0) =
&amp;lt;/&amp;gt;

(a); and in case /3
=

6, we take &amp;lt; (6 + 0) = &amp;lt; (6).

If /(#) be a function of bounded variation, defined for the interval (a, b),

f(x} f(a) is expressible as the difference of two bounded monotone non-

diminishing functions fa (x) and fa (x), where fa (x) and fa (x} are the positive

and the negative variations off(x) in (a, x), (see 244).

The sum of the variations of fa (x), fa (x) over a set G x)
, for which these

variations exist, may be defined to be the total variation of the function f (x), of
bounded variation, over the set G (x

\

FUNCTIONS OF TWO VARIABLES THAT ARE OF BOUNDED VARIATION.

253. The definition of a function of bounded variation, in an interval,

can be extended to the case of a function of two or more variables, defined in

a given cell. It will be sufficient to consider the case of a functionf(x
(l
\ x (2)

),

defined in a closed cell (a
(l
\ a {2)

;
b (l}

,
b (2)

). Let a set of n+ 1 points, in the

cell, two of which are the points (a
(1)

, a (2)

), (6
(1)

,
6 (2)

),
be considered; they may

be denoted by (x*\ x^), (x}
l

\ x^)...(x^\ x) ...
&amp;lt;&amp;gt;

n
(1)

, #&amp;lt;*&amp;gt;);
where

x^ = a (l
\ # (2) =tt (2

&amp;gt;,

xn(l) = b (l

\ xn^ = b (2l

Further, let the points be such that, for each value of r (= 1, 2, 3, ... n),

,(!)&amp;gt;, (1) (2) &amp;gt; (2)
.

off = j.:

r_l ,
j,r = afc i 5

and consider the sum

If this sum does not exceed some fixed positive number, whatever value

n may have, and however the points are chosen, subject to the conditions

above stated, the function f(x
(1)

,
x ( 2}

) is said* to have bounded variation in

the cell (a
(1)

,
a (2)

;
6 (1)

,
b (2)

).
The upper boundary of the above sum may then

l&amp;gt;e denoted by F
(&amp;lt;g;$/(*, * (2

&amp;gt;).

A function
&amp;lt;/&amp;gt;

(x
(l}

,
# (2)

) is said to be a monotone non-diminishing function

in the cell, if &amp;lt; (x
w

,
x (2)

)^&amp;lt;f&amp;gt;(x

(1)/
,
x

) for every pair ofpoints (x
(l

\ x (2)

), (x
w&amp;gt;

,
x (2)f

)

such that (1) ^ x (l)
,
x {2) ^ x (2)f

. If the inequalities be all reversed, we have the

definition of a non-increasing monotone function.

If we consider separately those terms of the sum

&quot;If {/(av-W av
w
)-/(av-i

(1)
, av-i&quot;&quot;)}

r=l

* See Arzela, Bologna Eend. vol. ix (1904-5).
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which are positive and those which are negative, and denote the two parts

respectively by 2
2 ,
22 , we have

&amp;lt;&quot;, 6&amp;lt;&quot;)-/(

U)
&amp;gt; a&amp;lt;)

= 2,

further

^ [f(x*\ *,&amp;lt;
&amp;gt;) -/(*,_&amp;lt;&quot;,

xr_?% -2, {/W&amp;gt; *V
(2))-/

are such that their sum cannot exceed F, , , 1 f(x {}
\ # (2)

).
(a

1
,
a 21

)
&amp;lt;f

^

It follows that 2i and 22 have upper boundaries

which may be denoted respectively by

P (&(1 7^
/-(V&quot; tf&amp;lt;^ and A^ (6U&amp;gt;)6(2)) f(rM r^}r

(a*
11

, a&amp;lt;

2lH ^ /&amp;gt;

ana
-&quot;(a,tf )/!**&amp;gt;

These numbers may be called the total positive variation and the total nega
tive variation off(x^, x (z)

) in the cell (a
(1)

,
a&amp;lt;

2
&amp;gt;;

6 (1)
,

&&amp;lt;

2
).

If we take any point (x
(l

\ x (2)

) in the given cell, we may denote by

PO (1)
, x^), N(x (l\x (

*)

the positive and the negative total variations of the function in the cell

(a
(l
\ a (2

;
x (l

\ x (2)

).
We have then

F
(la), a

)
/ (*

(1)
&amp;gt;

^ &amp;lt;2)

&amp;gt;

= P ^ (1 ^ &amp;lt;2)

) +N (x(l] &amp;gt;

^ (2&amp;gt;

)&amp;gt;

/0 (1

&amp;gt;,

^&amp;lt;

2
) -/(a (l)

,
a (2)

)
=

PO&amp;lt;&quot;,
^&amp;lt;

2

&amp;gt;)

-
JV(a;

(l)

,

(2)

),

and therefore, since the two functions P (x
(l
\ x (2)

), N(x (l}
,
# (2)

) are clearly mono
tone and non-diminishing, we see that/(#

(1)
,
# (2)

) can be expressed as the

difference of two such functions, or also. as the difference of two monotone

non-increasing functions.

It is seen at once that any function which is the difference of two bounded
monotone functions is of bounded variation in the cell. It has thus been
shewn that:

The necessary and sufficient condition that a function f(x
(l
\ x (

&quot;

}

) should

be of bounded variation in the cell (a, b) is that it should be expressible as the

difference of two bounded monotone functions.

If U
r&amp;gt;

Lr are the upper and lower boundaries of f(x (l
\ # (2)

) in the cell
r=n

Or_!
(l)

, #r-i
(2)

;
xr

(l

\ xr
( i}

),
we consider the sum 2 (Ur

- Lr), where the n+ 1 points

satisfy the same conditions as before. If this sum is less than a fixed positive
number, however such a system of points be chosen, the upper boundary of

the sum is called the total fluctuation of the function in the cell (a
(1)

,
a (2)

;
6 (l)

, 6
(2)

),

and it may be denoted by F (^ ^{/O
(1)

,
# (2)

). The function is then said to be

of bounded total fluctuation in the cell.

212
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We see that

d)

= j

(&amp;lt;&quot;,
a&amp;lt;

2
&amp;lt;) (ad), oW) .

and that the function FYaW
x

a&lf(x
(l
\ # (2)

) is monotone and non-diminishing.

As in 248, it thus appears that the necessary and sufficient condition that

f(x
(l
\ # (2)

) should be of bounded total fluctuation is that it should be the dif

ference of two bounded monotone functions. Comparing this with the corre

sponding theorem for functions of bounded variation, we see that the classes of

functions of bounded variation, and of bounded total fluctuation, are identical.

254. A definition of functions of bounded variation, differing from that

given in 253, has been employed by Hardy* and by Krausef.

Let us consider the number

&amp;gt;

a&amp;lt;2)) -/( (

related to the cell (a
(1)

,
a (2)

; /3
(l)

,

(2)

), where /3
(1

&amp;gt; ^ a (1)
, /3

(2) ^ a (2)
. It is seen at

once that, if a net be fitted on to the cell (a
(1)

,
a (2)

;
bM

,
b ( 2)

),

A (bW b&)) f(^ a!) - 2 A (^ (1) ^ f(rM r (s)\.

(
w

&quot;*&quot;)/

^ ^
~

(a
1

, o(2))
/^ ^

V&amp;gt;

where the summation on the right-hand side is taken for all the meshes

(a
(l)

,
a (2)

; /3
(l)

, /3
(2)

) which make up the cell (a
(l)

, a (2)
;
6 (1)

,
6 (2)

).

If the sum S A
jj
w

|
f (2)j/(

(1)
,
^ (2)

) |

is less than some fixed positive number,

for all possible nets that can be fitted on to the cell (a
(l)

,
a (2)

;
6 (1)

,
6 (2)

), and if

further the function f(x, y) is, for each value of x, a function of bounded
variation with respect to y, and for each value of y a function of bounded
variation with respect to ac, then / (x, y} is said to be a function of bounded
variation in the cell.

It has been pointed out J byW. H. Young that there is a certain redundancy
in the last two conditions. It will in fact be shewn that it is sufficient that

f(x, y) should be of bounded variation with respect to y, for one fixed value

of x, and with respect to x for one fixed value of y; it being assumed that the

first condition is satisfied.

If the first condition is satisfied, let
F[*a,^2 /(*w, *w ) be the upper

boundary of the sum &quot;2 A J fSJ/(#
w

,
#&amp;lt;

2

&amp;gt;) j

for all nets that can be fitted on to

the cell (a*
1

*, a (2
&amp;gt;

; &&amp;lt;,
6&amp;lt;

2

&amp;gt;).

If the sum 2 be divided into two parts, ^ and 2 a ,

where 2 X denotes the sum of those terms for which A is positive, and 22 denotes

*
Quarterly Journal of Math. , vol. xxxvn, p. 57 et seq.

t Leipziger Ber., vol. LV, pp. 164, 239 ; see also Vergerio, Gior. di Mat., 1911, p. 181.

Proc. Lond. Math. Soc. (2), vol. xi, p. 142.
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the sum of those terms for which A is negative, we see that 2j A/(# (1)

,
# (2)

) and

S2 A/(a;
(1)

,a;
(2)

) have finite upper boundaries

P(a&amp;lt;

l) ,a
(2

&amp;gt;

; /3
(1)

, /3
(2)

), ^(a 1

,
a (2 &amp;gt;

;

(1

&amp;gt;, /9&amp;lt;

2

&amp;gt;).

The two functions P(x {

,
#&amp;lt;

2
), JV(#

(1)

,
#&amp;lt;

2

&amp;gt;),

defined as P j* !!

* (

fj /(a; &quot;, x\
ia *

,
a -

)
*

^Ma a) f(x(1)
&amp;gt;

1/c(2) ) respectively, are monotone functions, in the sense that,

if ft ^ * (1)
,
# (2) ^ (2)

, then P (a?
1

,
# (2)

) ^ P(#w,&amp;lt;
s

&amp;gt;), ^O 1

*, a;&amp;lt;

2)

) ^ N (x^,
2)

).

We have

x, x =-a, a

Assuming that /(* (1)
,
a (2)

) is a function of xm
,
of bounded variation in the

interval (a
(1)

,
6 (1

), it is equal to p (x
(

&quot;)

- n (x
w
\ where p(x

{l}

), n(x m ) are

monotone functions of xw . Similarly, assuming that/(a
(1)

,
x (2&amp;gt;

) is of bounded
variation in the interval (a

(2)

,
6 (2)

), of x, it is representable as the difference

p (x
(2}

) -n (x) of two monotone functions of x {
-

}

.

If P
(x&amp;lt;v , x) = P (x

11 *

, x)+p(a;V)+p (a;),

N(xM,
ar&amp;lt;

2

&amp;gt;)

= N(xM,
x (

} + n (x
(l)

) + n (x),
we have

f(x^,
(8)

)
= P (*

(1)
,
x ( )-N(x (l

\ x^)-f(aM , a&amp;lt;

2)

),

where P, iV are monotone non-diminishing functions. It has now been shewn
that a function f(x

(l)
,
# (2)

) of bounded variation, in accordance with the definition

here given, is expressible as the difference of two bounded monotone functions.

The definition here given of a function of bounded variation is less general
than that of Arzela, given in 253. An example has been constructed* by
Ktistermann, of a function which is of bounded variation in accordance with

Arzela s definition, but not in accordance with that here considered.

The variation of/O (1)
,
& (

-&amp;gt;)

for any fixed value k (\ of y
(z
\ clearly does not

exceed the sum of the variations off(x
(1
\ a 2)

), of P (x
(1

\ k
{ - }

),
and of N(x {1)

, &&amp;lt;

2)

).

It is therefore bounded, on the assumption that the variation of f(x
(l)

, a {2}

) is

bounded. Similarly, on the assumption that /(a
(l)

,
x (2

) is bounded, that of

f(k
(l

\ x ( 2}

) is bounded, for any fixed value k (l
\ of xw.

QUASI-MONOTONE FUNCTIONS.

255. A function f(x
(l)

, x (2)

} may satisfy the condition

A [^ 15/0
1

, x^} ^ 0, for x&quot;
&amp;gt;

),
-&amp;lt;
2

&amp;gt; ^ x^\

and yet/(
(l)

,
# (2)

) need not be monotone and non-diminishing with respect to

x (z)
, for each constant value of x (i]

;
nor need it be monotone and non-diminishing

with respect to x (l
\ for each constant value of x ( 2}

. For the expression may be

written in either of the forms

{f(x
(l
\ x (

*) -f(x
M

,
x (

)}
-

{f(x
M

, x^)-f(x (l

\
#&amp;lt;&amp;gt;)},

[f(x
(l

\ x)-f(xU, x (

*)}
-

{f(x
M

, x^)-f(x
M

, x^)}.
* Math. Annalen, vol. LXXVII, p. 474.
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The expression in any one of the four brackets may have either sign, con

sistently with the condition stated, except that the first bracket in either case

cannot be negative whilst the second is positive.

We may consequently consider four types of functions f(x, y] which satisfy

the condition A 5/(*H (2)

) = 0, for x^ ^ XM
,
x^ ^ viz. :

(1) Those for which/(
ti)

,a?
w

)
is monotone and non-diminishing with respect

to x (l

\ for every constant value of # (2)
;
and is also monotone and non-diminishing

with respect to # (2)
,
for every constant value of x (l]

.

(2) Those for which f(x
(l]

, x) is monotone and non-diminishing with

respect to # (1)
,for every constant value of # &amp;lt;2)

,and is monotone and non-increasing
Avith respect to x ( 2

\ for every constant value of # (l)
.

(3) Those for which /(#
(l)

,
# (2)

) is monotone and non-increasing with respect
to x (l

\ and is monotone and non-diminishing with respect to x (2)
.

(4) Those for which f(x
(l

\ x (2)

) is monotone and non-increasing with respect
to x (l

\ and is monotone and non-increasing with respect to x {2}
.

A function f(x
(l
\ x (

) which satisfies the condition A/(
(l)

,
# (2)

) ^ 0, for

every pair of points, or else the condition A/O 1

,
x (2)

) 0, for every pair of

points, and also one of the four conditions given above, everywhere in its

domain, may be said to be a quasi-monotone function of- one of the four types
which correspond to the conditions (1), (2), (3), (4), respectively.

It is easy to see that this definition can be extended* to the case of

functions of any number of variables.

,w a (a

&amp;gt;) +f(a
M

,
x (

*} -/(a (1)
,
a (2)

)
it is seen

that every quasi-monotone function is the sum of a monotone function of the

two variables, and of monotone functions of the separate variables, such that

any one of the three may be either non-increasing or non-diminishing. The
converse does not however hold

;
in fact a function can be monotone without

necessarily being quasi-monotone.

THE MAXIMA, MINIMA, AND LINES OF INVARIABILITY OF CONTINUOUS
FUNCTIONS.

256. Consider a point x
l within the interval (a, b), in which a continuous

function is defined; it may happen that a neighbourhood (xl

-
B, x1 + S) of the

point #j can be found, by taking 8 sufficiently small, which is such that f(x)
has the same value at all points in the neighbourhood ;

then the point x1 is

called a point of linear invariability of the function. If the same holds for a

neighbourhood of xl on the right only, or on the left only, then the point ar,

is called a limiting point of linear invariability,

* See W. H. Young, Proc. Lond. Math. Soc. (2), vol. xvi, p. 277. The term monotone is there

applied to a function described above as quasi-monotone.
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It can be shewn that, if a point a\ of linear invariability exist, and the

function be not constant in the whole interval (a, b), then there exist two

limiting points of linear invariability, one of which, however, may be at one

of the ends of the interval (a, b). Suppose the function not to be constant

throughout the interval (x} , b) ;
the points x of this interval may be divided

into two classes, in one of which x is such that, in the interval (xl , x), the

function has the constant value /(X), and in the other class x is such that

(#!, x) contains points at which the function has values differing from /(#i) ;

a section is thus made of the interval (ar1} b). This section defines a point

which is the required limiting point of the linear invariability. If the same

argument be applied to the interval (a, x^ we see that there is another

limiting point in this interval, unless the function be throughout equal to

/w
In the interval (a, b) there may be a finite set, or an indefinitely

great, but enumerable, set of lines of invariability ;
each point within such a

line is a point of invariability, and the ends of such lines are limiting points

of invariability.

If the point x-^ be not a point of invariability, it may happen tnat a neigh

bourhood (#! e, x1 + e ) exists, such that, for every point in &quot;the interior of this

neighbourhood, not identical with xl ,
the condition f(x) &amp;lt;f(xl )

is satisfied; in

this case ^ is said to be a point at which the function has a proper maximum.

In case the neighbourhood be such that at every point x within it, except at

xlt the conditionf(x) &amp;gt;f(xl )
is satisfied, the point x^ is said to be a point at

which the function has a proper minimum.

It may happen that, when x
l
is not a proper maximum, a neighbourhood

(xl ,
x

l + e ) exists which is such that at no point within it the condition

f(x) &amp;gt;f(x^)
is satisfied, whilst not at every point is the condition f(x}&amp;lt;f(%i)

satisfied. If this is the case for every neighbourhood interior to (a^ e, xl + e )

then Xi is said to be a point at which there is an improper maximum of the

function. If the conditionf(x) =/(#i) is satisfied, but the conditionf(x) &amp;gt;/(#i)

is not everywhere satisfied, then xl is said to be a point at which there is an

improper minimum of the function.

A line of invariability, of which the end-points are a, ft, these being both

interior to (a, b), is said to be a maximum of the function, if both a, ft be

improper maxima, and it is said to be a minimum, if both a, ft be improper
minima.

It is clear that, in any arbitrarily small neighbourhood of an improper
maximum or minimum, there is an indefinitely great number of points at

which the functional value is equal to that at the maximum or minimum.

At any maximum or minimum there is a greatest neighbourhood (xl B,

x, S ) at every interior point of which the condition f(x) &amp;lt;f(xl ), f(x) ^/(x^,
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or /(a?) &amp;gt;f(x l ), /Car) S/(^) is satisfied. At end-points of such greatest

neighbourhood, it follows from the condition of continuity of the function,
that the functional value is equal to/(#j), unless such end-point coincides with

a or with b.

It has been shewn in 213 that there exists either one point, or a set of

points, in (a, b), such that the functional value at this point, or at all the points
of the set, is greater than at all other points in the interval

;
and it is to be

remarked that this set of points may contain lines of invariability. Every such

point, unless it be an end-point, is said to be a point of absolute maximum of

the function in the interval (a, b), and may be either a proper or an improper
maximum. A similar definition applies to an absolute minimum.

In case an extreme point of the continuous function (see 209) be at a,

or at b, such point is spoken of as an upper or lower extreme, but not always
as a maximum or minimum of the function. If f(a) and f(b) be equal, and
the function be not constant in (a, b), then there is at least one maximum or

one minimum point, or one line of invariability, in the interior of (a, b). This

is also true when /(a) =/(&), unless the function be monotone.

257. If, within the interval (a, b), there be two points, or two lines of invari

ability, at which the continuous function is a maximum, proper or improper,
then there is between them at least one point, or one line of invariability, at

which the function is a proper or improper minimum; thus maxima and
minima occur alternately.

Suppose that a, ft are two points at which the function is a maximum,
and that (a, /3) is not entirely a line of invariability ;

also that no maximum
occurs between a and ft. We know that, between a and ft, there is a point, or

a set of points, at which the function is less than at all other points in the

sub-interval
;
and since a and ft cannot belong to such set, there is therefore

a minimum at a point, or at points on a line of invariability, between a and

ft, and this minimum is less than either of the maxima at a and ft.

Between a maximum and the next minimum of a continuous function the

function is said to make an oscillation, the amplitude of which is the excess of
the maximum over the minimum.

If ^ be a point in (a, b), it may be possible to choose e so small that, within

the interval (xl ,
x

l + e), no maxima or minima occur, so that the function is

monotone in this interval. It may however be the case that, however small

is taken, there still occur maxima and minima in (x1 ,
x

l -f e). In this case

the number of oscillations of the function must be indefinitely great, however

small e may be chosen
;
for if there were a finite number only, a number ej

could be found such that all the maxima and minima were in the interval

(xl + elt x^ 4- e), and thus in (x l ,xl + ej) the function would be monotone, which

is contrary to the hypothesis made.
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It thus appears that, in the neighbourhood of a particular point, a con

tinuous function may have an indefinitely great number of oscillations. An

improper maximum or minimum, not in a line of invariability, is certainly

such a point.

The proper maxima and minima of a continuous function form an enumer

able, or a finite, set of points.

Consider (^ e, x1 + 77),
the greatest neighbourhood of a point of proper

maximum xlt which is such that, for all other points x within the neighbour

hood, f(x) &amp;lt;f(x 1 ). There can, in a finite interval, be only a finite number of

such points ^ for which e
&amp;gt;a, 77 &amp;gt; a, where a is a fixed positive number; for

if there were an infinite number of such points, they would have a limiting

point , and we could choose two points a?/, #/ of the set, such that the dis

tance of each from is less than |o; then each of these points would lie

within the neighbourhood belonging to the other, and thus we should have

/(#/) &amp;gt;/(#/ ),
and also/(.r1 &quot;) &amp;gt;/(#/),

which is impossible; thus the set must

be finite. Now choose a sequence of descending values of a which converges

to zero, say alt a2 ,
... an ,

...
;
the number mn of maxima x-^ such that for each

e &amp;gt; au , 77
&amp;gt; an being finite, we have mit m2 , ... mn , ... all finite

;
and hence the

whole set of maxima fornis an enumerable set.

If x
l
be an improper maximum point, and /(#i)

= A, then a neighbourhood

(#! e, xl + 77) can be found which contains an infinite set of points GA such

that/(#) = A, for each point of the set. If x be an isolated point of the set

GA ,
then x is clearly a proper maximum of the function

;
and if x&quot; be a point

of GA , which is a limiting point of the set, x&quot; is au improper maximum. The

points x
l e, xl + 77 need not be maxima, even though they be limiting points

of GA . The condition of continuity of the function ensures that the set GA is

a closed one
; for, at any limiting point of the set, the functional value is the

limit of a sequence, each member of which is A, and this value is therefore

itself A.

Corresponding to a given A, there may be a finite, or an infinite, set of

detached intervals such as (^ e, xl + 77), each one of which contains a closed

set such that each isolated point of it is a proper maximum, and each limiting

point (except an end-point) is an improper maximum. The set GA may con

tain perfect components, and thus the improper maxima at which A is the

functional value may form a set of the cardinal number of the continuum. A
similar result holds for minima.

It can further be shewn that the values of a continuous function at all

its maxima and minima form a set which is either finite or enumerably
infinite.
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258. If, in the interval (a, b), the function have only a finite number of

maxima and minima, counting any line of invariability which is a maximum
or minimum as one maximum or minimum, the interval can be divided into a

finite number of parts in each of which the function is monotone
;
the function

is then said to be* in general monotone (abtheilungsweise monoton).

If the function have an indefinitely great number of maxima and minima,
which occur either at points or at lines of invariability, the function then makes

an infinite number of oscillations
;
and these may occur in the neighbourhoods

either of a finite number of points, or of an infinite number of points.

It can be shewn that, in the case of a continuous function, although there

may be an infinite number of oscillations of the function, there can be only
a finite number of which the amplitude exceeds an arbitrarily small fixed

number a.

For it has been shewn in 217 that a number e can be determined, such

that, in any sub-interval of length e, the fluctuation of the function does not

exceed a
;
therefore in each of the sub-intervals

(a, a + e), (a + e, a + 2e), ... (a + ne, b),

the fluctuation of the function is not greater than a. It follows that no oscillation

of the function which is greater than &amp;lt;r can be completed in one of these sub-

intervals, and that such an oscillation must require twro at least of these sub-

intervals for its completion ;
hence the number of such oscillations in (a, b)

cannot exceed the finite number n. As the number &amp;lt;r is diminished indefinitely,

it may happen that the number of oscillations of which the amplitude exceeds

a is increased indefinitely.

If the point a is an isolated point of discontinuity of a function /(#), and

if /(a + 0), /(a 4- 0) be unequal, there is an infinite number of oscillations in

the interval (a, a + e). This may also be the case iff(a + 0) have a unique value.

THE DERIVATIVES OF FUNCTIONS.

259. If a function f(x} be defined for all points in the interval (a, 6), then,

f(x\ _ fix \

for a point x
l
in this interval, we may regard the function L as a

X ~~&quot;&quot;

Uu-^

function F (x), of x, which is defined for all values of x in (a, b), except for the

point #j. This function F (x), although undefined at the point oc1} has finite

or infinite functional limits at that point, in accordance with the definitions

in 220.

* This term is due to C. Neumann
;
see his work Ueber die nach Kreis- Kugel- und Cylinder-

functionen fortschreitenden ReiJien.
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If the limits F (xl + 0), F(xl 0) both exist, and have the same value, either

finite, or + oc
,
or oo

,
this value is called the differential coefficient at #1

of the function /(#). At the point a, if F(a + 0) exists, it is frequently said

to be the differential coefficient of f(x) at a; and at the point b, if F(b Q)

exists, it is said to be the differential coefficient of f(x) at b.

The condition that/(V) may possess a finite differential coefficient at xl is

that, corresponding to each arbitrarily chosen positive number e, a neighbour
hood

(x-i 8, xl + 8) can be found, such that

for every pair of points ,
which lie within this neighbourhood, or within

such part of it as is interior to (a, b).

In other words, the condition is that a neighbourhood of x
l can be found

f(x\ f(x )
such that the fluctuation of the function -^ y within it, or within such

x x-i

part of it as lies in (a, b), may be as small as we please.

If, corresponding to an arbitrarily large positive number A, a neighbourhood
f(x) f(x )

(X - 8, ^ + 8) can be found, such that - J v
&amp;gt; A, for every point x (^ x-i}

OC ^ OC]

in that neighbourhood,/^) has the differential coefficient + x at the point xlt

When a differential coefficient of f(x) exists at the point #n the function

is said to be differentiable at x-i ;
and the differential coefficient at that point

may be denoted by/ (#j).

In geometrical language, when the function f(x) has a differential co

efficient at #!, the curve y=f(x) is said to have a tangent at the point

(xl ,f(x l )). In case the differential coefficient is 4- oo
,
or oo

,
the tangent is

parallel to the y-axis, and the point is a point of inflexion of the curve.

That a function f(x) may have a finite differential coefficient at xl , it is

necessary, but not sufficient, that x^ should be a point of continuity of thefunction.

At a point of discontinuity a;l; o(f(x), there always exists a positive number

&amp;lt;r,
such that in any neighbourhood of x

l ,
however small, points exist such that

i /() /(#i) \&amp;gt;a&quot;,
hence if A be any arbitrarily great positive number, in the

interval (^ 8, xl + 8), where 8 &amp;lt; tr/A, there exist points such that

e-*,

f(x) f(x )and it is thus impossible that should have a definite finite limit
x x

l

at a?!. On the other hand, the condition for the existence of a finite differential
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coefficient, viz. that
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_ f(x \
J v IJ

x
should have an arbitrarily small fluctuation

within a sufficiently small neighbourhood of xl} is not necessarily satisfied

when the condition of continuity, viz. that f(x) should have an arbitrarily small

fluctuation within a sufficiently small neighbourhood of aclt is satisfied.

If, at a point x, the function f(x) have a finite differential coefficientf (x),

or have an infinite differential coefficient of fixed sign, an interval (x 8e ,
x + B e )

f(x \ _ f(x \

can be so determined* that the ratio y J ^ l

is between f (x)+e and
T*

- -Y1 r

f (x) e, where xl is any point in the interval (x B f , x), and x2 is any point
in the interval (x, x + Bf ) ;

or that the same ratio is &amp;gt; N, an assigned positive

number, if / (x)
= + oo

,
or &amp;lt;

- N, if / (x)
= - oc .

A continuous function f(x), defined for the interval (or, 6), which has a

differential coefficient at every point of the interval, is said to be differentioble

in its domain. Continuous functions exist, which atno point in their domain

possess a differential coefficient. The first example of such a function was given

by Weierstrass
;
the construction of such functions will be considered in Vol. II.

That a continuous function possesses a differential coefficient was formerly

regarded as obvious from geometrical intuition, it being supposed that such

functions were necessarily representable by curves possessing definite tangents
at every point. The first attempt to prove the existence of a differential

coefficient of a continuous function was that of Ampere f; this proof was,

however, insufficient, even in the case of those continuous functions which make

only a finite number of oscillations- in the intervals for which they are defined.

It is now fully recognized that the class of continuous functions is much wider

than that of functions capable of an approximate graphical representation ;
and

that the conditions for the existence of definite differential coefficients are of

a much more stringent character than would be the case if they were included

under the bare condition of continuity of the function.

f(x\ _ f(x\
260. It may happen that, at a point a\ ,

the function -
possesses

finite, or even indefinitely great, limits on the right and on the left at a?, ,
which

differ from one another
;
the function is then said to have derivatives, on the

right, and on the left, at sc
l . These are frequently spoken of as the progressive

and regressive differential coefficients, or derivatives, respectively. A function

may possess a progressive derivative and no regressive derivative, or the

reverse.

When, at the point x1} the function /(#) has no differential coefficient, and

neither progressive nor regressive derivatives, the function has, in

* See Bromwich s Theory of Infinite Series, p. 490.

+ Journ. Ecol. polyt., vol. vi, 1806, p. 148.
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accordance with 220, four extreme limits, an upper, and a lower one,

on the right, and on the left. Any one of these four may be either finite or

infinite.

There is in general an aggregate of functional limits, on the right, of

f(x} f(x)J *-l
,
and also an aggregate of functional limits on the left. The upper

and lower limits, on the right, which are the upper and lower boundaries of

_ f(x \

the aggregate of functional limits of
i

&quot;*

at xl} on the right, are defined

to be the upper and lower extreme derivatives of f(x), at xlt on the right, or

simply, the upper and lower derivatives on the right, and these are in accordance

with the notation of Scheeffer*, denoted by D+f(x), D+f(x) respectively.

Similarly, the upper and lower derivatives of f(x) at xlt on the left, are the

upper and lower boundaries of the aggregate of functional limits on the left,

and are denoted by D~f(x), D_f(x) respectively.

As x has the values of a sequence converging to x
l
on one side, the values

f(x) f(x )
Of ^J: J U mav converge either to the upper or to the lower derivative of

*~~*~~ CC

f{x) at xl ,
on that side, or they may converge to some number lying between these

extreme derivatives. In the last case they are said to converge to a median
derivative on that side. The upper and lower derivatives on one side, together
with any median derivatives on that side which may exist, make up the aggre-

f(x) f(x )

gate of functional limits of ^ J v v
at x1} on the side under consideration.

In case the function f(x) is continuous in an open interval on the right of

xlt the median derivatives have every value between D+
f(x) and D+f(x} (see

229), but when/ (a;) is not continuous in such an open interval on the right of

#!, the aggregate of derivatives on the right may be a closed discontinuous set

having D+
f(x) and D+f(x) for its upper and lower extremes. A similar remark

applies to the case of the derivatives on the left.

It is frequently convenient in this general case to speak of the derivatives
off(x) on the right, and on the left, as existent, but indefinite in value : and in
this case D+

f(xl\ D+f(x^ are regarded as the limits of indeterminancy of the
derivative on the right, and D~f(x,\ D_f(x,} as those of the derivative on
the left.

The definitions which have been given for the case in which the domain
of the function is continuous are applicable, without essential change, to the
case in which the domain is any perfect set of points. At a point of the set
which is a limiting point on both sides, there exist in general the four extreme

* Acta Mathematica, vol. v. The same limits were considered by Du Bois Eeymond, Programm,
Freiburg, 1870, also Miinch. Abh., vol. xn, p. 125, under the name Unbestimmtheitsgrenzen.

K
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derivatives D+
f(x), D+f(x), D~f(x\ D_f(x), two or more of which may have

equal values
;
and at a point of the perfect set, which is a limiting point on one

side only, there exist of course only the two derivatives on that side. If the

domain be any closed set, the derivatives exist only at those points which are

limiting points of the set.

A function defined for a perfect set may, by the method of correspondence,
be correlated with a function defined for a continuous interval, the relative

order of two points in the continuous interval being the same as that of the

corresponding points in the perfect set (see 163); and thus all properties of

derivatives of functions defined for a continuous interval have their analogues
in the case in which the domain is any perfect set.

EXAMPLES.

1. If/(#)= .? sin -,/(0) = 0; we have
-O_^/J.

- = sin
^,

and for arbitrarily small values

of h, this oscillates between 1 and -1. The function f(x\ although continuous at # = 0,

possesses no differential coefficient at that point ;
in fact

2. If/(*) = a;
2 sin -, /(0) = 0, the differential coefficient / (x} exists for every value of

x, and is finite. At the point x= 0, / (x) is zero, but has a discontinuity of the second kind.

,
... , /-/

, 1\ . / i\
3. Let* / (*)

= VJ? ( 1 +x sin -
)

,
for

x&amp;gt;Q; f(x}= - V -
.? 1 +x sin -

) ,
for x

&amp;lt; ; andI
rvt I f J \ f I *^ O1L1

\ */ \ xj

/(0)=a In this case/ (as) everywhere exists; its value at x=0 is +00, and although it

has a finite value at every point except at x= 0, it oscillates in the neighbourhood of that

point between indefinitely great positive and negative values.

4.t The function defined by/(^)=^{l+i sin (log^
2
)}, and/(0) = 0, is everywhere con

tinuous, arid is monotone, but has no differential coefficient at #=0.

_ j_

54 Let/(#) = e ^si&quot;-! /(0) = 0; this function has at every point a differential

coefficient, and this is continuous at x = Q. The differential coefficient vanishes at #= 0,
and at an infinite number of points in the neighbourhood of x=0. The function f (x),

like/(#), has an infinite number of oscillations in a neighbourhood of ^=0.

THE DIFFERENTIAL COEFFICIENTS OF CONTINUOUS FUNCTIONS.

261. Let us suppose that a continuous function, defined for a continuous
closed interval, is such that, at every point interior to an interval (a, /3), there

exists a differential coefficient
;
this differential coefficient may at any point

have a finite value, which may be zero, or it may have an infinite value, of which,

*
Diiii, Grundlagen, p. 112.

t Pringsheim, Encyklopfidie der Math. Wissensch., IIA. i, p. 22.

J Dini, Grundlagen, p. 313.
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however, the sign is definite. It will be observed that f(x) is assumed to be

continuous at the points a, /3, but it is not assumed that definite derivatives

exist at those points. It will be shewn that, unless the function be constant

throughout (a, /3), there exists at least one point in the interior of (a, /3) at which

the differential coefficient has a definite value, different from zero.

Suppose /(a), /(/3) to be unequal. If they be not unequal, and the

function be not constant throughout (a, /3), we can replace the interval (a, /3),

by another one contained in it, for which the functional values at the ends

are unequal. Let us consider the function

F(x) =f(x) -/(a)
-

_

F(a) and F(ft) vanish, and F (x) is continuous in (a, /3), and has a differential

coefficient in the ordinary sense at each point, with the possible exception of

a and /9; therefore it follows, by the theorem of 213, that there is at least one

point #!, in the interior of (a, /3), at which F (x] is a maximum or minimum :

this is the case even if F(x) be everywhere zero in the interval. A number e

can therefore be found such that F(xl + S) F(xl ), F(x l
-

8) F(x1 ) have the

same sign, or else vanish, provided S &amp;lt; e
;
and consequently the derivatives at

a?!, on the right and left, must have opposite signs, unless both of them be zero;

therefore the differential coefficient at x1} which must exist, must be zero. It

follows that / (a?,)
-^^lW = ^ and thug the point ^ ig th

ex

which the existence was to be proved. From this theorem we deduce the

following general theorem :

Iff(x) be continuous in the closed interval (a, b), and be such that it has a

differential coefficient at every point in the interior of the interval, and if there

be in (a, b) no lines of invariability, then there exists in (a, b) an everywhere
dense set of points at which the differential coefficient has finite values differing
from zero.

This is proved at once by applying the foregoing theorem to any interval
contained in (a, b). There may be, in (a, 6), infinite sets of points at which the
differential coefficient is either zero or infinite.

262. The following theorem, known as the mean value theorem of the
Differential Calculus, has been established by the proof in 261 :

If the function f(x} be continuous in the closed interval (a, b), and if the

differential coefficient f (x) exist at every point interior to the interval (a, b),

being either finite, or infinite with fixed sign, then a point a + 0(b-a) exists,
where is some number such that &amp;lt; &amp;lt; I, for which

f(b) =/(a) + (b
- a)f (a
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If we change the notation, so that (x, x + h) is the given interval, the

result may be written

f(x + h) =f(x) + hf (x + eh).

It will be observed that no assumption is made as to the existence of a

derivative on the right at the point a, or x, or as to the existence of a

derivative on the left at b, or x + h. It has only been assumed that the

function is continuous on the right, and on the left, at these points respectively.

In case however it is known that the limit of / (x), as x ~ a, has a definite

value X, then f(x) has a definite derivative on the right at the point a, and its

value is X.

For, since ^ =f (a + 0x-a), and the expression on the right-
OC &quot;

Gt

hand side converges to X, as x ~
a, it follows that lim ^-^ J_\? = X.

X~a & Ot

A corollary from the mean value theorem is that, if f(x + h) =f(x), then

/ (x) must be zero at one point at least in the interior of the interval (x, x+h).

The following theorem may be proved by means of the mean value theorem:

If f(x) have a continuous differential coefficient f (x), at every point of an

open interval (a, b), thenf(x + h) f(x) = h{f (x) + p (x, h)}, for every pair of

points x, x + h of the open interval ; where p (x, h) converges to zero, as h ~ 0,

uniformly for all points x of any closed interval (a, /3) contained in (a, b).

Since f(x + h) f(x) = hf (x + dh), where &amp;lt; 6 &amp;lt; 1, for any pair of points

x, x+ h, within (a,6),and sincef (x) is continuous in the closed interval (a.-h lt

fi+ h-t), where (a, /3) is a closed interval contained in (a, b), and Aj is so small that

the closed interval (a /i1} ft + h^) is also in (a, 6), we have, for every value of x

in (a, @),
\f (x + dh) f (x) &amp;lt; e, if

|

h &amp;lt; h^ provided h is taken sufficiently

small. This follows from the uniform continuity of/ (x) in the closed interval

(a AJ, /3 + AI). We may therefore take / (x + dh) =f (x) + p (x, h); where

| p (x, h) &amp;lt; e, provided j

h &amp;lt; hlt and x is any point in (a, jS). Since e is

arbitrary, p (x, h) converges uniformly to zero, as h ~ 0, for all points x in (a, /3).

263. An important extension of the mean value theorem is the following:

Iff(x) be continuous in the closed interval (x, x + h), and have a differential

coefficient at every point of the interval, with the possible exception of the

end-points; and if F (x) be another function which is also continuous in the

same interval, and at every interior point has a differential coefficient, whilst at

the end-points there may be no definite derivatives, or they may be zero, or

infinite, then, provided f (x) and F (x) have no common zeros or common

infinities in the open interval,

_
F(x + h)-F(x) F (x+0h)

for some value of 6 such that &amp;lt; 6 &amp;lt; 1.
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To prove the theorem, let

-/(a -/(&amp;gt;
- i

and let it be assumed that F(x + h)
- F (x) is not zero. Since

&amp;lt;/&amp;gt; (x)
=

&amp;lt;j) (x

and &amp;lt; () satisfies the conditions of the mean value theorem, &amp;lt; (f)
must vanish

for some value a? + 0A, of
,
interior to the interval (x, x + h); &amp;lt; () exists,

since / (), F (g) cannot both be infinite. We have then

from which the theorem follows, since F (x + 0h) and f (x+ Oh) cannot be

both infinite, or both zero. In the case in which f(x + h) =f(x), we have

/ (x + Oh) = 0,

for some suitable value of 0; and then, since F(x + h) F(x), F (x + Oh) are

not zero, the theorem still holds.

264. The last theorem may be applied to obtain a proof of the legitimacy,

under certain conditions, of a well-known method of evaluating limits which

ao

appear in the so-called indeterminate forms ^, .

oo

Let the two functionsf (x), F(x) be both continuous at all points interior to

the interval (a, a. + /3), and let the limitsf(a -f 0), F (a + 0) both exist, and be zero;

if finite differential coefficients f (x), F (x) exist at every interior point of

(a, a + /3), and ifh(&amp;gt;0) can be so determined that, within (a, ct + h),f (x) and

F (x) are not both zero, and not both infinite together at any point, then if the

limit

rlim J

,t ~o

exist as a definite number, or be infinite with a fixed sign, the limit

also exists, and the two have the same value.

Moreover, if the first limit has no unique value, the two limits have the same
limits of indeterminancy.

The two functional values /(a), F (a) may both be defined to be zero, and

thus the functions f(x), F (x) are continuous in any interval (a, a + h), where

h &amp;lt; /3. We have then, from the extension of the mean value theorem,

f(*+h) f(a + 0h)

F(a+h) F (a + 0h)

where is some number between and 1. Since Oh converges to zero when
h does so, the theorem follows at once from this equality.

H. 22
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If /(#), F(x} ha both differential coefficientsf (x), F (x} at all points

of the open interval (a, a + /3), and if f(a + 0\ F(a + 0), both exist, and
are infinite with a fixed sign; then, provided h(&amp;gt;0,

g /3) can be so determined

that f (x), F (x) are not both zero*, or both infinity, at any point in the open

interval (a, a + h), if lira J~ ~ exists, as a finite number, or is infinite with
;t ~o f (fl+n)

a fixed sign, also Km J
^--rf exists, and the two have the same value.

fc~o * (a+n)

Moreover, if the first limit has no unique value, the limits of indeterminancy of
the two limits are the same.

Consider the interval (+ B1} a. + 82) interior to (a, a+ h); we have then

F(a+82)-F(a + 8l) F (a+8s)

where 83 is a number which lies between 8, and 82 ;
it being assumed that

F(a + 82) =(=
F (a + 80 =r~

0. This equation may be written in the form

/Q + 8Q_/(g + 82) . 1-

Taking S2 as fixed, if e be an arbitrarily small positive number, a positive
number B

(&amp;lt;
S2) can be so determined that for every value of S

1 (&amp;gt;0)
which

is &amp;lt;S ,
the inequalities

are both satisfied; this follows from the fact that F (a + 0) is infinite with

fixed sign.

We have now

where n &amp;lt;e,
and

| f &amp;lt;e,
for all values of 8X such that &amp;lt; Sj &amp;lt; 8

;
where 82 is

fixed, and 8
(&amp;lt;

82 ) can then be determined.

If we assign to 82 the values in a sequence that converges to zero, 8 will

have the values in a similar sequence.

If U, L denote the upper and the lower limits of
-^7^
-

r^ ,
as h ~

0, wwe see

that t^4
-srr lies between U + e and L e, provided that 82 is sufficientlyf (a + os)

small.

* This generalization of the conditions to be satisfied by the two functions in these theorems

is due to W. H. Young; see Proc. Land. Math. Soc. (2), vol. vm, p. 51. For a history of these

theorems, seePringsheim, Encycl. d. Math. Wissensch.,n A. i, p. 26. A detailed investigation of the

theorems is given by Stolz, Grundziige, vol. i, p. 77 et seq. ; Stolz assumes that F (x) is monotone

in the interval.
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Then -& is between e + (1 + e) ( U + e) and - e + (1
-

e) (L
-

e) ;
and

f (Ct+ Oj)

therefore, since e is arbitrary, any value of lim ~-,--. is in the interval
J J

A~O F(a + h)

(L, U).

IiU = L, then limg|g has the unique value lim
g

265. Let f(x), F (x) be both zero at the point x = sc
l ,
and let us suppose

that / (X), F (a?a ) both exist, and are finite, the latter not being zero. It is

unnecessary to assume the existence of/ (x), F (x) for x =f x\-

From the definition of/ (a^), .F (#]), we have

/(^+ A) -A {/ (,)+/ (A)},

F(xl + h)=h{F (xl)+p (h)},

where p (A), // (A) converge to zero, as h ~ 0. Thence we have

from which it follows that

This includes the case in whichf (x^)
= 0, F (x^) =j= 0, when the limit is zero.

Next, let it be assumed that/to),/ ), ...f
(n
~

l)

(x,) (see 270) all exist,

and have the value 0; and that F(xl},
F (x^, ... F^n -^ (x^ all exist, and have

the value 0. Also let it be assumed that f (n}
(xj), F(n ]

(x^ exist, and are

finite, neither of them being zero. It will also be assumed that, in some

neighbourhood of the point aclt the first n 1 differential coefficients of f(x),
and the first ri \ differential coefficients of F(x), all exist.

We have then,

f(n-l) ( T/ 1

=/ ); since
/&amp;lt;- (arO

= 0.

It then follows, by the employment of the theorem of 263, that

u f(xl + h) f (Xl + h) f&quot;(xl

w! h nl

222
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Similarly, we have lira
^* * =-^; and thus we see that, since

ft,~0 &quot;&amp;gt; 71

/(*! + *) = , n_ n , f(x, + h)/h

= + oo
,

if n &amp;gt; n

. =/B)
(*i)/^

(n)
(*i). if w = w.

The following theorem has been established:

If f(x), F(x) are zero when x=xly and have, in a neighbourhood of that

point, differential coefficients of the first n-l, and n -l orders respectively,
which are all zero at the point x = x^; and

if, moreover, the differential co

efficients off(x), F(x\ of orders n, n, respectively, exist and are finite, at the

point x = x^ both of them, being different from zero, then lim ^f^ has a

unique value 0, f^r-{ ,
+ &amp;lt;* ; according as n &amp;lt; n, n =

n, or n &amp;gt; n; the sign of

GO being that off
n
(xl}IF

n
(xl }.

If, for every value of x
l in an open interval (a, /3),/ (V), F (x} are both

continuous, and F (x} =f 0, we see, as in 262, that

where p (x, h), p (x, h) converge to 0, as h ~ 0, uniformly for all points a; in a
closed interval (a, b) contained in (a, ). We then see that

f(x+h)-f(x) f(x)
-v/ nx E^\ converges to v,/, \
F(x+h)-F(x) F (x}

uniformly in the interval (a, b), provided |

F (x) \

exceed some fixed positive

number, for all points in the interval.

266. If the function f(x) have a discontinuity of the second kind at the

point a, at least on the side which is towards the interval (a, a. + h), but the

function have a finite differential coefficient at every point of the interval
(a., a. + h),

except at the point a, then the differential coefficient has, in any arbitrarily small

neighbourhood of a, every finite value.

Let X- be any fixed number, positive, negative, or zero. The function

f(x) \x has a finite differential coefficient at all interior points of (a, a + h),

and it has a discontinuity of the second kind at the point a. If 8
(&amp;lt; h) be

arbitrarily small, in the interior of the neighbourhood (a, a + 3), f(x]
- \x has

maxima and minima, for it cannot be monotone in that interval
;
and at such

points / (x) \ = 0. Since X is arbitrary, it thus appears that in the neigh
bourhood of a,/ (x) has every finite value.
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The mean value theorem /(a + h) /(a) = hf (a + Qh), where &amp;lt; &amp;lt; 1,

affords information as to the existence and value of the derivative at a, on the

right, provided f(x) satisfies, in a neighbourhood of a on the right, the con

ditions under which the theorem holds. By considering both sides of a,

information may be obtained as to the existence of a differential coefficient

at a.

(1) If the function f (x) have a functional limit at a on the right, then

/(a + /Q -/(a)
h

has a definite limit for h ~ 0, either finite, or infinite with fixed sign, and this

is equal to that off (x). It follows that, in this case, a derivative at a on the

right exists, and is either finite, or infinite with fixed sign.

(2) If the function f (as) have no limit at a on the right, it may still

happen that f (a + 6h} has a definite limit at a on the right, because a + Oh

is not necessarily capable of having all values within a neighbourhood of a.

In this case, either (i) the derivative at a on the right may be definite, and

lie between the upper and lower limits of / (x) at a on the right, or it may
be equal to one or other of those limits

;
or (ii) there may be no definite de

rivative at a on the right, but D+
f(a), D+f(ct) may have different values, and

these are certainly both finite in case the upper and lower functional limits

off (as) at a are both finite.

(3) The derivative on the right at a can only exist, and be infinite, (i) if

f (x) have an infinite limit on the right at a, or (ii) if it have an infinite upper
limit on the right at a. In either of the cases, (i) and (ii),/ (x) may be every
where finite within a neighbourhood of a on the right, or it may be infinite at

some points in such a neighbourhood.

(4) If the derivative at a on the right exist, and be finite, then either

(i) f (x) has a definite limit at a on the right, equal to the derivative at a, or

(ii) / (x) has no definite limit at a on the right, but a sequence of points can

be determined, of which a. is the limiting point, such that the values of / (x)

for points of that sequence converge to the value of the derivative at or. At

points which do not belong to the sequence, the values of/ (x) may be either

finite or infinite.

267. Iff(x) be continuous in a given closed interval, and have at every point,
with the possible exception of an enumerable set G, a differential coefficient of
value zero, the function is constant throughout the whole interval.

At the points of G we may suppose it to be unknown whether a differential

coefficient exists, or, if one does exist, what values it has.
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A more general form of this theorem is obtained by considering not the

differential coefficient, but any one of the four derivatives, thus :

If f(x) be continuous in a given closed interval, and one of the four de

rivatives D+
f(x), D+f(x), D~f(x), D_f(x), be such that it is zero at every point

of the interval, with the exception ofpoints belonging to an enumerable set G, at

which nothing is known as to its value, then the function is constant throughout
the interval.

To prove the generalized theorem for the case of the function D+
f(x},

suppose that, if possible, f(x) /(a) has at some point x^ a value different from

zero, say the positive value p ;
and let

&amp;lt;f&amp;gt; (x, k) denote f(x) /(a) k(x a).

Then &amp;lt; (a, k) = 0, &amp;lt; (xl} k) =p k(xl a). Choose any fixed positive number

V) n

q&amp;lt;p,
then

&amp;lt;/&amp;gt;(#i, k)&amp;gt;q, provided k&amp;lt;
,
or say k&amp;lt;K. Since

&amp;lt;f&amp;gt;(x, k) is

wj Cv

continuous in (a, 6), and (j&amp;gt;(a, k) is zero, whilst &amp;lt; (xl} k) &amp;gt; q, there exists an

upper limit of those values of x between and xl} for which
&amp;lt;f&amp;gt; (x, k) q,

and this upper limit is attained for some value f, of x, which is such that

&amp;lt; xl ,
and &amp;lt; (, k)

=
q. Since

(f&amp;gt; ( + h, k) &amp;gt; q, provided &amp;lt; h ^ x^ %, we see

that, since y TS^i L
js positive, D+

&amp;lt;j)
(, k) is positive, if it be not

zero. Now if were a point not belonging to G, the value of D+
&amp;lt;$&amp;gt;
(, h) would

reduce to k
;
and therefore must belong to G.

The number q being fixed, depends only on k; and, corresponding to a

given value of f,
there is only one value of k

;
for

which cannot vanish unless k = k
,
since

&amp;lt;f&amp;gt;
(a, k) is zero, and therefore &amp;lt; q. For

a given value of k, the corresponding number of values of
,

all of which

necessarily belong to G, must be either finite, or enumerably infinite, since

every part of an enumerable aggregate is either finite or enumerable. There

fore, to each value of k, in the continuous interval (a, K /3), there corresponds
a finite, or enumerable, set of values of

,
and it would hence follow that the

continuum (a, K /3) is itself enumerable, which we know is not the case.

It has thus been shewn that, for no point can f(x) f(a) have a positive

value
;
and similarly, by considering f(x} f(a) + k (x a), it can be shewn

that f(x} /(a) can nowhere have a negative value
; hence f(x) =f(a}

throughout the whole interval (a, b). The case in which one of the other three

derivatives vanishes, except at points of G, can be treated in a similar manner.

A continuous function can exist, which is constant in each interval con

tiguous to a non-dense closed set G, and is not everywhere constant, provided
G is unenumerable

;
but if G be enumerable, the function must everywhere

have the same constant value.
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The following theorem* which is of importance in the theory of Integration

will now be established :

If two functions be each continuous in a given closed interval, and if, of one

of the four derivatives it be known that, for the two functions, this derivative has

equal finite values at each point of the interval, with the exception of an enu

merable set of points at which nothing is known as regards the two derivatives,

then the two functions differfrom one another only by a constant, which must be

the same for the whole interval.

It must first be observed that the proof of the preceding theorem suffices

to shew that, if D+
f(x) g 0, at every point of (a, b) not belonging to the set G,

then f(x) -/(a)g 0, for every point x of the interval. Similarly, if D+
f(x)^Q,

evervwhere in the interval, except at the points of G. then f(x) f(a) ^ 0, at
v * I

~~
f __ st \ ./ _ /_ \ f ^

^very~pomt~oTtTie interval.

If now /j (x),fz (x) be two continuous functions such that

/ J 4 \ /

at every point of (a, b) not belonging to G, let f(x) =/(#,) f(xz). If e be an

arbitrarily small positive number, then for any point x not belonging to G, the

condition

is satisfied for a set of positive values of h which are arbitrarily small. Also

we have, for all sufficiently small values of h,

hence, since D+fl (x)
= D+f,(x\ we see that /(^ +

^
-/(a?)

&amp;gt;

_
2g&amp;gt;

for all

values of h belonging to some set. It follows that D+
f(x) &amp;gt; 2e, and thencef

that D+
f(x} ^ 0, since e is arbitrary. By interchanging/! (x) and/2 (x), we see

that D+
{/(#)] = 0. From these two results we deduce that f(x} f(a) = 0,

and that f(a)f(x) = (), throughout the interval (a, b); therefore f(x) is

everywhere equal tof(a), and thus the theorem is established.

268. At a point x, at which the continuous function f(x) is a maximum,

since, for a sufficiently small neighbourhood of such a point x, the differences

f(x + h)-f(x\ f(x-h)-f(x)
are both negative or zero, for all points x h in the neighbourhood, it is clear

that each of the derivatives D+
f(x), D+f(x) is either negative or zero, and

that each of the derivatives D~f(x), D_/(#) is either positive or zero. In

case the function possess definite derivatives on the right and on the left at

*
Scheeffer, Arta Math., vol. v, p. 283.

t It is erroneously stated by Dini, that D+ /(ac) = 0. See Grundlagen, p. 275.
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the point x, the first of these is zero or negative, or possibly oo
,
whilst the

second is zero or positive, or possibly + oo .

If, at the point x, a definite differential coefficient exist, it must consequently
be zero. In the case of a minimum the corresponding statements hold, where

the positive sign takes the place of the negative one, and the reverse. The

following theorem has now been established :

If a continuous function possess a differential coefficient at a point x at which

the function is a maximum or minimum, then the differential coefficient at x

must be zero.

If a function f(x) have, at x1} a differential coefficient not equal to zero,

there is a neighbourhood of x-^ in which f(x) is monotone. This may be stated

in the form that, corresponding to a suitable value of h, a number k can be

determined, so that, to each value of y in the interval (yl k,y1 + k), where

y\ =/(#i)&amp;gt;
there corresponds one, and only one, value of x in the interval

(xl -h,as1 + A).

FUNCTIONS WITH LINES OF INVARIABILITY.

269. A continuous function may be such that, in the interval (a, b), there

exists an everywhere dense set of non-overlapping intervals, each one of which

is a line of invariability of the function. Within each interval of the set, the

function has its differential coefficient equal to zero
;

it therefore follows from

the theorem in 267, that the closed set of points, of which the given set of

intervals is the complementary set, cannot be an enumerable set, otherwise

the function would be constant in the whole interval (a, b). It is further clear

that no two of the intervals can abut on one another
;
for the condition of con

tinuity of the function at their common end-point would ensure that the values

of the function in the two intervals were the same, and thus the two intervals

would really belong to the same line of invariability. It follows that the end-

points and external points of an everywhere dense set of lines of invariability
of a continuous function must form a perfect non-dense set of points.

That a continuous function with an everywhere dense set of lines of in

variability can actually exist can be easily shewn as follows : Make the points
of a non-dense perfect set correspond in order to the points of a continuous

interval (a, b), then, as has been shewn in 163, the correspondence may be

such that the whole of a complementary interval of the perfect set corresponds
to one point of the continuous interval. If a continuous function be defined

for the continuous interval, we may define a new function which has at each

point of the perfect set the same value as the original function has at the

corresponding point of the continuous interval
;
and since all the points of a

complementary interval of the perfect set correspond to the same point of the

continuous interval, the new function is such that it has an everywhere dense

set of lines of invariability.
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EXAMPLES.

1. Take* the non-dense perfect set defined in Ex. 1, 83, by

+~~^*i^

where every cn is either Q or 2. A complementary interval has as its end-points |

3
+

3~2
+ +

3&quot;-
1
+

3 3 3~2 3&quot;-
1

3&quot;

which may be denoted by (, b v). Let the function / (a?) be defined as follows : For a point

x of the interval (0, 1) belonging to the perfect set, let

c, c, , _L/&amp;gt;

when x is in the interval (a,, &), let / (;;)=/ (&amp;lt;*)=/ (&) The function /(#) so defined is

continuous, and varies from to 1, and is constant in each of the intervals (av ,
bv) com

plementary to the non-dense perfect set.

2. t Let the numbers in the interval (0, 1) be expressed in a scale w=2m-l, of odd

degree; thus x= - + -?+ ..., where &amp;lt;,.&amp;lt;,
and the number of digits a,, is finite &quot;or

7i fl

infinite. For any number x represented in this manner, for which all the a s are even

integers, let f(x) equal -
f +-^4-...J In case any of the a s are odd, let ak be the

J ^ 2 \m ttr /

first one which is odd, and let f(x] then equal
- ( +^+ +

^^i)
+

( mk )
^^s

function f (x) is continuous, and varies from to 1
;
for an infinite set of points it has no

differential coefficient, and for all other values of x,f (.r)
= 0.

THE SUCCESSIVE DIFFERENTIAL COEFFICIENTS OF A CONTINUOUS FUNCTION.

270. If a continuous function /(#), denned for the closed interval (a, 6),

have at every point a differential coefficient / (a?), which is itself continuous

throughout the interval, the function / (a?) may itself have a differential

coefficient
/&quot; (a?), which is called the second differential coefficient, or the

second derivative, of / (x).

The second differential coefficient/ (^),of /(&amp;gt;
at a point xl ,

at which/ fa)

f (x +h) f (x )

exists as a definite number, may be defined as lim J ^
,
when this

;t~o *

limit exists, as a finite number, or is infinite with a fixed sign. It is not

necessary for the existence of the second differential coefficient
/&quot; fa), that

/ fa + h) should have a definite value, for all points x
1 + h in a neighbour

hood of #! .

*
Cantor, Acta Math., vol. iv, p. 386. See also Scheeffer, Acta Math., vol. v, p. 289.

t Grav4, Comptes Rendus, vol. cxxvii, p. 1005.
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It may happen that the four ratios

\ {D+ffa + h) -f (a,)}, I [D +ffa + h) -ffa)},

I {*&amp;gt;-/(* + *) -/&amp;lt;*i)J, ^ {D-/(^ + A) -/&amp;lt;*.)},

all have one and the same limit, finite, or infinite, when h -
0; and that this

should be the case is sufficient for the existence
of/&quot; (^), as here defined.

The second differential
coefficient/&quot;^) is thus defined as the repeated limit

lim lim /fo +
h + -/fo + h ^ -/fo +V +ffa)

h~0 k~0 Ilk

when this repeated limit exists; it being assumed that lim^1 + ^&quot;/fa)

/t~o &
has a definite value.

A more restricted definition of
/&quot; fa) is frequently employed, in which it

is assumed that f (x) exists as a definite number, not only at as1} but in a

neighbourhood of x^ In accordance with this more restricted definition, it is

not sufficient for the existence of
f&quot; fa) that the repeated limit

Um lim f(Xl

should have a definite, finite value, or be infinite with fixed sign.

For the sake of generality the less restricted definition of
/&quot; fa), given

above, will be here employed.

It is easily seen how the definition may be extended to the case of a
differential coefficientf(n)

(a?) of any order n.

271. In case the function f(x) possesses a finite differential coefficient,
of order n, at the point a; = a?lf and in which there is a neighbourhood of that

point in whichf (x),f&quot;(x), ...,/&amp;lt;

n- 1
&amp;gt;

(x) all exist, let

ffa + h) -ffa) - hf fa) -
|/&quot;

fa) -...-
(-^y,/

&amp;lt;&amp;gt;-

fa)

be denoted by &amp;lt; (h). Since (A), (h), ...,$
&amp;lt;&quot;- )

(h) all exist, and are zero,
when h = 0, it follows from the theorem of 263 that

lim = - = ^
~O nl r nr
hn

and then that
&amp;lt;j&amp;gt;(h)

=
{/&amp;lt;) (^) + p (A)), where /3 (/?) converges to 0, as h ~ 0.

We have thus the following theorem:

Iff(x} possesses an nth
differential coefficient atx = x

l , and if the first n-l
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differential coefficients exist everywhere in some neighbourhood of the point

x = xl} then

where lim p (h)
= 0.

We find, by employing this theorem, that when
/&quot; (x^ exists, and / (x}

exists in a neighbourhood of xl ,

hk

where the double limit lim a- (h, k) exists and has the value zero.

It follows that the double limit of the expression

/O, + h + k) -f(x, + h) -f(x, + k) +f(xl)

hk

exists and is equal to/&quot;0i).
The converse does not in general hold.

In particular the limits

.. l

- + A) rlim-rr- ,
urn

exist and have the value
/&quot;(#i).

The converse of this does not hold; for either of these limits may exist, and

yet/&quot;0i)
need not exist, nor even / (a^). An illustration of this is the case

of the function defined by /(O) = 0, f(x) = x sin2
-, for ^2

&amp;gt;0;
at the point

00

a;= O,/ (0) does not exist, and yet lim&quot;
-

/ = 0.

ft~0 &quot;

272. The following theorem, due to Schwarz*, is offundamental importance

in the theory of Fourier s series.

//, in an interval (a, /3), in whichf (x) is continuous,

h?

converge,for each value of x in (a, /3), to the limit zero,for h~Q, then thefunction

f(x) is a linear function in the whole interval, and consequently / (#), /&quot; (#)

everywhere exist, and the latter is everywhere zero.

Let us consider the function

* (x)
= /^) -/(a)

- f [/(/3) -/(a)] + ^ (x
-

a) (x
-

ft),

* Crelle s Journal, vol. LXXII.
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where k is a constant. The function
&amp;lt;f&amp;gt; (x), whichever sign be taken, is con

tinuous in (a, ft) }
and vanishes at a and ft. We find at once

and therefore, for each value of x in (a, ft), a positive number e can be found,
such that

(f&amp;gt;(x
+

h)-2(f&amp;gt; (x) + &amp;lt;f&amp;gt;(x-h)ia positive and greater than zero, for all

values of h which are numerically less than e.

If
(j&amp;gt;

(x) can be anywhere positive in (a, ft), there must be a point x
l at

which it has the greatest positive value, and this point is neither a nor ft,

since &amp;lt; (a), &amp;lt; (ft) both vanish. If
77 be sufficiently small,

&amp;lt;/&amp;gt; Oi + 17)
-

to) o,
&amp;lt;/&amp;gt;

&amp;lt;x

-
77)
-

&amp;lt; (a^) o,

hence
&amp;lt; fa + 17)

- 20 to) 4-
&amp;lt;/&amp;gt;
to - 77)

is, for all
sufficiently small values of

77, either negative or zero, which is con

trary to what was shewn above. It follows that (x) is everywhere negative
in (a, ft), and cannot be zero except at a and ft.

This holds whichever sign be taken in defining &amp;lt;f&amp;gt; (x). Now k&quot; (x -d)(x- ft)
is always negative, except at a and ft, and may be taken to have its numerically
greatest value as small as we please, since k is at our choice. It follows that

can nowhere in the interval be different from zero; for, if at any point it had
a value p, by choosing k such that k* (x

-
a) (x

-
ft) is numerically everywhere

&amp;lt;

| p \,
the function $ (x) could be made positive at the point, by proper choice

of the ambiguous sign. It has thus been shewn that/to) is linear in (a, ft).

273. Schwarz s theorem can be extended to the case in which there is an
enumerable set of points in the interval (a, /3), at which it is not known that
the limit in question exists, or is zero, provided a certain condition be satisfied

at each point of the enumerable set. The following theorem will be estab
lished :

If, in an interval (a, ft), in which f(x) is continuous, the expression

-2f(x)+f(x-h)

converge, for each value of x in (a, ft), to the limit zero, for h - 0, except that,

for an enumerable set of points G, this is not known to be the case, then, provided
that at each point x, of 0, the expression

-2f(x)+f(x-h)

converge to the limit zero, for A-vO, the function f(x) is a linear function in the

whole interval (a, ft).
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It should be observed that the condition

-*) =

is certainly satisfied at any point x at which the differential coefficientf (x)

exists, and is finite.

To prove the theorem, let it be assumed that

has a positive value p, at some point x
j
interior to (a, /S); and let

* (*, k) =/(a) -/() -|^ {/() -/()} + A; (x
-

)
2

,

where A; is a positive number. We have

(a, k) = Q,
(/&amp;gt; (/3, A) = k(@- a)

2
, and $(xl ,k} = pi-k (xl

-
a)

2
;

and hence, provided

the number ^(x^k) is greater than
&amp;lt;f&amp;gt;(P,k\

and than (,&). We shall

suppose k to be so chosen that this condition is satisfied; it then follows that

&amp;lt;f&amp;gt; (x,k} has a maximum between a and /3. The absolute maximum value of

&amp;lt;f&amp;gt;
(x, k) may be attained once, or a finite number of times, or an infinite

number of times, in the interval (a, /3).

The points x at which this maximum is attained have an upper extreme
x

(&amp;lt; /3), which must itself be a point at which the maximum of
&amp;lt;/&amp;gt; (x, k) is

attained, as is seen, in the case in which x is an upper limit, from the condi
tion of continuity of the function. We have therefore

(f&amp;gt; (x + h, k)
-

&amp;lt;j&amp;gt;
(x, k) 0, and

&amp;lt; (x
-

h, k)
-

&amp;lt;/&amp;gt; (x, k) 0,

if h be sufficiently small; from which we conclude that, in case

7i~0

^. y &quot;/ &quot;f*
\ &quot;&quot;)

* V
f *

.

^5
6X1St

its value is ^ 0. It follows that x must belong to G; because the value of this

limit is 2k, and therefore &amp;gt; 0, for any point which does not belong to G. Since
a; is a point of G, we have

lim

and since the two fractions have the same sign, it follows that

iin ,*&amp;lt;s

+ *.qr (M).. 0) amj iim *(g-*.*)-
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From this result we deduce that

lim/(^)-/(,) =lim/(^)-/(g) _/(g)-/(.)_ 21
A~O fe~o -h P-

To each value of k in the interval (0, K ),
there corresponds one value of x,

and it is impossible that the same value of x can correspond to two different

values k1} k2 of k. For if this were the case, we should have

/&amp;lt;?! (x a)
= &2 (x a),

and therefore ^ = k2 ,
since x &amp;gt; a. Now it is impossible that the set of points

k, interior to the interval (0, K), can be such that to each such point there

corresponds a distinct point x belonging to the enumerable set G. We con

clude that it is impossible that

f(x) -/(a) -^{/(P
1

) -/()}

can have a positive value p at any point x^ of the interval (a, yS); and it can

be shewn in a similar manner that there can be no negative value of the

same function in the interval. It follows that the function must everywhere
be zero, and therefore that f(x) is linear in the interval (a, ft).

274. Let us suppose that the continuous function f(x) is linear in each

interval contiguous to an enumerable closed set G, contained in (a, /3), and that

it possesses everywhere in the interval (a, /3) a finite differential coefficient.

In this case both the conditions of the theorem of 273 are satisfied, and

therefore the function is linear in the whole interval (a, /3) ;
we have then the

theorem:

Iff(x) be a continuous function possessing everywhere in the interval (a, (3)

a finite differential coefficient, and the function be linear in each one of an

everywhere dense set of intervals complementary to an enumerable closed set of

points G, then f(x} is a linear function in (a, /3).

If the closed set of points G were unenumerable, the preceding reasoning

would no longer be applicable, except that, at an isolated point of G, it would

establish that the linear functions in the two intervals which abut on one

another at the isolated point must be identical. Confining therefore our atten

tion to the case in which G is a perfect set, we see that a continuous function

possessing everywhere a finite differential coefficient may exist, which is linear

in each sub-interval complementary to a non-dense perfect set of points con

tained in the interval for which the function is defined, and yet the function

need not be linear in the whole interval.

The existence ofsuch functions will be effectively established in Chapter vu,

where it will be shewn that they may be obtained by the integration of con

tinuous functions which have an everywhere dense set of lines of invariability.
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OSCILLATING CONTINUOUS FUNCTIONS.

275. Let us suppose that the continuous function f(x) has no lines of

invariability in the interval (a, ft), and that everywhere in this interval it has

a finite differential coefficient. If, within (a, ft), there be a maximum or mini

mum of /(#), then at such a point/ (x), which exists and is finite, must be

zero. If the maxima and minima in (a, (3) be everywhere dense, then/ (#)

vanishes at every point of the everywhere dense set; and iff (x) were con

tinuous throughout (or, ft) it would follow that it was everywhere zero, which

would be contrary to the hypothesis that (a, ft) is not a line of invariability.

It follows from this that, if in an interval (a, ft), which contains no lines

of invariability of the continuous function f(x), the differential coefficientf (x)

everywhere exists, and is continuous, there must be in the interval an everywhere
dense set of sub-intervals in each of which the function is monotone.

We have further the following theorem :

be continuous in (a, ft), and have no lines of invariability, but have
an everywhere dense set of maxima and minima, there must be in the interval

an everywhere dense set ofpoints at each of whichf (x) either does not exist, or

does exist and is discontinuous.

A continuous function f(x) which, in a given interval (a, ft), has no lines

of
invariability, but has an everywhere dense set of maxima and minima, is

said to be a continuous function which is everywhere oscillating in the interval

(a, ft). Such a function cannot have a differential coefficient which is con
tinuous throughout the interval.

The continuous functions which are everywhere oscillating in an interval

may be divided into two classes.

(1) The function may be such that, if the constants I, m be properly
chosen, the function f(x) + Ix + m is monotone in the interval. In this case

f(x) is expressible as the difference of two monotone functions, and thus

belongs to the class of functions with bounded total fluctuation. These func
tions may be said to be of the first species, or to be functions with removable
oscillations.

(2) Such functiHis as do not belong to (1) may be said to be of the second

species, or to be functions with irremovable oscillations.

In order to bring to light the essential distinction between the two classes

of functions, as exhibited by the properties of their derivatives, we first of all

remark that, if D+f(x) have a positive lower boundary c, for all points x in

the interval (a, ft), then at each point f(x + h) -f(x) is essentially positive
for all positive values of h which are less than some number 8, dependent on
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x; hence the function is monotone in the interval. The function would also

be monotone in case the specified condition were that D+
f(x) has a negative

upper boundary for all values of x in (a, /3).

Now suppose that D+f(x) has a definite negative lower boundary in (a, /3);

let this be c, and consider the function
&amp;lt;f&amp;gt;

(x) =f(x) + la; + m, where l&amp;gt;c;

we have then
D+&amp;lt; (x)

= I + D+/(#) = c; hence the function
&amp;lt;j&amp;gt;

(x) is mono

tone in (a, (3). Thus/(#) is expressible as the difference of the two monotone

functions
&amp;lt;/&amp;gt; (x) and Ix + m. Similarly, if we had taken the condition that

D+f(x) has a definite positive upper limit c, the function /(#) + lx + m, where

I &amp;lt; c, could be shewn to be monotone.

It is clear that, instead of the linear function Ix + m, we might have used

any continuous difFerentiable function whose differential coefficient was &amp;gt; c,

or &amp;lt; c, throughout the interval, in the two cases.

The argument would have been unaltered if it had been assumed that

there were a finite or infinite set of lines of invariability in (a, /3).

It has thus been shewn that :

If the continuous function f(x) be such that either D+f(x) has a negative

lower boundary for all values of x in (a, /3), or that D+
f(x) has a positive upper

boundary, then all maxima and minima of the oscillating function f(x) are

removed by adding to f(x) a properly chosen linear /auction, and thus the

function is of the Jirst species, and is of bounded total fluctuation.

In particular, the conditions of the theorem are satisfied if the derivative,

on one side, without necessarily having a definite value at any point, be such

that for the whole interval it is numerically less than some fixed positive

number.

A function, such that for a given interval,

1 D+f(x) ,
\

D+f(x) \

,
\ D~f(x) |

, D_f(x) \

are all less than some fixed number, is said to be a function with bounded

derivatives. Such a function has a bounded variation in the interval, and if it

be everywhere oscillating, it is of the first species.

If all the four derivatives are, at every point, less than the positive number

M, in which case the function is necessarily continuous, a neighbourhood of

any point x may be so determined that, if be any point in that neighbour

hood,
| /(|) f(x) |

^ M %-x\. Hence the fluctuation ki the neighbourhood

B is ^ 2MB.

By the Heine-Borel theorem all the points of (a, b) are interior to a finite

number of the intervals S. It follows that the interval (a, b) may be divided

into a finite number of parts, each of length less than a prescribed number d,

such that the sum of the fluctuations in those parts is &amp;lt; 2M (b
-

a). Since d

is arbitrarily small, it follows that the total fluctuation off(x) in (a, b) cannot

exceed 2M(b a).
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It is not sufficient, in order that a function may be of limited total fluctua

tion, that, at each point, all four derivatives are finite; but it has been shewn

to be sufficient that their values in the whole interval should be bounded.

276. Let us suppose that, for a set of points G, everywhere dense in (a, b),

progressive and regressive derivatives at a point of G exist, and are infinite,

but of opposite signs. At any point x^, of G, a neighbourhood can be found,

containing x
,
such that, for any point x in it, /(#) /(#&amp;lt;,)

is of fixed sign for

the whole neighbourhood, and is never zero, except when x = x
;
it follows that

#o is a proper maximum, or minimum, of the function.

It will be shewn that, in any interval (a, /3) contained in (a, b), there is

an infinite number of points at which the function has the same value. Let

| be a maximum point of f(x), within (a, /3), and let ( 77, f + e) be the

greatest interval enclosing ,
within which f(x) -/() is negative; suppose that

the absolute minimum of the function for this interval is in ( 17, ); taking
a maximum point ^ in the interval (, + e), then in ( 77, ) there is a

point / at which /(|/) =/(), since/(0 lies between the greatest and least

values of the continuous function in ( 17, ).

Now there is a maximum interval (1 171, 1+61) for the point 1} and
this lies within (, 4- e) ;

and in this interval we may as before find a maxi

mum point 2 ,
such that a point / also exists within the interval, for which

=/(/) There is also a point ,&quot; in ( ij, ),
such that

/(&&quot;)=/(& )=/(&)

We may proceed in this manner, until we find n points

such that /() =/( _,)
=

. . . =/(;i

1)

).

Now let
,
be a limiting point of

, &, ,,... n , . . .
;
and let & be a limit

ing point of /, /,..., and
&quot;

be a limiting point of
&amp;gt;&quot;, s &quot;, ...; then

Thus the points w , /. &quot;,
... form an infinite set, in (a, /3), at which the

functional values are the same.

The points ,,, , w &quot;,
... have a limiting point , at which the functional

value is the same as for the set itself; therefore

(&amp;gt;) _/(f.) -/(, ) _
fc_fc t t

~ ... (J,
SO ?o, f, ^w

hence, at
,
either the derivative is determinate, and equal to zero, or else it is

indeterminate, with zero lying between its upper and lower limits. Thus it

has been shewn that*:

*
Konig, Monatshefte f. Math. . Physik, vol. i. The above proof is that given by Schoenflies

Bericht, vol. i, p. 160.

H.
23
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If a continuous function have an everywhere dense set of points at which

there are progressive and regressive derivatives that are infinite and of oppo
site signs, there is an everywhere dense set of points at each of which the

derivative is either indeterminate or else zero. Thus a continuous function can

not at all points have infinite progressive and regressive derivatives of opposite

signs.

If we apply the above theorem to the function f(oc] ex, where c is a pre
scribed constant, then, since f(x) ex has an infinite derivative at the same

points as those for which f(x) has an infinite derivative, we obtain the follow

ing theorem :

If the continuous function, f(x), have at an everywhere dense set of points

infinite progressive and regressive derivatives of opposite signs, there is an every

where dense set of points at each of which the derivative either has the pre
scribed value c, or is indeterminate, and such that c lies between its upper and

lower limits.

In geometrical language, a point x, at which there are infinite progressive

and regressive derivatives, of opposite signs, is a point at which the curve

y =f(x) has a cusp, with its tangent perpendicular to the a&amp;gt;axis. At a maxi

mum the cusp points in the positive direction of the y-axis, the progressive
derivative being cc

,
and the regressive derivative 4 oc . At a minimum

the cusp points in the negative direction of the y-axis, the progressive deriva

tive being + oc
,
and the regressive derivative being x .

PROPERTIES OF INCREMENTARY RATIOS.

277. If xl be a point of the interval (a, b), in which f(x) is defined, the

fix\ _ f(x \

function -- -
,
for points x such that xl &amp;lt; x ^ b, may be called the incre-

mentary ratio at ^ on the right ;
it may be denoted by / (x, x^ ;

and in

case f(x] be a continuous function, this incrementary ratio is also continuous

at every point of its domain. This incrementary function has an upper and

a lower boundary for its whole domain (xl &amp;lt;x^b); these upper and lower

boundaries may be denoted by U(x1 ), L(XJ), and either of them may be finite

or infinite; however U (x^) can only be infinite with the positive sign, and

L(x^ only with the negative sign. U(x l ), L(x^ being regarded as functions

of a,
1

!, defined for every point of (a, b), except the point b, the function U(x1 )
has

a finite or infinite upper boundary for its whole domain, which we may denote

by U ,
and the function L (x} )

has a finite or infinite lower boundary for its

whole domain, which we may denote by L. There exist therefore two numbers

U, L, which may have the improper values + oc
,

&amp;lt;x respectively, such that
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for every pair of values of #1} x2 ,
where x2 &amp;gt;x1} always lies between them, or

is equal to one of them.

The incrementary ratio on the left of a point can be defined in a similar

manner; and we thus define two functions U fa), L (x^), at xl} as the upper
and lower boundaries of these incrementary ratios.

It is easily seen that U
,
the upper boundary of U (x) in the interval (a, b),

is identical with U, and that L
,
the lower boundary of L (x), is identical with

L. Thus U, L are the upper and lower boundaries of I (x1} x2) for every

possible pair of points (x^,xz) in the interval (a, b).

278. When the functionf(x) is continuous (bounded or unbounded) in (a, b),

U (x} is a lower semi-continuousfunction, and L (x} is an upper semi-continuous

function. Accordingly, U(x) and L(x) are point-wise discontinuous, when they

are not continuous.

If U(xl } is finite, xz can be so determined that U(xl } I(xl ,xz) &amp;lt;e; and

also a neighbourhood (xl 77, x + rj),
of xl} not containing a-2 ,

can be so deter

mined that, if #/ be any point in this neighbourhood,

I/O/, #2)-/Oi,O &amp;lt;|e;

for I(x,x2) is continuous with respect to x, at cc
l . We have, in this neigh

bourhood,

/(#/, x2) &amp;gt;/(#!,
#2) |e &amp;gt; U(xl ) e.

It follows that U(xl ) &amp;gt; U(x1 ) e; or U (x) is lower semi-continuous at x
l

. If

U(x l )
= + oc

,
x2 can be so determined that / (a?1? #2) &amp;gt; N+ |e, where ^V is an

arbitrarily chosen positive number. If f(xl ) is finite, the neighbourhood
(xl -rj, xl + v), of a?1} may be determined as before; and then I(xl ,x.2 )&amp;gt; N,
and thus U(xi) &amp;gt; N, which is the condition that U (x) should be lower semi-

continuous at tfj. If/(#i) = + QO
,
the neighbourhood can be so determined that

I(xl ,x2)&amp;gt;N, and thus U(x1

/

)&amp;gt;N;
hence U(x) is lower semi-continuous at

a?!. That -^(a;) is upper semi-continuous can be proved in a similar manner.

The incrementary ratio I(x,x ), where f(x) is continuous (bounded or un

bounded) in the closed interval (a, b), assumes every value between its upper and
lower boundaries U and L, for a pair of points x, x interior to the interval

(a, b).

Let A; be a number between U and L, thus U&amp;gt; k &amp;gt; L. The function U(x)
being a lower semi-continuous function, the set of points at which U(x)^k is

a closed set G^; and similarly, since L(x) is an upper semi-continuous func

tion, the set at which L (x) = & is a closed set G2 .

If, at any point a, U(a) = L (a)
= k, the function has the value

/() + (*-),
for all points x in the interval (a, 6). Assume first that no such points a exist;
then since

L(x)&amp;lt; U (x), the two sets Gly G2 can have no points in common.

232
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Since the continuum (a, 6) cannot be the sum of the two closed sets GI, (r2 , it

follows that there exists at least one point which belongs neither to Gx nor to

G2 ,
and thus at which U(a)&amp;gt;k &amp;gt;L(ct).

If a be a point at which this condi

tion is satisfied, in a certain neighbourhood of a the conditions

U(x) &amp;gt; U(ct)
-

e, L O) &amp;lt; L (a) + e

will be satisfied; and, if e be sufficiently small, U (x) &amp;gt; k &amp;gt; L (x), at all points

in this neighbourhood. Thus each point a, at which U (a) &amp;gt;k&amp;gt;L(ci),
is an

interior point of a set of points at all of which U
(x)&amp;gt;k&amp;gt;

L (x}. In case there

is a point a such that U(a) = L(a) = k, and if this does not hold for any
smaller value of x than a, it is clear that, in the interval (a, a), the upper and

lower boundaries of I (x) are U and L. The above proof applied. to (a, a) shews

that in this interval there exists a set of points at which U (x} &amp;gt; k &amp;gt; L (x}.

At any such point x interior to (a, b), we can choose positive numbers

hi, h 2 such that

I (x,x + h^ &amp;gt; k &amp;gt; I (x, x + ft?),

where +A1 &amp;lt;,
x+ h2 &amp;lt;b. Since I (x, x + h) is continuous in the interval of

h, of which h1} h 2 are the end-points, a value of h between A
:
and h2 exists such

that 1 (x, x + h) = k, which establishes the theorem.

If, at every point in (a, b), f(x) have a differential coefficient (finite, or in

finite with fixed sign), then f (x) has every value between its upper and lower

boundaries in the interval (a, b).

For, if k be any number between U and L, since, in accordance with the

above theorem, a pair of interior points a, /3 exists, such that I(a.,f3)
=

k, it

follows from the theorem of 261 that there exists a point x, in (a, j3), at which

f (x)
= k. Since k is any arbitrarily chosen number between U and L,f (x)

takes all values between 7 and L. It is clear that 7 and L must be the upper
and lower boundaries of / (x), for if / (x) &amp;gt; U, x + h could be so determined

that I (x, x + h) &amp;gt; U, which is impossible.

PROPERTIES OF THE DERIVATIVES OF CONTINUOUS FUNCTIONS.

279. Let/(#) be continuous in the interval (a, b), and let U and L be the

upper and lower boundaries of the incrementary ratios above defined. Take

(a, /3), any interval in (a, b), and consider the function

x a.

* (x) =f(x} -/(a)
-~

[/OS) -/(a)].

Since &amp;lt; (a)
= 0, &amp;lt; (/3)

= 0, unless $ (x) be constant through (a, $), there must

be within (a, /3) a maximum or minimum of &amp;lt; (x); and thus at least one point,

x
l
exists within (a, @), such that

&amp;lt;/&amp;gt; Oi h)-&amp;lt;f&amp;gt; (x,) ^ 0,
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for all sufficiently small values of h, or else

for all sufficiently small valties of h. At such a point

/ (xl + h, #j) : I (a, ft),

and / (xl h, x^ ^ / (a, ft),

or else / (i + h, x-^) = I (a, /3),

and / (X h, x^) I (a, ft).

If
&amp;lt;f&amp;gt; (x) have an infinite number of maxima and minima in (a, ft), there is,

in (a, ft), an infinite number of points at which the first of the conditions for

&amp;lt;f&amp;gt; (x) holds, and also an infinite number at which the second holds. If there

be only a finite number of maxima and minima of
(f&amp;gt;

(x) in (a, ft), then this

interval can be divided into a number of portions in each of which the func

tion &amp;lt; (x) is monotone
;
and in any one of these portions either

/ (x h,x)^I (a, ft),

at all points within the sub-interval, or else

/ (x h,x)^I (a, ft),

for every x within the portion, and for sufficiently small values of h. We see

then that / (a, ft) and / (x h, x) lie between U and L.

Thus, in every interval (a, ft) contained in (a, b), in which &amp;lt; (x) has an in

finite number of maxima and minima, there are (1) an infinity of points x at

which I(x+h,x), for all sufficiently small values of h, lies between L and

I (a, ft); and (2) an infinity of points at which the same is true of I (x h, x)

(3) an infinity of points at which / (x + h, x), for all sufficiently small values

of h, lies between U and I (a, ft); and (4) an infinity of points at which the

same is true of / (x h, x).

3T v CL

In case f(x) /(a) -5
--

[/(/3) /()] have only a finite number of
jO 01

maxima and minima in (a, ft), there are in (a, ft) finite intervals such that all

the points in one of them belong to both the sets (1) and (2), and also finite

intervals in which all the points belong to both the sets (3) and (4); each of

these sets of intervals is finite, and an interval of one set is followed by one of

the other set.

The number L being the lower limit of the function L (x) in the interval

(a, b), there exists a point x
l
such that L is the lower limit of the values of

L (x) in any arbitrarily small neighbourhood of x
l ;
and it follows that in such

neighbourhood of xl there are points such that I( + h, g), for an infinity of

values of h, differs from L by less than a prescribed positive number e. There

fore there is, in (a, b), an infinity of pairs of points (or, ft), one of which is arbi

trarily near x
l ,
such that I (a, ft) differs from L by less than e.
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Similarly, it may be shewn that, in (a, b), there is an infinity of pairs of

points a, ft, such that I (a, ft) differs from U by less than the prescribed
number e.

If U or L be infinite, there exists an infinity of pairs of points such that
I (a, ft) is arithmetically greater than a prescribed number c, and has the
same sign as the infinite U or L.

We can consequently choose the interval (a, ft) so that

I(a,ft) L + 77, or else so that I(a,ft) = U -
n,

where 77 &amp;lt; e, provided U arid L are finite. If one, or both, of U, L be infinite,

(a, ft) can be so chosen that / (a, ft) has the same sign as U, or as L, and is

arithmetically greater than a prescribed positive number c.

We have now obtained the following results :

If f(x} be a continuous function, and (a, b) be the whole, or a part, of its

domain, to which U and L correspond, then (1) if L be finite, there exists in

(a, b) an infinity of points for which D+
(x\ D+(x) both lie between L and

L + e, where e is an arbitrarily prescribed positive number; and at these pointsD+
(x), D+(x) are either equal, in which case a derivative on the right exists, or

else they differ from one another by less than e: (2) if U be finite, there exists in

(a, b) an infinity ofpoints for which D+
(x), D+(x) both lie between UandU-e;

and at these points there exist derivatives on the right, or else D+
(x), D+(x) differ

from one another by less than e ; (3) if U or L be infinite, there exists an infinity

ofpoints at which D+
(x), D+(x) are both numerically greater than an arbitrarily

great number c, and have the same sign as the U or L which is infinite. A similar
statement holds .as regards the derivatives on the left.

The above is true irrespectively of the number of the maxima and minima
off(x) ;

but iff (as) have in (a, b) only a finite number of maxima and minima,
and if the same be true of all the functions f(x) -Ix- m, obtained by the
addition of a linear function, then there exist in (a, b) finite sub-intervals such
that at all points in one of them the above statements hold both as regards
the derivatives on the right and as regards those on the left. The numbers
U and L correspond in each case to the particular sub-interval.

It will be observed that the theorem does not assert the necessity of the
existence of points at which a determinate derivative on the right or on the
left exists, but it states that there are in every sub-interval points at which
the difference between the upper and lower derivatives on one side is less

than a prescribed arbitrarily small number, or else at which both such de
rivatives are arithmetically greater than an arbitrarily fixed large number.
There are therefore certainly points in every sub-interval at which there is,

so to speak, an arbitrarily near degree of approximation to the existence of a
finite or infinite derivative on the right, and also points at which the same is

true as regards derivatives on the left.
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280. It will now be shewn* that, for a continuous function, of which (a, b}

is the whole, or a part, of its domain, the upper boundary of each of the four

derivatives D+
f(x\ D+f(x), D~f(x), D_f(x) for all values of x in (a, b) is U,

the upper boundary of the incrementary function in (a, b), and that the lower

boundary of each of the four functions is L. If U and L be both finite the

function belongs to the class offunctions with bounded derivatives.

A function with bounded derivatives accordingly satisfies the condition,

that for every pair of points # #2 , \f(xl)-f(x2)\&amp;lt;k\xl
-x2 \,

where k is a

fixed positive number. It has been pointed out, in 275, that such a function

belongs to the class of functions of bounded variation.

It is clear that the upper boundary of each of the functions D+f(x),

D+f(x), D~f(x\ D-/O) is a number which cannot be greater than U. Now

since it has been shewn that points exist in (a, b) such that, if e be an arbitrarily

prescribed number, both D+
f(x), D+f(x) differ from U by less than e, when U

is finite, and are arbitrarily great if U is + * ,
it follows that U is in either

case the upper boundary of D+
f(x), D+f(x). In a similar manner it can be

shewn that U is the upper boundary of both D~f(x), D-f(x\ The proof that

L is the common lower boundary of the four functions is exactly similar.

Each of the four expressions D+
f(x), D+f(x), D~f(x}, D_/(a?) may be

regarded as a function defined for the whole domain of f(x), except at one of

the end-points ;
the ordinary definition of a function being extended so far as

to admit infinite functional values with a fixed sign.

If, at any point #, interior to (a, b), one of the above functions, say D+
f(x\

be continuous, either in the ordinary, or in the extended, sense of the term ( 219),

then at that point the other three functions are also continuous, and are equal in

value to D+
f(x ), and thus there exists, at XQ ,

a differential coefficient.

To prove this, take any interval (x e, x + e) ;
then all four functions have

in this interval the same upper boundaries, and also the same lower boundaries.

IfD+f(x ) be finite, the upper and lower boundaries of D+
f(x} in (as

-
e, x + e)

each differ from J)+/(a? ) by less than a number 77 depending on e, in such a

way that, as e is indefinitely diminished to the limit zero, rj
also diminishes

to the limit zero. Since all four functions have the same upper boundary and

the same lower boundary in (xn -e,x + e), the upper and the lower boundaries

of each differ from D^f(xa) by less than ??,
and 77 can be made as small as we

please by taking e small enough. It follows that all four functions are con

tinuous at x
,
and that all four, at x

,
are equal to D+

f(x ) ;
and thus there

exists a differential coefficient at xn .

In case D+
f(a- ) is -I- x , e can be so chosen that, in (XQ

-
e, # + e), D+f(x)

is everywhere greater than an arbitrarily large chosen number c, and the upper

and lower boundaries of each of the four functions are then greater than c
;

* Du Bois Keymond, Math. Aim., vol. xvi, p. 119, also Scheeffer, Acta Mathematica, vol. v, p. 190.
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by taking a succession of values of c which increase indefinitely, and con

sidering the corresponding sequence of values of e which converge to zero, we
see that each of the functions D+f(x\ D~f(x), D_f(x) is infinite at x

,
and is

continuous, in the extended sense of the term, at that point ; there is then a
differential coefficient at XQ which is infinite, and of definite sign.

It follows that, if it be known that any one of the four derivatives is every
where continuous in an interval, there exists everywhere in the interval a

differential coefficient in the ordinary sense of the term.

281. The upper and lower boundaries of any one of the four derivatives of
a continuous function are the same in the open interval (a, b) as in the closed

interval*.

It is clear that the upper boundary of D+
f(x) in the open interval cannot

exceed that in the closed interval. If possible let it be less by some positive
number c. This means that D+

f(a) exceeds the upper boundary in the

open interval by c. There exists then no point interior to (a, b) for which
D+

f(x) &amp;gt; D+f(a) - c. Now a point xl can be so determined that I (xlt a)
differs from D+

f(a) by less than e, and a point x2 can be so determined that

I(xl ,
x2) differs from I (xlt a} by less than e, and therefore from D+

f(a) by
less than e. It follows that, in any interval which includes xl and x.2 ,

the upper
boundary of D+f(x) is greater than D+

f(a)-e\ and if e&amp;lt; c this contradicts

what has been shewn above. Hence the upper boundary of D+/(#), inax&amp;lt;b,

is the same as that in a&amp;lt;x&amp;lt;b.

It follows as a corollary that D+
/(a) cannot exceed the upper limit, on the

right, of D+
f(x), at x = a.

282. f(x) being continuous in (a, b), the continuous function

(x) =f(x) -/(a)-|^ {/&amp;lt;&)-/()},

which vanishes at a and b, must have a maximum, or a minimum, at an interior

point of (a, 6). At a maximum a, D+
&amp;lt;f&amp;gt;(a), D+(f) (a) are both ^ 0, and

D~(f&amp;gt; (a),

D_&amp;lt;f&amp;gt;(a)
are both ^ 0, the inequalities being both reversed in case o is a

minimum. If it be known that, at every interior point of (a, b), there is no

distinction of right and left as regards derivatives, so that D+cj)(x)
= D~^(x)

and D+ &amp;lt;f&amp;gt;(x)

=
D_(f&amp;gt;(x\

we see that all four derivatives must vanish at the

point a, and thus there is a differential coefficient at a, which has the value 0.

We have thus obtained the following extension f of the theorem of the mean:

If there is no distinction of right and left with regard to the derivatives of
the function f(x) (bounded or unbounded) continuous in the interval (a,b), there

exists a point, interior to the interval, at which a differential coefficient exists

Jf /(&)-/
equal to

J
-^- ^-^

.

b a
* See W. H. and G. C. Young, Quarterly Jl. of Math., vol. XL, p. 12. f Ibid., p. 10.
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Thus ^f (a + 6b^a\ where 6 is such that &amp;lt;0 &amp;lt; I.
^~ a

As this may be applied to any interval (a, /3) contained in (a, b), we obtain

the following theorem :

If there is no distinction, as regards right and left, between the derivatives

of the continuous function f(x), defined in the interval (a, b), there exists an

everywhere dense set ofpoints in (a, b), of the cardinal number of the continuum,

at which f (x) exists ; and f (x) has every value between its upper and lower

boundaries.

283. The derivatives D+
f(x), D+f(x) of a continuous function are, at

any point x
, such that a = x &amp;lt; b, either both continuous on the right, or both

of them have a discontinuity of the second kind, on the right ; but they cannot

have ordinary discontinuities on the right.

A similar statement holds as regards the continuity or discontinuity of

D~f(x), D.f(x), on the left.

Suppose that D+f(x) has, at the point x
,
a limit X, at x

,
on the right;

then, if 8 be a prescribed positive number, an interval (x0) x + e) can be

found, such that D+
f(x), for every point of this interval, except x

,
lies

between X + 8 and X B. The upper and lower boundaries of each of the four

derivatives D+
f(x), D+f(x), D~f(x), D_f(x\ for any interval (x + e^ x + e),

where ej &amp;lt; e, must all lie between the values \ + B, X B ; hence the upper
and lower boundaries of D~f(x), for the interval (x ,

x + e), lie between these

same values, the function D~f(x) being regarded as undefined at the point
#

;
and these upper and lower boundaries of D~f(x) are the same as those of

D+
f(x), D+f(x), for (#o, #o + e), the point x being included. It follows that

D+
f(x ), D+f(x ) both lie between X + 8 and X S

;
and as this holds for

every value of 8, we must have

DY(&amp;lt;&amp;gt;

= +/(&amp;lt;&amp;gt;

= X = V;

where X denotes the limit of D+f(x), at x
,
on the right ; and thus D+

f(x),
D+f(x) are both continuous at x

,
on the right. If X = + oo

,
then in the

interval (#, x + e), at every point except #, D+
f(x) &amp;gt; c, where c is an arbitrarily

chosen number on which e depends ;
the argument then proceeds as before.

284. A continuous function f(x) cannot have, at every point of a whole

interval, a single-valued derivative on the right, which is everywhere infinite and

of the same sign.

For if/(#) had this property in an interval (a, /9), so also would

/(*) -/(a)
- [/() -/()].
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and this function necessarily has a maximum or minimum within (a, ft), which
is contrary to the condition that it has a derivative on the right which is

always of the same sign; for this involves the condition that the function
must constantly increase as x increases from a to ft.

Let us now suppose that the continuous function /(a?) has, at all points
of (a, 6), single valued derivatives on the right (finite or infinite), such that,
in a part (a, ft), of (a, b), this derivative is continuous at least on one side; the

function f(x) is then such that, at an infinite number of points, it possesses an

ordinary differential coefficient.

The derivative Df(x), on the right, cannot at all points of (a, ft) be infinite.

For if we take a point # such that it is continuous on one side, in the extended
sense of the term explained in 219, then if it were everywhere infinite, its

sign at all points in an interval on the one side of x would be the same; but
it has been shewn to be impossible that, everywhere in any interval, Df(x)
should be infinite and of constant sign. It follows that there are points in

the neighbourhood of x at which Df(x) is finite. If ^ be such a point in

(a, ft), then, since Df(x) is continuous on one side at x1} an interval can be
found at all points of which it is finite, and also continuous on one side. If

(], fti) be such an interval in (a, ft), then since Df(x) is everywhere finite in

it, and continuous on one side at least, it is a point-wise discontinuous func

tion, if it be not continuous in ( 1} &); and there must therefore be an infinity
of points in (a1} &) at which Df(x) is continuous. At such points, in accord
ance with 280, /(a?) has a differential coefficient,

285. As regards everywhere oscillating functions, the following remarks

may be made.

If a continuous function have, in every neighbourhood on the right of a

point #
, an infinite number of maxima and minima, there is, in such neigh-

, o
bourhoods, an infinity of points at which the derivatives on the right are nega
tive or zero, and an infinity of points at which these derivatives are positive
or zero. It follows from this, that none of the derivatives at a point x, on the

right of #
, can have a definite limit, as# approaches the limit ar

, unless such
limit be zero.

In particular, if at all such points x, definite derivatives on the right and
on the left exist, these derivatives cannot be continuous at x

, unless the

derivatives at x are both zero.

If, at the point #
,
and at every point in the neighbourhood of x which

contains an infinite number of maxima and minima, a differential coefficient

exist, which is continuous at a-
, this differential coefficient must be zero at x

and at an infinity of points in the neighbourhood of a?
,
and must therefore

itself have an infinite number of maxima and minima in the neighbourhood
of #n .
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If a function f(x\ which has an infinite number of maxima and minima
in the neighbourhood of x

,
have at x

,
and in its neighbourhood, differential

coefficients of any number of orders, then they are all functions with an infinite

number of maxima and minima in the neighbourhood of x0) and all of them

vanish at #, except that the one of highest order may be discontinuous at #
,

not then necessarily vanishing at that point. If differential coefficients of all

orders exist, they must all vanish at #
;
and such a function is incapable of

expansion in powers of x x in the neighbourhood of # . An example* of a

function of this kind is

i
1

xz + e 1*-*** sin
X

FUNCTIONS WITH ONE DERIVATIVE ASSIGNED.

286. If twofunctions, definedfor a given interval, have each bounded deriva

tives, and if the two functions have each a particular one of their four derivatives,

say the upper derivative on the right, equal to one another at every point which

does not belong to a set ofpoints E, of measure zero, then the two functions differ

from one another by a constant, the same for the whole interval.

This theoremf differs from that of 267, in that the functions are restricted

to be such continuous functions as have bounded derivatives; it is however

more general, in that E is not restricted to be enumerable.

Let the points of E be enclosed in the interiors of intervals of a set, of

which the total length has the arbitrarily small value e. To each point P, of

E, there corresponds an interval PP
,
where PP is that part of the interval

of the set that encloses P which is on the right of P; these intervals PP may
be denoted by 8 . If the two functions f\(x), f2 (x) are such that, at a point

#!, D+/I Oi) = D+f2 (Xl\ it has been seen in 267, that D+
/(#i) = .

D+f(xl)^0,
where f(x) denotes f\ (x) f (x). Since f(x) is continuous at x1} it follows

that there is a set of points x
l + h, on the right of sc1} such that

if we suppose h to have the greatest value for which this holds, the interval

(x1} j.\ + h) is an interval on the right of x1} and such intervals may be denoted

by 8.

Let be any point such that a &amp;lt; ^ b, and consider the interval (a, ).

From the point a lay off an interval 8, or 8
, according as a is not, or is, a

point of E; from the end of this interval lay off another interval 8, or 8
,
as

the case may be. Proceeding in this manner, we may construct a Lebesgue

*
Dini, Grundlagen, p. 314.

t Lebesgue s Levant sur I integration, p. 79.
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chain reaching from a to (see 78). The set of points not interior to the

intervals of the chain is a closed enumerable set. We can now find/(f) -/(a)
as the sum, or limiting sum, of the differences of the functional values at the

end-points of the intervals of the chain, and each of which is either a 8, or

a 8 . It is clear that

where the summations refer to those of the intervals 8, 8 which have been

employed in the construction; and A denotes the finite upper boundary of

\I(al,sc^\ &amp;gt;

for every pair of points xlt xz in the interval (a, ); and this is

identical with the upper boundary of the absolute value of the derivatives of

f(x) in the interval. Since e is arbitrarily small, it follows that/() =/(o), and
therefore /, (f) -/2 ()=/, (a) -/2 (a); thus the theorem has been established.

THE CONSTRUCTION OF CONTINUOUS FUNCTIONS.

287. One of the most fruitful methods of obtaining continuous functions

which exhibit various peculiarities as regards the existence or non-existence

of differential coefficients at all the points, or at sets of points, of their domain,
consists of defining the functions by means of series specially constructed with
a view to the purpose in hand

;
this method will be explained and illustrated

in Vol. II. Broden, Kopcke, and others, have however given direct constructions

for continuous functions, which illustrate various possibilities in relation to the

existence and properties of derivatives.

The method employed* by Broden is that of defining a continuous function

in the domain (a, 6), as the function obtained by extension (see 241) of a

function defined for an enumerable everywhere dense set of points in (a, b),

the primary points. A continuous function is entirely determinate when the

functional values at such a primary set ofjDoints have been assigned. The

lecessary and sufficient condition that a function defined for the primary set

should, by extension to the domain (a, b), give a function which is continuous

in that domain, is that the primary function should be uniformly continuous

with respect to the unclosed primary domain. To prove this, let {} denote

the set of primary points, and [x] the set of secondary points; then the condi

tion that the function /() may be uniformly continuous with respect to the

domain {}, is that, if be any point of {}, and if 77 be a prescribed arbitrarily

small number, the condition |/() /(fV) &amp;lt; 77 be satisfied at all points which

are such that
|

&amp;lt; e, where e is a number dependent on 77, the same

for all points 1} of {}. Now assuming that this condition is satisfied let xv

be a secondary point, and let
, ,, ... i~n ..., /, /&amp;gt;

be any two

*
Crelle s Journal, vol. cxvm ; see also Acta Univ. Lund., vol. xxxm.
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sequences of primary points, each of which has x
l
as its limit; we have to shew

that each of the sequences

converges to the same number, which will then be the single functional value

/(#i). Enclose x
l
in the interval (xl ^e, x

l + ^e) i then, from and after some

particular value of n, all the points of both sequences of values of lie within

this neighbourhood. Let this value of n be m, then

for all positive integral values of r; hence the first sequence of functional

values is convergent, since 77 is arbitrary; and similarly the second is also

convergent. Also for every ?? there is a definite m such that

hence the two convergent sequences have the same limit, and this limit defines

/(X). We have now to shew that the single valued function so defined is

continuous. We have

I/OO -/(&) 1

&amp;lt;
1&amp;gt; provided j

^ -
f,

J

&amp;lt;

i e,

and
| /(#,)

-/(,) ! &amp;lt;T?, provided #2
-

2 |&amp;lt;i 6;

also |/(&) -/(,) j

&amp;lt; T?, provided | & - f &amp;lt; e.

Hence it follows that /O^) ~~/OO &amp;lt; 3??,

and this holds provided j

xz x
1

\&amp;lt;
2e,

for ID ?a can be taken to be between x
1
and x2 ;

and therefore f(x) is con

tinuous at xl} since 3?; is at our choice. The extended /(#) is also easily seen

to be continuous at any primary point. It has now been proved that the con

dition of uniform continuity is sufficient; that it is necessary follows from the

theorem of 217. .

The derivatives at any point depend only on the functional values at the

primary points in the neighbourhood of the point. For let ^ be any point,

f(x\ _
ftx \

and consider the limit of J
, when x has any sequence of values

CC ~~
Ou-^

which converge to xl . A set of primary values of x can always be found,
such that the ratio converges to the same limit, when x has the values of

this sequence of primary points, as for the prescribed sequence consisting of

secondary points, or of both primary and secondary points. For a primary
point | can be found, corresponding to x, such that

/(*)-/(*,)
vC &quot;&quot;&quot;

fcvj C &quot;~~

vC\

where 8 is an arbitrarily small number. This follows from the fact that

is a continuous function of x at every point except x
1 .
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288. In order to construct monotone continuous functions, the values of

the function are first assigned at the end-points a, b of the interval, then at

two points #o, a 1

!, where as &amp;lt;oB1

-

i
then at four points xw ,

a?01 ,
ar10 , xn , where

#00 &amp;lt; ar
,
#

&amp;lt; #0] &amp;lt; #]0 &amp;lt; ajj ,
and ^ &amp;lt; #u ;

afterwards at eight points

#000 &amp;gt; #001 &amp;gt; #010
&amp;gt; #011 &amp;gt; #100) #101) #110 &amp;gt; #111 &amp;gt;

&C.

lying in the successive intervals measured from left to right, into which (a, 6)

was divided by the four points; and so on. The function may then be re

garded as the limit of a sequence of continuous functions, each of which is

representable as a polygon obtained by joining the end-points of ordinates

which represent the functional values that have been assigned at any stage
of the process.

In this manner Broden has constructed a monotone continuous function

/(#), which is such that it has derivatives on the right, and on the left, which

are everywhere definite, finite, and different from zero; and such that a definite

differential coefficient everywhere exists, except at the everywhere dense

enumerable set of primary points.

He has also constructed a monotone function /(#) which is such that, at

the everywhere dense enumerable set of primary points, the derivative on the

left exists, and is zero, and the derivative on the right exists, and is positive;
for an unenumerable everywhere dense set of points there is a differential

coefficient, everywhere zero, and for another such set of points, there is no

definite derivative on the left, but there is a positive one on the right.

A third case is the following :

/(#) is continuous, monotone, and increasing ;
at an everywhere dense

enumerable set of points the derivative on the left is zero, and that on the

right is + oo
;
for an everywhere dense unenumerable set, both derivatives exist,

and are positive ;
for another such set both exist, and are zero; for a third such

set, both derivatives exist, and are + oo
;
for a fourth such set, neither derivative

exists; for a fifth such set, the derivative on the left is zero, and that on the

right is indefinite, but has zero for its lower limit; for a sixth such set, the

derivative on the right is + oo
, but that on the left is indefinite, with + oo for

its upper limit.

289. For the construction of everywhere oscillating continuous functions

it is more convenient to assign successively the functional values at sets of

points proceeding by powers of 3, instead of 2, as in the case of monotone func

tions. In this manner Broden has constructed such a function /(#), which
has the following properties:

At an everywhere dense enumerable set of points, the derivative on the

left exists, and is positive; that on the right exists, and is negative (or the
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reverse), this set corresponding to maxima and minima of the function; for a

certain unenumerable everywhere dense set, there is a differential coefficient

everywhere of the same sign; and for another such set, there is a differential

coefficient which is zero; for a third such set, one or both of the derivatives

are indefinite.

Kopcke* has given the first example of a function which is everywhere

oscillating, and yet has at every point a definite differential coefficient, thus

confirming the conjecture of Dini that such functions can exist; and Brodenf
has also constructed such a function. A general theory of such functions has

been given} by Schoenfiies. The method adopted by Kopcke is to construct

the function as the limit of a succession of polygons of which the sides are

circular arcs. Everywhere oscillating functions have also been studied by
Steinitz. A detailed account of all the special cases treated of by these

writers would require much space; reference can therefore only be made to the

original memoirs. A simplification of Kopcke s construction, due to Pereno,
will be given in Vol. II.

290. A function f(x) which is of such a character that it can be repre
sented approximately by a graph that exhibits all the peculiarities of the

function, so that y=f(x) is the equation of a
&quot;curve,&quot; in the ordinary sense

of the term, must satisfy the following three conditions:

(1) The function must be continuous everywhere, with the possible ex

ception of a finite number of points, at which it may have ordinary discon

tinuities.

(2) It must be differentiate, except that there may be a finite number of

points at which no differential coefficients exist, but at which definite deriva

tives on the right and on the left exist.

(3) It can have only a finite number of maxima and minima; and the

same must hold of every function obtainable by the addition of a linear func

tion to the one in question. This condition may be expressed in the form,
that the function must be in general monotone with reference to every possible
axis which may be employed for the measurement of abscissae.

A function which satisfies these conditions may be characterised] as an

ordinary function. As has been already indicated, there exist functions which

satisfy the conditions (1) and (3), but do not satisfy the condition (2). Again,
there exist functions which satisfy the conditions (1) and (2), but not the
condition (3).

* Math. Ann., vol. xxix, p. 123; vol. xxxiv, p. 161; vol. xxxv, p. 104. See also Pereno, Giorn. di

Mat., vol. xxxv, p. 132.

t Stockholm Vet. Ak. Ofv., 1900, pp. 423 and 743.

J Mnth. Ann., vol. LIV; also his Bericht, vol. i, p. 164.

Math. Annalen, vol. LII.
|;
Du Bois Eeymond, Crelle s Journal, vol. LXXIX, p. 32.
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GENERAL PROPERTIES OF DERIVATIVES.

291. A number of important properties of the derivatives of a continuous

function have been investigated in 279 286. Some of the most interesting

properties of the derivatives of a function hold for functions that are not re

stricted to be continuous, and are either quite general, or are only restricted to-

belong to the wide class of measurable functions. It will in general be assumed

that a function f(x), defined for any interval of x, either finite or indefinitely

great, has a definite finite value, for each value of x, whether the function be

bounded or not.

Iff(x) be defined in a finite, or an unbounded, interval, and k be any fixed

number, the set ofpoints x, at each ofwhich the conditions D+f(x) = k, D~f(x}&amp;lt;k

are satisfied, is enumerable*.

Let G be the set of points at which D+f(x) = k\ and let {en }, \r)n ]
be two

monotone sequences of positive numbers that converge to zero. If be a point

of G, and h be a sufficiently small positive number, /(, + A) = & ?;. All

the values of h for which this condition is satisfied have an upper boundary h+

at which the condition may, or may not, be satisfied. Let = g+ \li, then we

have, for such a point ,
of G, a definite interval (f , f ),

at every point of which

the condition /(, x) = k i)n is satisfied. We now take, for the point ,
the

interval Bf on its right, of length equal to the smaller of the two numbers

e
n&amp;gt; \ %,

so that, in this interval, both the conditions

are satisfied. Let A n be the set of all such intervals 8%, when every point ,.

in G, is considered; and let A be the set {An }
of all such intervals, when all

values of n are taken into account. There exists at most an enumerable set

H, of the points of G, that are not interior points of any interval of A (see

| 72). If % be a point of G H, it is interior to an interval (, 77), of A
n&amp;gt;

whatever value of n is taken. It follows that / (, ) = k ijn . As n is in

definitely increased, will converge to
,
and 77 converges to 0; it is thus

seen that D~f(!* ) = k. This result holds at every point % ,
of G, that does not

belong to the enumerable set H, and thus the theorem has been estab

lished.

It is clear that the corresponding result holds, that the set of points at

which D_f(x) ^ k, D+
f(x) &amp;lt; k is enumerable.

Iff(x) be changed into f(x), and k into k, we see that the set of points

at which D+
f(x) ^ k, D_f(x) &amp;gt; k is enumerable, and that the set of points at

which D~f(x) ^ k, D+f(x) &amp;gt; k is also enumerable.

* See G. C. Young, A eta Math., vol. xxxvn, p. 143, and Quarterly Journal of Math., vol. XLVII,.

p. 127.
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It is clear that the set of points, at each of which D^.f(x) = + oc
, D~f(x)&amp;lt;k,

being a part of the enumerable set at which D+f(x) ^ k, D~f(x) &amp;lt; k, is

enumerable. If we give to k successively the values in a divergent sequence

{km }
of positive numbers, the set at which D+f(x) = + oo

, D~f(x) &amp;lt;
QO

, is such

that each point belongs to one of the enumerable sets for which D+f(x) = + oo
,

D~f(x] &amp;lt; kn ;
it has thus been shewn that :

The set of points at which D+f(x) = + cc
,
and D~f(x) is finite, or oc

,
is

enumerable,

Similarly the three sets at which D_/(#)is + oo
,
and D+

f(x)is finite, or

x
;
at which D+

f(x) is oo
,
and D_f(x) is finite or + oo

;
and at which

D~f(x) is oo
,
and D+f(x) is finite or + GO

,
are all enumerable.

292. Except at points of an enumerable set the upper derivative on one side

is greater than, or equal to, the lower derivative on the other side.

Let us consider a point x, at which D+
f(x)

= a, D_f(x) = b, where a and b

are numbers such that a&amp;lt;b; the number b may be + oo . Let & be a rational

number interior to the interval (a, 6), then x belongs to the set of points at

which D+
f(x) &amp;lt; k, D_f(x) &amp;gt; k, and this set Ek , being a part of the enumerable

set at which D4
f(x) &amp;lt; k, D-f(x] z= k, is enumerable. Any point x, at which

D+
f(x) &amp;lt; D_f(x], belongs to Ek for all properly chosen values of k. Any

point at which D+
f(x) is finite, or oo

,
and also D_f(x) = + oo

, belongs to

the enumerable set Ex . All the sets Ek for all rational values of k, and also

for k = + oo
,
form an enumerable set. Therefore all the points at which

D+f(x) &amp;lt; D_f(x)

form an enumerable set. Similarly, it is seen that the set of points at which

D~f(x) &amp;lt; D+f(x) is enumerable, and thus the theorem is established.

In the case of a continuous function f(x), there is a derivative on one side

which has any assigned value not greater than the upper derivative, and not

less than the lower derivative on that side (see 260). At every point x that

does not belong to a certain enumerable set,

D+/(*) D_f(x], and D~f(x) ^ D+f(x);

thus at least one point of the closed interval (D_f(x), D~f(x}) lies in the closed

interval (D+f(x), D+
f(x}). We have then the following theorem:

A continuous function has at least one symmetrical median, or extreme,

derivative at every point that does not belong to a certain set of measure zero.

The following theorem follows at once from the above general theorem :

Except at points belonging to an enumerable set, a function cannot have

unique progressive and regressive derivatives which are unequal, whether finite,

or infinite with a determinate sign.

H. 24
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293. The following theorem*, which will be of use in the further dis

cussion, will now be established :

Iff(x) is continuous with respect to a perfect set G, contained in an interval

(a, b), in which f(x) is defined, and if,
at each point x, of G, there is a closed

interval (x,x + hx) on its right, such that, if x be any point in it, other than x

itself, f(x } ^f(x), then an interval (or, ft] exists, in (a, b), containing a part of

G, such that, for every pair of points x, x
,
in (a, /3), which are such that x

belongs to G, and x = x, the condition f (x } ^f(x) is satisfied.

Let a system of nets with closed meshes be fitted on to the interval (a, b).

If, in any net Dn , there is a mesh dn which contains, in its interior, points of

G such that, for each such point as, the condition /(# ) ^f(x) is satisfied for

all points x, in the mesh dn ,
which are on the right of x, the mesh dn ,

or else

that part of it obtained by cutting off a portion of its left end, will be an

interval such as is required. Let it be assumed that, if possible, for each value

of n, and for every mesh dn ,
which contains points of G in its interior, there

is at least one pair of points x, x ( &amp;gt; x), where x is a point of G, and such that

f(x) &amp;gt;f(x)\
and where x is interior to dn .

In Dn ,
let Hn be the set of those points x, of G, each of which is interior

to a mesh of Dn ,
and such that there is a point x

(&amp;gt;x]
in the same mesh, for

which/(# ) &amp;gt;f(x).
Let Kn be the set of all other points of G; thus G = Hn +Kn .

It will be shewn that, on the assumption that the theorem does not hold,

the set Kn is non-dense in G. Let A be any interval that contains points of

G in its interior. For a sufficiently large value of n, A will contain, in its

interior, a mesh of Dn that has, within it, points of G; one of such points x is

such that f(x) &amp;gt;f(x),
for some point x

(&amp;gt;x)
contained in the mesh. A neigh

bourhood (x ,x + e
)
of x, contained in the mesh, can be so determined that,

for all points x, of G, in that interval, f(x) &amp;gt;f(x};
this follows from the con

tinuity of f(x] in G. Therefore no point ,
of G, in (x e, x + e) is a point of

Kn . Since, interior to an arbitrary interval A which contains in its interior

points of G, another interval (x e, x + e
)
can be so determined as to contain

points of G, none of which belong to Kn ,
it follows that Kn is non-dense in G.

We see that Hn contains Hn+1 ; and the sets Kn being all non-dense in G,

the set M (K1} K.2 ,
. . . Kn ,

. . .) is of the first category relatively to G. It follows

that there exists a set HM ,
a residual with respect to G, that consists of points

each of which belongs to Hn ,
for every value of n. If x be a point of Hu ,

there

exists an interval x + hx ,
such that, for every point x in it, f(x) ^f(x).

If n be sufficiently large, the part of that mesh of D n containing x, that

is on the right of x, will be contained in (x, x + hx ],
and consequently, in that

* See G. C. Young, Proc. Lond. Math. Soc. (2), vol. xv, p. 367; the proof there given differs

from that in the text, in that it seems to require an infinite number of undetermined acts of choice,

as applied to successive pairs of points. For corrections, see Proc. Lond. Math. Soc. (2), vol. xrx,

p. 152.
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mesh there is no point x
(&amp;gt; x) such that f(x) &amp;gt;/(#);

and this is contrary

to the hypothesis. There is consequently a contradiction in the assumption
made. Hence the theorem has been established.

294. The following theorem can be deduced from that of 293:

If, at each point of the perfect set G, with respect to which f(x) is continuous,

D+
f(x} &amp;lt; 0, an interval (a, ft} can be so determined that,for any interval contained

in it, with a point of G as left-hand end-point, the incrementary ratio is ^ 0.

For if, at a point x, of G, we have D+
f(x} &amp;lt; 0, a set of intervals (x, x + h)

exists, such that /( ) ^ /(#), for all points (=}= x) of (x, x + h). There will be

an upper boundary h, of h, and at the point x + h, we may have f(x + h) &amp;gt;f(x).

The neighbourhood (x, x + ^h) may be assigned to # as the interval (x, x + h x)

in the theorem proved above. In the interval (a, /3), we have D+f(x) ^ 0, at

every point x, of G.

If we replace /(#), in the above theorem, by f(x) k, we have the following

theorem:

If, at each point of the perfect set G, with respect to which f(x) is continuous,

_D+/(#) &amp;lt; k, an interval (a, /3) can be so determined that, for any interval con

tained in it, with a point of G as left-hand end-point, the incrementary ratio

is ^ k.

If we change f(x) into f(x), and k into k
,
since

D+
{-f(x}} = -D+f(x}

we have the corresponding theorem, in which D+f(x) &amp;gt; k takes the place of

the condition D+
f(x} &amp;lt; k, and the incrementary ratio in (a, /3) is ^ k.

It is clear that corresponding theorems hold for D~f(x), D_f(x).

295. In order not to interrupt the continuity of the account of the main

properties of the derivatives of functions, and to secure the greatest attainable

degree of generality in the results, the conception of a measurable function

will be here introduced. A function f(x), denned in any interval (a, 6), is said

to be measurable, provided that, for every value of A, the set of points x, of

(a, b), at which f(x} &amp;gt; A, is a measurable set of points. The properties of

measurable functions will be considered in detail in the account of Lebesgue
integrals which will be given in Chapter VII. An important property of a
measurable function f(x) will here be assumed, viz. that a set E, of points of

(a, 6), of measure arbitrarily near to b a, the measure of the interval, exists

such that f(x} is continuous with respect to the set E. This property of

measurable functions will be established in Vol. II. If this property of a

measurable function be not assumed, the properties of derivatives established

below must be taken only to apply to continuous functions. It has been shewn
in 128, that any measurable set E contains a perfect set G, such that

242
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m(E) m(G) is less than an arbitrarily chosen positive number, it being
assumed that m(E)&amp;gt;0. It has further been shewn, in 138, that a perfect

set G, of measure greater than zero, contains a perfect component G, of measure

equal to that of G, such that G is metrically dense in itself. It follows that a

measurable function f(x), denned in the interval (a, b), is continuous with

respect to a perfect set G, metrically dense in itself, and such that m (G) is

less than b a, by less than an arbitrarily chosen positive number.

If H be a measurable set of points contained in (a, b), and of measure

m (H) &amp;gt; 0, the set H must contain a perfect component, metrically dense in

itself, and such that the measurable function /(#) is continuous with respect

to that perfect component. For G may be so denned that

b-a-m(G)&amp;lt;m (H),

and thus H and G have a part K in common, such that m (K} &amp;gt; 0. The set

K contains a perfect component, metrically dense in itself, and this is the

required component of H, with respect to which f(x) is continuous.

296. The set of points at which, for a finite measurable function f(x),

the conditions D+
f(x) = + oo

, D_f(x) &amp;gt; hold, forms a set of measure zero.

A function is said to be finite, whether it be bounded or not, when its

value at no point of its domain is infinite.

Suppose, if possible, that the set had a measure &amp;gt; 0. A part G of this set

can be taken, which is perfect, and with respect to which f(x) is continuous,

and such that G is metrically dense in itself. An interval (a, 6) can be so deter-

f(t\ _ ffx\

mined (see 294) that, if be any point of it belonging to G, -^-L = 0,
X

if a 0&amp;lt; f. Let E be the part of G in (a, 6); then m (E) &amp;gt; 0.

To each point of (a, b) an interval, with the point as left-hand end-point,

can be assigned as follows:

To each point of E, we assign an interval such that the incrementary
ratio in it is = A, a fixed number. To each point in an interval contiguous
to E, we assign that part of the contiguous interval which is on its right.

To b, an arbitrary interval can be assigned. One Lebesgue chain can be

defined, constituted of intervals of the set, which reaches from a to 6; we can

then omit the interval corresponding to b.

The sum of all those intervals of the chain of which the left-hand end-

point belongs to E has measure &amp;gt; m(E) ,
for these intervals contain all the

points of E, and the other intervals contain no points of E in their interiors.

A finite set A, of intervals of the chain, can be so chosen that the remainder

has measure &amp;lt; \m (E).

The finite set contains therefore intervals A
,
of which the left-hand end-

points belong to E, and the sum of such intervals is &amp;gt; ^m(E). In the intervals

of (a, 6) complementary to A
,
the incrementary ratio is = 0. In A and its
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complement the increment off(x) from left to right is = 0; and the total of

all such increments is f(b)f(a). But these intervals have been shewn to

contain a set in which the sum of the increments is &amp;gt; \Am (E), which exceeds

/(&) /(), provided A is chosen sufficiently large; and this is impossible.

Therefore the measure of the set is 0.

If we substitute f(x) + kx forf (so), we see that the set of points at which

D+
f(x) = + oo

, D_f(x) &amp;gt; k, is zero.

Giving to k successively, the values in a set kly k2 ,
... which increase

indefinitely, such that kn &amp;lt;k
n+l&amp;gt;

the sets corresponding to kly k2 ,..., each

has measure zero, hence the set at each point of which D+
f(x) = + oo

,

D_f(x) &amp;gt; kn ,
for some value of n, has measure zero.

Therefore at every point at which D+
f(x) = + oo

,
with the exception of a

set of measure zero, we must have D_f (x)
= GO .

Hence we have the following theorems:

(1) Iff(x) be a finite measurable function, and if, at the points of a set,

D+
f(x) = + ac, then D_f(x)= cc at all the points of that set, with the

exception of a part, of which the measure is zero. In the set in which

D+f(x) = oo
, with a similar exception, D~f(x) = + oo .

(2) If f(x) be a finite measurable function, the set of points at which it

has an infinite unique derivative, on one side, has the measure zero.

Let D+
f(x) = D+f(x} = + GO

,
at all points of a set G. Since

D-f(x}D+f(x),

except at points of a set of measure zero, we must have D~f(x) = -f oo
,

if the exceptional set be left out of account. By the last theorem, when

D~f(x) = + x&amp;gt;,
we must have D+f(x) = oc

, except at a set of measure zero.

It follows that the set G has measure zero.

297. (3) Iff(x) is a measurable and finite function, the points at which

D+
f(x )&amp;gt;

D+f(x) are finite, and different from one another, form a set of
measure zero.

If S is the set of such points, and we remove from S some set of measure

zero, the derivatives D~f(x), D_f(x) must also be finite. This follows from

theorem (1). We may assume then that S is a set in which all four deri

vatives are finite at each point, and D+
f(x)^D+f(x). Let us suppose that,

if possible m (S) &amp;gt; 0. If N be a positive number, let SN be that part of S in

which all the four derivatives are numerically &amp;lt;N. If N have the values in

an increasing sequence N1} N2 , ..., which diverges, we see that SNr+l contains

SNr ;
the set S is the outer limiting set of the sequence {SNf \,

and since

m((S) &amp;gt; 0, we must have m (Sr) &amp;gt; 0, from and after some value of r. We may
then take N so large that m ($iV) &amp;gt; 0.
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A part 2, of 8N,
can be determined so as to be perfect, and such that the

measure of that part of it that lies in any interval which contains, in its

interior, points of 2, has measure &amp;gt; 0; and is also such that f(x) is continuous

relatively to 2 (see 295).

Let g (as) =f(x) + NX, then all the derivatives D+g (x), D+g (*), D~g (x)

are, in 2, &amp;lt; 2N, and &amp;gt; 0.

An interval (a, b) can be chosen such that it contains a part G, of 2, such that

the incrementary ratio of g (x), for any pair of points contained in the interval,

is ^ 2N, if the right-hand point belongs to G, or is = 0, if the left-hand point

belongs to G. The interval can be so chosen that a and b are points of G.

A part Gk ,
of G, can be so chosen that D+

g (x) D+g (x) &amp;gt; k, and k can

be so chosen that m (Gk) &amp;gt; 0.

For, if k have the values of a decreasing sequence of numbers that con

verges to 0, Gkr
is contained in G

kr+1 ;
thus the measure of G

kf ,
from and after

some value of r, must be &amp;gt; 0. The set Gr& is the sum of a number of sets G^,
where i is an integer, such that, in G^, ^(i l)k^D+ g(x)&amp;lt;^ik, where

i = 1, 2, 3, . . . tjj tj being the greatest integer for which ^(i l)k&amp;lt;
2N. One at

least of these sets G^ must have measure &amp;gt;0; let i be the least integer for

which this is the case. There exists a part E, of G^, that is perfect and has

measure &amp;gt; 0. We may, by alteration of a and b, if necessary, ensure that

a and b belong to E. In the set E,

$(i-l)kD+g(x)&amp;lt;$ik, and D+
g(x) &amp;gt; | (t + 1) k.

Choose a finite set of the intervals that are contiguous to E, such that the

measure of the sum of the remaining intervals is &amp;lt; e, where &amp;lt; e &amp;lt; m (E).

Let this finite set be denoted by A ,
and let A be the finite set comple

mentary to A
,
in (a, 6). We have then

m (A) &amp;gt; m (E), and m (A) &amp;lt; m (E) + e.

Let us consider one of the intervals (a, ft), of A; a, ft are points of E.

To each point x, of the part of E interior to (a, ft), and to the point a, we

assign an interval (x, x + h), on its right, such that g (x + h) g (x}&amp;lt; ^ikh.
To each point in (a, ft), not a point of E, we assign that part of the interval

contiguous to E in which it lies, that is on its right. There is a unique chain

composed of intervals so defined, that stretches from a to ft. Remove from

this chain a set of intervals of total measure &amp;lt; e//i, such that the remaining
intervals A&quot;

a)/3 form a finite set. The sum of the finite set of intervals com
plementary to A&quot;

a&amp;gt;/3

is a finite set A&quot;
aj 0, of total measure &amp;lt; e//i, where n is

the number of intervals (a, ft), of A. We proceed in this way with each interval

(a, ft), of A.

The interval (a, 6) is now divided into a finite number of parts consisting
of (1) the set A&quot; = 2A&quot;

0j/J , (2) the set A &quot; = 2A&quot; 0i 0, and (3) the set A .

We have m (A &quot;)
&amp;lt; e.
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The intervals of A&quot; consist partly of intervals (x, x + h), where # is a point

of E, and partly of intervals not containing in their interior points of E. The

measure of the latter set is &amp;lt; e, and that of the former is &amp;gt; m (E)
-

e, and

&amp;lt;m(E) + e.

Since, for one of these intervals (x, x + h), we have

and in any interval with the left-hand end-point a point of E, the incrementary

ratio is ^ 2N; we have

g(b)-g(a)&amp;lt;iik{m(E)+- }+2Ne + p, ...............(1)

where p denotes the sum of the increments of g (x) in the intervals A .

Again, if we assigned to each point x, of E, an interval (x, x + h ) such

that g (x + h )
- g (x) &amp;gt; (i + 1) k, and proceeded as before, then, remembering

that, in any interval in which the left-hand end-point belongs to G, the in

crementary ratio is = 0, we should find that

g(b)-g(a)&amp;gt;(i + l)k[m(E)-e}+p................ (2)

The inequalities (1), (2) are in contradiction if

which will hold provided e have been chosen sufficiently small. It follows that

the set 8 cannot have measure &amp;gt; 0. The method of the above proof can be

applied to shew that a similar result holds for D~f(x), D+f(x). It thus appears

that, in the theorem (3), any pair of derivatives may be taken.

298. It has now been shewn that, in the set S
l ,

of points for which all

four derivatives are finite, the upper and lower derivatives on the right are

equal, and the upper and lower derivatives on the left are equal, except in a

part of 8lt of measure zero; and thus, in a set of measure m(S1\ there are

unique derivatives both on the right and on the left. The points of 8^ at

which these are unequal, form a set of measure zero, as is seen from the

theorem that the points at which the upper derivative on one side is less

than the lower derivative on the other side form a set of measure zero. We
have accordingly the following theorem :

The set of points at which the four derivatives are all finite, and not all

equal, has measure zero. Thus, in the set of points at which all the derivatives

are finite, there is a finite differential coefficient everywhere, except at points of

a set of measure zero.

Next, let us consider the set S2 ,
in which one derivative is infinite, + oo

,

or oo
,
and the others are all finite. By theorem (1), $2 has measure zero.

If at points of a set 8 3 ,
two of the derivatives are infinite and the other two

finite, then, except in the points of a part of the set, of which the measure is zero,

these derivatives must be the upper derivative on one side and the lower deriva

tive on the other side, and the two finite derivatives are equal.
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If three of the derivatives are infinite at points of a set S4 , then, by the

theorems (1) and (2), all four derivatives are infinite at all points of $4 , except
in a part of the set, of which the measure is zero.

If all four derivatives are infinite at the points of a set Ss , then, except
in a part of S5 , of which the measure is zero,

D+f(x) = D-/Oc) = + oo
,
and D+f(x} = _/(#) = - oo .

The general result may be stated as follows:

Iff(x) be a measurable function, finite at each point, and if a set of points
of measure zero be left out of account, then at every point x, either

(1) there is a finite differential coefficient, or

(2) the two upper derivatives are + oo
,
and the two lower derivatives are

oo
, or

(3) the upper derivative on one side is + 00, the lower derivative on the

other side is oo
,
and the other two derivatives are finite, and equal.

This general theorem was established by Denjoy* for the case of a con

tinuous function, and by G. C. Youngf for the case of any measurable function.

The investigation here given is based upon the work of the latter writer.

The following is a consequence of the general theorem:

There is no geometrical distinction of right and left with regard to the four
extreme derivatives of a measurable finite function, except possibly at points of
a set of measure zero.

A number of special theorems are particular cases of the general theorem.

Thus, we have the following:

If a measurablefunction have finite derivatives, except at points of a set of
measure zero, it has a finite differential coefficient except at points of a set

of measure zero.

This theorem was first given by MontelJ, for the case of a continuous

function.

A monotone function f(x) has a finite differential coefficient at every point
which does not belong to a set of measure zero.

For, in the case of a monotone function, all four derivatives are ^ 0, or all

four are ^ 0, and thus the cases (2) and (3) of the general theorem cannot arise.

This theorem was first establisjied, in connection with the theory of

Integration, by Lebesgue, for the case of a continuous function. It was
extended by W. H. Young to the case of a monotone function which is not

necessarily continuous}.

* Journal de Math. (7), vol. i, p. 105. f Proc. Lond. Math. Soc. (2), vol. xv, p. 360.

J Comptes Rendus, Paris, Dec. 23, 1913. Lemons sur Vintegration, p. 128.

|| Quarterly Journal, vol. XLII, p. 79.
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Since every function of bounded variation is the difference of two mono

tone functions, we have the theorem that :

A function of bounded variation has a finite differential coefficient at every

point which does not belong to a set of measure zero.

The following special case of the general theorem was first given by Lusin:

The points at which a continuous function has an infinite differential coeffi

cient (with fixed sign) form a set of measure zero.

Also, it was first shewn by Denjoy that:

The points at which a continuous function has an infinite progressive deri

vative, or an infinite regressive derivative, form a set of measure zero.

299. We have hitherto assumed that f(x}, whether bounded or not, is

finite, for each value of x. But if it be assumed that there is an exceptional
set of points, of measure zero, at which f(x) is infinite, the general theorem

will still hold good, as is seen by examining the proofs of the various theorems.

It is assumed that, in the definition of a derivative D f(x), the incrementary

ratio, for a pair of points at which the function is infinite, with the same sign,

is ignored. At a point wheref(x)
= + x

,
we have

Z&amp;gt;+/0)
= D+f(x} = - QO

,
and D~f(x} - D_f(x) = + oo

;

and at a point where f(x) = QO
,
we have

D+f(x} = D+f(x) = + oo
,
and D~f(x) = D_f(x) = - oo .

It thus appears that the set of points at which the upper derivative on one

side is less than the lower derivative on the other side contains the set of

points at which the function is infinite.

An extension has been made by G. C. Young* to the case in which the

function is infinite at points of a set of which the measure is greater than zero.

It has been shewn by Denjoy that a continuous function can be con

structed, in which all three cases of the general theorem present themselves

for one function, or in which one or more of the cases may be absent.

EXAMPLES.

The following examples have been given by Denjoy :

1. Let G be a perfect non-dense set of measure &amp;gt; ; let/(#)=0, at all points of G
; and

in each complementary interval (an , &) of G, let /(#)= y-^ -
{(x

- an) (bn
-
x}}^ . At each

t&amp;gt;n

~ an
point of G,

2&amp;gt;V(*)=+, /) +/(*) = 0, /&amp;gt;-/(*)
= 0, /&amp;gt;_/(*)--.

In each complementary interval /(.r) has the maximum value , and thus the function

is not continuous at the points of G.

* Loc. cit., pp. 378-384.
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2. Let G be a perfect non-dense set, of measure zero, in the interval (a, 6). Let un be

the length of the contiguous interval (an , &); and suppose that ult 2 ,
... un ,

... are in

descending order of magnitude. Let A1? A 2 ,
... hn ,

... be positive numbers such that &quot;2,hnun

2 (x a \ i
is convergent, and let yn (x) hn un sm~ l

( -) ,
for a n &amp;lt;.v&amp;lt;bn . The function

n- \ un J

f(x) = (a S.x)h nun+
&amp;lt;i&amp;gt;y

m (x), where to is zero if x is a point of G, and is 1, if x is interior to

a contiguous interval ; and (a Sx) hnun denotes the sum of those parts of 2 hnun that are in

the interval (a, x}. The function f(x) is continuous
;

it has a finite differential coefficient

at every point that does not belong to G, and it has an infinite differential coefficient at all

points of G.

3. With the same notation as in Ex. 2, let /(#) = 0, in all points of (?, and let

f(x)=uy (

---- L in the interval (, &) ;
where y (x)

=
(l xf x* sin2 -. The function

\ un / ^

f(x) is continuous; it has a finite and continuous differential coefficient at all points not

belonging to G. In all end-points of contiguous intervals D +
f(x)= + ao

;
and the other

three derivatives are all zero at all points of G.

4. Let E be a perfect set, metrically dense in itself; and let

Let / (x}
=

0, at all points of E; in un let/ (x)
=
pn *y ( .

n
) ,
where pn is chosen as follows :

\ * /

From the interval (a, 6) remove the intervals ult u.2 ,
... un _ ;

then un lies in one of the

remaining segments of (a, 6); let pn be the length of this segment. In all points of E,

D +f(x)=+v, _/(*)- -oo
;
D + f(x}= D~f(x} = 0.

5. Defining E as in Ex. 4, let f(x) = 0, in all points of E, and let

i k
-* * sn

^
.

In all points of E,

300. The following general theorem is due* to W. H. Young.

The points at which one at least of the four derivatives of any given function
is infinite, form an ordinary inner limiting set, if it exists. The set of such

points is accordingly of power c, when it contains a component dense in itself;

and otherwise it is enumerable, or finite.

It follows that the set of such points is a set of the second category, in

case it be everywhere dense.

The special case of the theorem which arises when the function is con

tinuous, and the set of points is everywhere dense, was given by Brodenf.

Let x be a point at which one of the four derivatives is infinite, it being
immaterial whether the other derivatives are infinite or finite. A sequence

* Arkiv for Matematik, Astronomi och Fysik, vol. i, Stockholm, 1903.

f Acta Univ. Lund. vol. xxxin, p. 31.



General properties of derivatives 379

#!, #2 , ... xn ,
... converging to x

,
and on one side of it, can be found, which has

the property that, corresponding to an arbitrarily large positive number er, an

integer ml can be found, such that

f(xn ]
- f(x )J J v

Xn
a; for n&amp;gt;ml \

further, in can be chosen so great that

1
\xn x

\&amp;lt;- ,
tor n &amp;gt; m ^ m,.

(T

Let the intervals (x ,
xn)

be prolonged on the side beyond XQ) each being in

creased by
--- of its length ;

and the whole set of intervals so constructed for

every point x of the set at which a derivative is infinite may be called Ia .

Let o-j, a-.,, cr3 ,
... be a set of values of a- which increase without limit; then

the corresponding sets of intervals 7^, 7^, ... define an inner limiting set of

points, to which all the points x of the given set belong; and it will be shewn

that no other points belong to this inner limiting set. If possible let be a

point of the inner limiting set which does not belong to the given set of points

at which a derivative is infinite. There is at least one interval of each of the

sets 7^, 1^, ..., such that is an interior point of it; let such intervals be

Su &,,..., and let , 2 , 3 ,
... be points of the given set interior to these

intervals. Let fi, 2 , f3 , ... be the end-points of the intervals on the sides of

those intervals which were not lengthened. We have

thus the points 1} 2 , 3 , ..., and also the points %1} |2 , ..., form a sequence of

which is the limit.

Since &amp;gt; o-j, therefore |/(J /( t ) .&amp;gt; (a- l 1) S
t .

Also a positive number A can be determined, such that for all values of t,

,

for otherwise would be a point with an infinite derivative; and from this we
see that .

For a sufficiently great value of t,

o

hence, for such a value of t,

and thus
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Now cr
t
A 1 is arbitrarily large for a sufficiently great t; hence, since is

the limiting point of the sequence {f t },
there is an infinite derivative at .

This is contrary to the hypothesis made; therefore the points of the given
set constitute the inner limiting set which has been defined.

FUNCTIONS OF TWO VARIABLES.

301. It has already been shewn that many of the fundamental concep
tions and theorems relating to the continuity, uniform continuity, etc., of func

tions of one variable hold good, without essential change, for functions of

two or more variables.

Most of the points in which the theory of functions of a number of vari

ables involves considerations which are not an immediate generalization of

those which occur in the case of functions of a single variable are sufficiently

illustrated by the case of functions of two variables. Accordingly the proper
ties of functions of two variables will be considered in some detail.

That a function f(x, y} should be continuous at a point (a, b), which is a

limiting point of its domain, it is necessary, but not sufficient, that the func

tion f(x, b), of x, should be continuous at the point x = a, and that the function

/(a, y), of y, should be continuous at the point y = b. Thus a function may be

continuous at a point with respect to x, and also with respect to y, whilst it

is discontinuous with respect to the two-dimensional domain (x, y\

It is not even sufficient to ensure the continuity of/ (#, y) at a point, that

it be continuous in every direction from the point. Thus

/(a + r cos 6, b + r sin 6}

may be a continuous function of r, at r = 0, for each value of 6 in the interval

(0, 2?r), and yet* the function may be discontinuous at (a, b).

The necessary and sufficient condition that f(x, y) may be continuous at

(a, b) may be expressed in the form that f(x, y) must be continuous in every
direction at the point, and uniformly so for all directions.

Thus, if f(a + r cos 0,b + r sin B) be continuous at r = 0, for each value of

6, and uniformly so for all values of 0, then, if e be a prescribed positive num
ber, a number p can be determined, independent of 6, such that

|/(a + r cos 6, b + r sin 6} /(a, 6) j

&amp;lt; e,

provided r
&amp;lt; p. From this condition it follows that \f(x, y) f(a, b) &amp;lt; e, pro

vided
|

x a
\, | y b are each &amp;lt; p/V2, and thus the condition of continuity of

the function is satisfied.

The remarks which have been made as regards the continuity of a function

at a point are applicable without essential change if those functional values

* See Thomae, Abriss einer Theorie der komplexen Functionen, 2nd ed., p. 15.
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in the neighbourhood of the point are alone taken into account, which are in

one of the four quadrants, the values at points on the axes bounding the

quadrant being either included or excluded from consideration, as may be

agreed upon. Thus the condition of continuity at a point may be satisfied for

one such quadrant, and not for another one.

As regards the points of discontinuity of a function of two or more vari

ables reference may be made to a memoir* by W. H. Young.

EXAMPLES.

1. Let /(#, y)
= a o anc^

/(^&amp;gt; 0) = 0. This function is discontinuous at the point

(0, 0), although it is continuous at that point with respect to x, and also with respect to y
since /(#, 0)

=
0, f(y, 0)

= 0. In all other directions the function is discontinuous; for

writing x=rcos6, y= rsin#, the function is sin 20 and therefore has a constant value

different from zero on a straight line for which 6 is constant, unless 6 has one of the values

0, TT, TT, or $TT.

XU
2. Lett /(#, y)= 2 4 , /(O, 0) = 0. This function is discontinuous at the point---

(0, 0), although it is continuous in each particular direction, at that point. We find that

v sin * Q i
-

rx- . . &amp;lt; e. if r &amp;lt;

- cosec 2 6 {1 v 1 4e -J cos2
6} ;

and in order that this condition
cos2 0+r2 sm 4 2e

may be satisfied, the greatest value of r diminishes indefinitely as 6 approaches the value

TT
;
whereas when 6= ^7r, the function is, for every value of r, equal to /(O, 0). It is

thus seen that the convergence in different directions is non-uniform.

DOUBLE AND REPEATED LIMITS.

302. Let (a, 6) be a limiting point of the domain for which a function

f(x, y} is defined, and let a neighbourhood, of which the corners are the four

points (a + e, b e ),
be taken. Let U, L be the upper and lower boundaries

of the function for all points of the domain in this neighbourhood, the func

tional value at (a, 6) being however disregarded, in case (a, 6) belongs to the

domain. If e, e be diminished, the number U cannot increase; and when
values of e, e belonging to sequences eu ea , ... en , ... ,

and e/, e2 ,
... en , ..., each

of which converges to the limit zero, are taken, and Un be the value of U
corresponding to the values en , e,4 ,

of e, e, the numbers U1} U.2) ... Un ,...

form a sequence of numbers which do not increase. This sequence has then

a limit U, which may however have the improper value oo
, in case all the

numbers Un have this improper value. It is easily seen that U is independent
of the particular sequences chosen for e, e . This number U is said to be the

upper limit of the function at (a, b), and may be denoted by

lira f(x,y).
x~a, y~b

* W. H. Young, Proc. Lond. Math. Soc. (2), vol. YIII, p. 117.

t Genocchi-Peano, Calc. Di/., 123.
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The lower limit lim f(x, y) may be defined in a similar manner, as the
x~a, y~b

limit of a sequence of values of L
;
and it may have the improper value oo .

At a point of continuity of the function, the condition

lim f(x, y) = lim f(x, y}
x~a,y~b x~a,y~b

is satisfied
;
and further, each of these limits is equal to /(a, 6), in case (a, 6)

belongs to the domain of the function.

Corresponding pairs of limits may also be defined for the case in which

the functional values in one quadrant only are taken into account, the func

tional values on the axes being either included or excluded, in case they exist,

as may be agreed upon.

The saltus, or measure of discontinuity, at the point (a, b) is measured by
the excess of the greatest over the least of the three numbers

/(a, b), lim f(x, y\ Hm f(x, y}.

x~a,y~b x~a,y~b

The saltus at a point of discontinuity may have a finite value, or it may be

indefinitely great.

In case lim f(x, y)
= lim f(x, y), their common value may be denoted

x~a,y~b x~a,y~b

by lim f(x, y}, and the function is then said to have a definite double limit
x ~ a, y ~ b

at the point (a, b) ;
this double limit lim f(x, y} may be finite, or infinite

x~a, y ~ b

with a definite sign.

When the upper and lower limits have different values, lim/(#, y} is

frequently regarded as existent but indeterminate, the upper and lower limits

being regarded as its limits of indeterminancy.

303. In considering the functional values in the neighbourhood of a point,
and the functional limits at the point, it is frequently convenient to consider

one quadrant only ;
this we may take, without loss of generality, to be the

quadrant in which x - a &amp;gt; 0, y
- b &amp;gt; 0. The results which will be established

are essentially applicable to any one of the four quadrants, and can be

immediately extended to the case in which account is taken of the whole

neighbourhood of (a, b), by taking the totality of the results for the four

separate quadrants, and for the lines x = a, y = b.

Assuming that x - a &amp;gt; 0, y
- b &amp;gt; 0, the function f(x, y} considered as a

function of y only, with x constant, has two functional limits f(x, b + 0),

f(x, 6 + 0), at the point (x, b); these may be denoted by iTm f(x, y),

V~b
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lim f(x, y) respectively. In case these two limits are identical, their common
y~t
value may be denoted by lim f(x, y}, the functional limit f(x, b + 0) having

y ~b
in that case a definite value.

If either of the limits lim f(x, y), lim/(#, y} is to be taken indifferently,
y ~ b y ~b

we may denote them by lim f(x, y}. This may be regarded as a function of #,

such that its value at the point (x, b) is multiple-valued, and has lim/(#, y),
y~b

lim f(x, y} for its limits of indeterminancy.

It may happen that lim f(x, y}, considered as a function of x, has a

definite functional limit at the point x = a
;
this limit may be either finite,

or infinite with fixed sign. In case such a limit exists, it is denoted by
lim \imf(x, y), and is said to be the repeated limit of f(x, y) at the point
x ~ a y ~ b

(a, b), the order of the limits being, that the limit for y ~ b is taken first, and

then afterwards the limit for x w a.

In case this repeated limit does not exist, either as a definite number, or

as infinite with fixed sign, we may regard lim lim f(x, y} as indeterminate, its
x ~ a y ~b

limits of indeterminancy being lim lim f(x, y}, and lim lim f(x, y}.
x ~ a y ~ b x ~a a ~b

The repeated limit lim lim/(#, y}, in which the limit with respect to x
y ~b x ~ a

is first taken, and afterwards that with respect to y, may be defined in a

precisely similar manner.

It is clear that the functional values on the straight lines x = a, y = b are

irrelevant as regards the existence, or the values, of the repeated limits.

In case the double limit lim f(x, y}, for x &amp;gt; a, y &amp;gt; b, exists at the point
x~a, y ~b

(a, b), having either a finite value, or being infinite with fixed sign, the

existence of the two repeated limits

lim lim f(x, y}, lim lim f(x, y}x~ a y~ b y ~b x~ a

follows as a consequence, their common value being lim f(x, y}. In this
x ~ a, y ~ b

case lim f{x, &amp;lt;&amp;gt;(#)}

a^so exists, and is equal to the double limit, where &amp;lt;b (x}x~a
is any function of x, which is &amp;gt; b, and is such that lim

&amp;lt;f&amp;gt; (x) = b. Also
x ~ a

lim
/{&amp;lt;/&amp;gt; (t),-^(t)} exists, and is equal to the double limit; where

&amp;lt;f&amp;gt;(t), ty(t]
t *+* T

are functions of a variable t, such that
&amp;lt;f&amp;gt; (t) &amp;gt;a,^r (t) &amp;gt; b, and that lim $ (t)=a,

lim
t~
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The converse of these statements does not hold good. In particular, the

existence of Km f(x, y) is not necessary either for the existence, with
x ~ a, y ~ b

definite values, or for the equality, of the two repeated limits

lira lim/(#, y); Km Km f(x, y).

EXAMPLES.

1. Let f(.v, y} be defined for the positive quadrant by / (x, #) = ^. We find
x ~\~y

lim lim /(#, y)
=

l, lim lim f(x, y}=-\; thus lim f(x, y) cannot exist.
X~0 y~0 y~0 x~0 x~Q, y~0

y& 7/2

2. Let /fo#)= -2..2T-/V
~

V2-
In this case lim lim f(x &amp;gt; y) and lim lim f (x, y}Xy -r\X-y) x~0 y~0 y~Q x~0

are both zero, and yet lim f(x, y} does not exist; for if y= x, f(x, y} = \
; and there-

X~0, i/~0

fore lim f(x, x) = l.

X~Q

3. Let* /(#, y} be defined for x&amp;gt;0, y&amp;gt;0, by the expression (x+y} sin - sin -. In
X

&amp;lt;/

1 1
this case lim / (x, #) =#sm -, lim f(x, y}= -.rsin-, and lim f(x, y)-lim f(x. y) has

v~ v~o x v~o ^^
for #=0 the limit zero. We have then lim lim f (x, y)= 0, since ^sin- .# sin -

x~0 y~0 X&quot;

1 X
have each the limit zero for #=0. It is clear that lim lim / (x, y} is also zero. If

!/~0 X~0
&amp;lt; x &amp;lt; % f, and &amp;lt; y &amp;lt; i e, we see that

| / (x, y} &amp;lt; e, and therefore lim / (x, y} exists,
, . , , a~0, y^o

and is equal to zero.

304. An important matter for investigation is the determination of the

necessary and sufficient conditions for the existence and equality of the two

repeated limits at a point. A knowledge of such conditions, as also of

sufficient conditions, is required in various fundamental theorems of analysis
which turn upon the legitimacy of inverting the order of a repeated limiting

process.

It will be observed that the existence of lim lim f(x, y) does not neces-
x ~ a y ~b

sarily involve the existence of lim f(x, y} as a definite number, since
y~b

lim lim f(x, y), lim Km/(#, y) may both exist and have the same value,
x~ay~b x~ay~b
without it being necessarily the case that lim f(x, y), lira f(x, y} are identical.

y ~b y~6
It is however necessary that lim f(x, y)- Km/O, y) should converge to the

y ~b y ~b
limit zero, as x converges to the value a.

Pringsheim, Encyklopadie der Math. Wissensch., n A. 1, p. 51.
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The necessary and sufficient conditions required are contained in the

following general theorem:

In order that the repeated limits Urn Urn f(x, y}, lim limf(x, y) may both
x ~ a a ~ b y ~ 6 x ~ a

exist, and have the same finite value, it is necessary and sufficient, (1) that

limf(at, y) limf(x, y) should have the limit zero, for x~a, and that

y ~ b y ~b

Lim f(x, y} limf(x, y} should have the limit zero, for y ~ b; and (2) that,
x~ a x~ a

corresponding to anyfixed positive number e arbitrarily chosen, a positive number

(3 can be determined, satisfying the condition that, for each value of y interior to

the interval (b, b + (3), a positive number ay ,
in general dependent on y, exists,

such that, for this value of y, f(x, y} lies between lim f(x, y) + e and
y~b

limf(x, y} e,for all values of x interior to the interval (a, a + oty ).

V ~b

Let us first assume that the conditions stated in the theorem are satisfied.

A value of y may, in virtue of (1), be so chosen that the difference of the two

limits \\rnf (x, y}, lim f(x, y) is less than an arbitrarily chosen number
77;

.r ~ a x ~ a

and this value of y may also be so chosen that it is interior to (6, b + /3). For
this fixed value of y, an interval (a, a + ay \ for a;, -may be so chosen that

f(x, y) lies between lim f(x, y} + e and lim f (x, y) e, provided y has
x ~ a x ~ a

the fixed value, and a&amp;lt;x&amp;lt;a + ay : this follows from the definition

of the upper and lower limits. Again, from the condition (1), a number
a&quot; can be determined, such that, if x be interior to the interval (a, a +

a&quot;),

the difference between the two limits lim f(x, y), lim f(x, y} is less than
77.

y ~ b y ~ b

Now let Oy be the smallest of the three numbers a,/, a,/, a&quot;; then, if xl} x*

be any two values of x within the interval (a, a + Oy), and y have the fixed

value; by applying the conditions of the theorem, we see that the conditions

-lim/(^, y)
y~b

-
lim/(a?2 , y) &amp;lt; TJ + e,

y~b

are all satisfied. It follows that

|/0*2.

^
v~b

for every pair of points xlt x,2 within the interval (a, a + a^). Hence, since e, 77

uiv both arbitrarily small, lim /(a;, y) converges, for x~a, to a definite value
y~b

H. 25
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which is the limit both of lira f(x, y) and of lim/O, y), when x~a; and
y~t&amp;gt; ^b

thus lirn lim/(#, y) exists.
x~a y~b

Again, since Km lim/(#, y} has a definite value, an interval (a, a + 8) can
x~a y~b

be determined, such that, for any point x interior to it,

lim lim/(, y}
- lirn f(x, y) &amp;lt;

Now lim lim/O, y}
- lim f(x, y) is the sum of the three differences

x~a y~b

lim lim f(x, y)
- lim f(x, y},

x~a y~b y^ b

lim/O, y) -f O&amp;gt; y\ /O, y)
- lim /O, y).

j/ -fi *~a

and for a fixed y, chosen as before, x may be chosen so that it not only lies

within the interval (a, a + 8), but is also such that

I/O, ?/)
- Hm f(x, y) , f(x, y}

-
lim/O, y)

y~b x~a

are each less than 77 + 2e. It follows that

lim li

and thus that lim f(x, y) converges, as y converges to b, to the limit

lim lim/(o;, 2/)-
I* nas thus been shewn that the two repeated limits both

x~a y~b

exist, and have the same value.

Conversely, let us assume that the repeated limits both exist, and are

finite and equal. We have then
j

lim lim/O, y}
~ ^m

/O&amp;gt; 2/) !
&amp;lt; provided

|

x~a y~b x~a *

y lies between b and 6 + /3, where /3 is some fixed number, being an

arbitrarily chosen positive number
;
from this it follows that

lim/O, y} lim /O, 3/)
a;~a *~a

is &amp;lt; 2 for 6 &amp;lt; y &amp;lt; 6 + /3. Also

lim/O, y) lim lim/O, ,7)
j

&amp;lt; ?,

provided x lies within some fixed interval (a, a + 8 ) ;
and from this it follows

that lim f(x, y) lim/O, y) is &amp;lt; 2, for a &amp;lt; a; &amp;lt; a + S . Since f is arbitrarily

small, we now see that the condition (1) of the theorem is satisfied. Further

we see that

/O, y}
- lim /O, y}
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where is any arbitrarily chosen positive number, provided x lies within

some interval (a, a + a/), where ay depends upon y, and may diminish in

definitely as y approaches the value b. It follows from the three inequalities,
that

y~b

provided b &amp;lt; y &amp;lt; b + /3, and provided also x lies within some interval (a, a + a.y\
where ay depends in general upon y. Since f and are both arbitrarily small,

it follows that the condition (2) of the theorem is satisfied.

If the condition (2), in the above general theorem, be replaced by the

more stringent condition that, corresponding to any fixed positive number e,

arbitrarily chosen, a positive number ft can be determined, which is such

that, for each value of y interior to the interval (6, 6 + 0), a positive number
ay , dependent on y, exists, such that, for this value of y, and for all smaller

values, f(x,y) lies between Km&quot; / (x, y) + e and liin f(x, y}
-

e, then this

y~b y~b
condition and the condition (1) are the necessary and sufficient conditions

that not only lim lim/(#, y}, lim \\rnf(x, y} exist and are equal, but also
x~a y~b y~b x~a

that the double limit lim f(x, y} exists, having a definite value, the
x~a, y~b

same as the repeated limits. In case the function be defined for values of

x, y on the lines x = a, y = b, the additional conditions must be added that

the functional values on these lines also converge to the same limit

lira f(x, y}.
x~a, y~b

For, under the conditions stated, we have, provided y lies .within the

interval (b, b + &), where & &amp;lt; j3,

(x,y)-\\mf(x,y}
y~b

where x has any value in the interval (a, a + f), f being the lesser of the two
numbers a^ and 8

;
the number 8 being so chosen that

lim /(a?, y)
-

lim/(a?, y)-
&amp;lt; 77, for a&amp;lt; x &amp;lt; a + B .

Also x, y) lim lim/(#, y) &amp;lt; e, provided x lies within an interval

chosen sufficiently small. Hence the condition

/O&amp;gt; y}
-

I lim f(x, y) &amp;lt; 2e + 17
x~a y~b

is satisfied, provided b &amp;lt; y &amp;lt; b + & ,
and provided x lies within an interval of

which the length may depend upon e and 77. It follows, since e, 77 are

arbitrarily small, that f(x, y} has a definite double limit at the point (a, 6).

That the conditions stated are necessary, follows at once from the definition

of lim f(x, y).
x~a, y~b

252
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305. The theorem obtained in 304 may be simplified in the case in which

lim/(#, y), lim/(X y) both have definite values at all points on the straight

lines x = a, y = b which are in sufficiently small neighbourhoods of the point

(a, b). We may then state the theorem as follows:

// limf(x, y}, lim f (x, y} have definite finite values in the neighbourhood
y~b x~a

of the point (a, b), then the necessary and sufficient condition that the two repeated

limits lim lim f (x, y}, lim lim f (x, y) may both exist, and have the same
x~a y~b y~b x~a

finite value, is that, corresponding to any faced positive number e, arbitrarily

chosen, a positive number ft can be determined, which is such that, for each

value of y interior to the interval (b, b + /3), a positive number ay ,
in general

dependent on y, exists, such that, for this value of y, \ f(x, y) limf(x, y} &amp;lt; e,

I y~b

for all values of x within the interval (a, a + ay).

In case the condition f(x, y) lim f (x, y) \

&amp;lt; e, for all values of x within
y~b

(a, a + ay), be satisfied, not only for the particular value of y, but for all smaller

values, and this hold for every e, then the double limit lim f(x. y) exists,
x~a, y~b

and is equal to each of the repeated limits. In this case the point (a, b)

is said to be a point of uniform convergence of the function f (x, y} to the

limit lim f(x, y), with respect to the parameter x\ and thus, for such a point,
y~b

there exists, for each value of e, an interval (, a + a), where a. depends in

general upon e, such that, for each value of x within this interval, the

condition \f(x, y} \imf(x, y} &amp;lt; e is satisfied, provided y be less than some

fixed value which is the same for the whole ^-interval (a, a + a).

It may happen that, as e is indefinitely diminished, a. has a positive

minimum a. In that case the fixed interval (a, a + a) is such that, for each

e, the condition f(x, y) lim f(x, y ) j

&amp;lt; e is satisfied for all values of x
y~b

within the fixed interval (a, a + a), provided y is less than some fixed value

dependent on e, the same for the whole ^-interval. In this case f(x, y} is

said to converge to lim f(x, y} uniformly within the interval (a, a + a), with

respect to the parameter x. Not only the point (a, b), but also each interior

point of the interval (a, a + a), is then a point of uniform convergence of

f(x, y) to lim f(x, y). with respect to the parameter x.

y~b

306. The necessary and sufficient conditions for the existence and equality

of the two repeated limits of f(x, y), at (a, b\ may be put into the following

form, different from that of the theorem of 304.

The necessary and sufficient conditions that lim limf(x, y)
= lim limf(x, y),

their value being finite, are (1) that lim f (x, y} converge to a definite value
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Urn Urn f(x, y), when y converges to b, and that Urn f (x, y)
-

lim_f(x, y) con-

verge to zero, for x~a; and (2) that, corresponding to any arbitrarily chosen

positive number e, and to an arbitrarily chosen value b+@Q , of y, a value

yl &amp;lt;b + (3 , of y, can be found, and also a positive number a, such that the

condition that f(x, yO lies between

limf(x, y) + e, and lim_f(x, y) e

y~b y~b

is satisfied for every value of x within the interval (a, a + a).

In case limf(x,y} everywhere exists in the neighbourhood of x = a, the

y~b

condition (2) is that f(x, yj- limf(x, y}
\

&amp;lt; e, for every value of x within
y~b

the interval (a, a + a).

That the conditions contained in the theorem are necessary, is seen from

the theorem of 304; it will be shewn that they are sufficient. Let us assume

that the conditions are satisfied. We have

iim f(x, y)
- lim Km f(x, y}

=
[&quot;Jim

f(x, y) -f(x, y)~|
-j^Tb /~& x~a Ly~b J

A positive number Q l can now be chosen, such that, if
&&amp;lt;y&amp;lt;&

+ &, the

condition lim f(x, y}
- lim lim/O, y) &amp;lt; e is satisfied

;
moreover we may

choose ft l so that it is &amp;lt;

Next, a value y1} of y, exists, such that/(#, y^) lies between lim/(#, y} +,
y~b

and lim/(#, y}
-

e, provided x be within the interval (a, a + a): the value of
~

/3 may be chosen so small that \irnf(x, y) lim f(x, y) &amp;lt; e, for every value

of y which is &amp;lt; b + @ ,
arid therefore for the value y1( of y. Again, an interval

for x, possibly less than (a, a + a), can be so chosen that

v, y) lim f(x, y) &amp;lt; e,

provided x lies within the interval. It follows that an interval (a, a + a }, for

x, can be found, such that lim /(a.-, y) f(x, y,) &amp;lt; 3e. Further, the interval

\y~b

within which x lies may, if necessary, be so restricted that

&amp;lt;2e.
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Hence, provided x lies within a definite interval, we see that

Jim / (x, y)
- lim lim f(x, y) &amp;lt; 6e

;

y~b y~b x~a

and since this condition holds for an arbitrary e, it follows that Hm f(x, y}

converges, for x~ a, to lim limf(x, y); and thus the sufficiency of the conditions
j/~6 x~a

is established.

THE LIMITS OF MONOTONE FUNCTIONS OF TWO VARIABLES.

307. A monotone function f(x, y), of two variables x and y, was defined in

253 as a function such thatf(x , y } ^ f(x, y), or such that/O , y } f(x, y\ for

every pair of points (x, y\ (x , y \ such that x x, y y. The following theorem,
as regards the limits, at a point, of such a function, will be established.

Iff(x &amp;gt; y} is a monotone function, in each of the four open quadrants,
x + h &amp;gt; x, y + k &amp;gt; y ; x + h &amp;gt; x, y

- k &amp;lt; y ; x - h &amp;lt; x
, y + k &amp;gt; y ; x - h &amp;lt; x, y - k &amp;lt; y,

the double limit and the two repeated limits of the function, as h ~ 0, k~ 0, all

exist, and have the same value.

It will be observed that all these limits are independent of the values of
the function on the straight lines through (x, y} parallel to the axes.

We consider the case in which f (x , y } ^f(x, y}, when x x,y ^y] the
other case can be treated in the same way.

Let fa (a, y} denote lim f(x, y + k), and let fa (x, y) denote lim f(x, y
-

k),

at any point (x, y}.

We have then lim limf(as + h,y + k) = lim.fa (x + h. y) = fa(x + y}
7i~0 k~Q h~0

A value h 1} of h, can be so determined that fa (x + hlt y) -fa(v + 0, y} is

&amp;lt; e, where e is an arbitrarily chosen positive number; a value &x , of k, can
then be so determined thatf(as+hlt y + k,) -fa (x + h,, y}&amp;lt;%e.

We have
then Og/O + Aj, y + k^-fa(x + 0,y)&amp;lt;e-, and, from the property that the
function is monotone, we see that ^f(x + A, y + k) -fa(x + 0,y)&amp;lt;e, for all

values of A, k such that Q&amp;lt;hghlt Q&amp;lt;K&k1 . It follows, since e is arbitrarily
small, that the double limit of f(x + h, y + k\ asA~0, k~0, is equal to-

fa (x + 0, y} ;
and therefore the double limit and the two repeated limits have

the same value fa (x + 0, y\ Thus the theorem is proved for the case of the

quadrant in which the values of the coordinates are greater than x, and greater
than y, respectively.

Next consider the quadrant which is below the parallel to the #-axis, and
on the right of the parallel to the y-axis. In this case h, can be so determined
that 03 ,( + &!, y)-fa(x+Q, y)&amp;lt; e; and ^ can be so determined that

Q^fa(x + h l ,y)-f(x + h1,y- h) &amp;lt; e
;

it then follows that f(x + h
l,y- k^ is
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between the two numbers &amp;lt; 2 (x -f 0, y) e, that is, between the two numbers

Km lim f (x + A, y k} e. In the same manner, it can be shewn that A/, &/
h~0 k~0

can be so determined that f(x + h
l , y-k^} lies between the two numbers

lim lim f(x + h, y-k) e. The numbers h 1} klt A/, &/ can be so chosen that
k~0 h~0

ki&amp;gt;klt A^Aj.and thus that/O + A1; y
- kj ^f(x + h, , y-k, ).

From this

it follows that lim lim f(x + h,y-k)&amp;lt;
lim lim f(x + h, y

-
k} + 2e, or that

7i~0 Jk~0 k~Q h~0

lim lim/0 + h,y-k) lim limf(x + h, y
-

k), since e is arbitrary. By choosing
h~Q i~0 k~0 h~0

the numbers hi, k1} A/, k\
f

so that h &amp;gt; A:/, A t &amp;lt; A/, it could be shewn that, in the

inequality, ^ would be changed into ^. It follows that the two repeated limits

are equal.

Again, A 2 ,
&2 can be so chosen that &amp;lt; 2 (x + A2 , y} &amp;lt;f&amp;gt;

2 (x + 0, y) &amp;lt; e, and that

lim lim /(a; + A, y
-

k)
- lim / + A, y

- k2) &amp;lt; \ e. It follows, since &amp;lt; 2O + 0, y)
A-~0 &~0 /~0

is equal to the repeated limit, that
(j&amp;gt;.

2 (% + h 2,y)
- lim/(# -I- A, y k2 )&amp;lt;

e.

A~

At any point (x + h, y
- k\ such that &amp;lt; A &amp;lt; A 2 ,

&amp;lt; k &amp;lt; kz , f (x + h, y k)

lies between &amp;lt;f&amp;gt;2 (x + A2 , y) and \irnf (x + h, y &2),
and also the repeated limit

/t~0

lies between the same two numbers. Therefore f(x + h, y k) differs from the

repeated limit by less than e. It follows that the double limit in the quadrant

exists, and is equal to the repeated limits. The cases of the other two quadrants

can be treated in a similar manner.

308. We now consider the functions which have been defined in 255,

and named quasi-monotone functions. If f(x, y) be such a function, the

function F (x, y} defined by F (x, y) =f(x, y) f(x, b) f(a, y) +f(a, b) is a

monotone function. It follows at once from the property of F (x, y) established

in 307, that in each of the four open quadrants, the double and repeated

limits of/(#, y) exist and have the same value. For/(#, b),f(a, y} are mono

tone functions of the variables x, y respectively ;
each being non-diminishing,

or non-increasing, according to the type of the function
;
and in any case each

of them has a single limit which is identical with its double limit.

For a quasi-monotone function, the following theorem* relating to the

points of discontinuity of the function, will be established:

If f(x, y) be a qucisi-monotone function, there exist two enumerable sets of

straight lines parallel to the x-axis and the y-axis, respectively, such that every

point of discontinuity of the fauction, with respect to (x, y), lies on a straight

line belonging to one or other of the enumerable sets.

Let
&amp;lt;^ (x, y), &amp;lt;/&amp;gt;

2 (.r, y) be defined as in 307; then, iff(x, y) be monotone

*
See \V. H. Young, Proc. Royal Soc., vol. xcni, p. 25 where these functions are termed

monotone functions.
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non-diminishing with respect to x, for each constant value of y, and also mono
tone non-diminishing with respect to y, for each constant value of #, we have

& (x + 0, y} ^f(x + 0, y) ^ fa, (x + 0, y) f(x, y-0)&amp;gt;fa(x-0, y),

& (x + 0, y) ^f(x, y + 0) ^ fa (x
-

0, y) ^/&amp;lt;&amp;gt;

-
0, y) ^ &amp;lt; 2

-
0, y).

For a constant value a, of x, the discontinuities off(x, y) with respect to y are
at points of an enumerable set on the straight line x = a. Let a be the value
of x on the right-hand boundary of the cell in which the function is denned.
If x = a, y = /3 be a point at which /(a, y) is continuous with respect to y, then

/(#,y) is continuous with respect to y, at y = /3, for each value of# in the cell. For,
let

(/3-&amp;gt;-fc,l3+ty be a neighbourhood of /3, such that /(a, fi+k) -f(a,/3-k) &amp;lt; e,

then, from the definition of f(x, y), we see that f(x, /3 + k) -/(*,/-) &amp;lt; e!

It then easily follows that/(#, y) is continuous with respect to y, for y= /3, for any
fixed value of x. For such a value of y, as @, we have fa (x, y) =

(f&amp;gt;
2 (x, y), for every

value of x. This equality therefore holds for all values of y which do not belong
to a certain enumerable set. Again fa (x, y) is a monotone non-diminishing
function of x, for each value of y; and, as before, we see that it is a continuous
function of x, for all values of x not belonging to a certain enumerable set, for
each value of y.

If (x, y) is any point not on either set of straight lines parallel to the axis,
defined by the exceptional values of x and of y, indicated above, we have
fa (x + 0, y) = fa (x

-
0, y) ;

and then, employing the inequalities given above,
we see that the four limits, at (x, y), of the function, in the open quadrants,
and the four limits at (x, y), dependent on the values of the function on the

parallels to the axes, through the point, are all equal ; and therefore (x, y) is

a point of continuity of the function.

In the case in which f(x, y) is a non-diminishing function of y, for each
constant value of x, and in which f(x, y) is a non-increasing function of ar, for
each value of y ; the inequalities employed above can be replaced by

fa (x + 0, y) f(x, y-0)^fa(x-0, y) ^f(x - 0, y) g fa (x
-

0, y),

fa (x + 0, y) &amp;lt;/(
+ 0, y) fa (x + 0, y) f(x, y + 0)^fa(x-0, y\

and a similar argument to that above will shew that fa (x + 0, y)
=

fa (x
-

0, y)
at every point (x, y) not on either of two enumerable sets of lines parallel to the
axes. The cases of functions of the other types can be treated in a similar manner.

PARTIAL DIFFERENTIAL COEFFICIENTS.

309. If, at a point (x , y () ), in the domain for which the function f(x, y) is

defined, the limit lim /(^ + A .Vo)-/(^y.)
existe&amp;gt; havi either ft definite

ft~0 t

finite value, or being indefinitely great, but of fixed sign, this limit is said to
be the partial differential coefficient of f (x, y), at (a? , y ), with respect to x;

it is usually denoted by
-*

^
0&amp;gt; ^

.
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When the limit Hm /(* & + *)-/(* ?&amp;gt;

exists, it is said to be the
k~Q k

partial differential coefficient of f(x, y}, at (#, y ),
with respect to y; it is

denoted by^^.
fyo

In general, h, k, in these definitions, are regarded as having either sign.

It is possible that either of the above limits may not exist, but that there

may be two definite limits, one for positive values of the increment h or k,

and the other for negative values. In that case the two limits are said to be

the progressive and regressive partial differential coefficients with respect to

the particular variable. It is of course possible that, at a particular point,

one of these may exist, and not the other.

?}f rlf
That the two partial differential coefficients J , f- may exist, it is

dx dy

necessary, but not sufficient, that f(x, y} should, at the point (x , y ),
be

continuous with respect to x, and also with respect to y.

To express the increment f(x + h, y + k) f(x , y ),
of the function f(x, y},

when the two numbers x
, y receive increments h, k respectively, we have

/Oo + h,y + k) -/Or0) y )
=

[/(ar + h, y + k) -/(&amp;gt;, y + fr)]

-f(x , 2/0)]-

If we now assume that ~- exists at the point (#, y ),
and has a finite

y

value, we have
J? / 7 \ J? / \ ^ _/* / \T i T* &quot;?/ -I- A&quot; 1

-
T&quot; I fit* I/I /IT&quot; i /y 1/1

f Y^Q T y &quot;^ / / V^O i T O/ ^i \ *^0 ? v / / 7

A* 97/

where
&amp;lt;r(k) converges to the limit zero, when k is indefinitely diminished.

Again,
j-

^ ^
converges to the limit ,

when k
II QOCfy

is first diminished to the limit zero, and afterwards h converges to zero, it

*&quot;*

-

being assumed that
^

- has a definite value, and also that f(x, y) is con

tinuous with respect to y, for the value y = y ,
where x has any value in a

neighbourhood of a? . In order, however, that the double limit

i f_ \
xo &quot;^

&quot;&amp;gt;

y&amp;lt;*

~^~ &quot;7/ / \^o &amp;gt; 2/o &quot;I&quot; k)

rlf

may exist, in which case its value is =- , being independent of the mode in
Bt*i

which h, k approach their limits, it is necessary and sufficient that

f(x + h, y + k) -f(x , 7/0 + k}

h

should be a continuous function of (h, k) at the point h =0, k = 0.
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If this condition be satisfied, positive numbers hlt k^ can be determined,
such that ,.

f(x + h,y + k) -f(x , y + k) df
h dx

&amp;lt;r}

where rj is a prescribed positive number, and &amp;lt;

j

A ^ A,, ^
J

& ^^.
We have now

/fa + h,y + k)-f(x , y + k)_df ,

~T~ -j
+

/&amp;gt;&amp;lt;**&amp;gt;.

where p (h, k) converges to zero, independently of the mode in which h, k

converge to zero.

Under the conditions stated, we have

/ Oo + h,y + k) -f (&amp;gt; , y )
= h /- + k J- + hp + ktr,

on o oy
where p, a converge to zero, when h and k are indefinitely diminished,

independently of the mode in which they approach their limits. This is

equivalent to the statement that, corresponding to an arbitrarily assigned

positive number 77, positive numbers h
l , k^ can be determined so that

\ p \

and
cr are each &amp;lt; 77, for all values of h and k such that ! h &amp;lt; h1} \k\&amp;lt;k1

.

In the notation of differentials, denoting /Oo, #&amp;lt;&amp;gt;) by z
, we have

, dz &quot;bz ,

dz =
^~ dx + ^-dy;dxQ dy

l

the expression on the right-hand side being termed the total differential of z
^) O

at the point (x, y\ and _ -
dx, r dy the partial differentials. In accordance

o&o cy^

with the arithmetical theory, this equation can only be regarded as a con

veniently abridged form of the result obtained in the present discussion.

The expression h J- + k ^- may be spoken of as the first differential of
vx^ oyo

f(x, y) at (# , y ), and may be denoted by 8wf.

The theorem obtained may be stated as follows :

That the increment of a function /(#&amp;gt; 2/o) when x
, y are changed into x + h,

7ji~ ( nr 7/1 f^Tiir ?/i

2/o + k may be h *
- y y*f + k J H * + hp + ka, where p, a converge to zero, when

ooc oy

h, k are indefinitely diminished, independently of the mode in which they are

diminished, it is sufficient (1) that
9

/^J/o) ^ 5/^2/o) havg ^finitefinite values,ox dy

and (2) that /(^ + ^, 3/o + ^)-/(^ , y + A:) ^ ^ continuous function of (h, k) at

the point h = 0, k = 0.

It will be observed that no assumption has been made that ~
,

-^ have
ox oy

definite values except at the point (#, y ) itself.
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It follows from the definition that it is necessary for the existence of a total

differential coefficient at (# &amp;gt;

y&amp;lt;&amp;gt;)

that the function be continuous with respect

to (x, y}, at Oo, y )-

df
If it be assumed that ~- has a definite value at (# , ?/), for all values of y

(jOC

in some neighbourhood of y , the condition (2) may be expressed in the form

rlf
that (a), ^-,

for x = x
,
must be a continuous function of y, at y = y ,

and
QOu

that (6), the point h = 0, k = must be a point of uniform convergence of the

f i.- o , Q ,
., , . , .

function t/-^ -^--
f

J
,
considered as a function of h, to its

fi

limit for h ~ 0, with k as a parameter, in accordance with the definition of

such a point of uniform convergence given in 305.

3/
If it be assumed that ~ exists, not merely at the point (x , I/Q),

but at all
OX

points in a sufficiently small two-dimensional neighbourhood of the point,

the conditions contained in the theorem may be simplified. For we have, in

that case,

/Qo + h, y, + k)-f(x ,y + k) _ d
T ~r / \%o T un, y T A ;, .

.

r) i ( IT ?/i
where 6 is such that &amp;lt; 6 &amp;lt; 1

;
and this expression converges to J

OX
f} T i T 77 I

provided
J
-\~--^ be continuous with respect to (x, y) at the point (# , T/O ).
(jOu

It has thus been proved that*, in order that the increment of the function

may be of the form given in the theorem above, it is sufficient (1) that -
, ^ecu c/t/

have definite values at the point (x , ?/ ), and (2) that one at least of these

partial differential coefficients have definite values everywhere in a two-

dimensional neighbourhood of(x , y ), and be continuous at (# , y ), with respect

to the domain (x, y).

?)f ?} f
310. Let it now be assumed that J-

, ^- exist, and are continuous functions
ox dy

with respect to (x, y), at all points of an open domain D. Let Dl be any perfect
domain interior to D; at any point of D

l
we have

a

f(x + /*, y + k) -f(x, y + k) = h
^f(x + 6h, y + k),

where &amp;lt; &amp;lt; 1, and h, k are such that
\h\&amp;lt;%,

k
\

&amp;lt; ;
the number being

so chosen that V2 is less than the distance between the boundaries of

A and A so that the cell (x h,y k\ x + h, y + k) is certainly interior to D.

*
Thomae, Einleitung in die Theorie der bestimmten Integrate, p. 37.
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D
We have also f(x,y + k) -f(x, y)

=
k^f(x. y + ffk\ where &amp;lt; ff &amp;lt; 1.

^f ^f
Since

-^- ^-
are continuous in the perfect domain Dlt they are uniformly

continuous in that domain. Accordingly, a positive number e
(&amp;lt; ) can be

so determined that, if 77 be a prescribed positive number,

and

for all points (x, y), of D1} provided h\, \k\ are both less than e.

The numbers 77, e converge to zero together. We have now the following
theorem :

If the functionf(x, y} have partial differential coefficients that are continuous,
with respect to the plane domain, at all points of an open domain D, then

j v &quot;&amp;gt; y &quot;j j \^t * * 2 JJOX (J1/

where (x, y}, (x + h, y + k} are any points of D; and R, R tend to the limit

zero, uniformly for all points (x, y} of any perfect domain contained in D, as

h, k converge, in any manner, to zero.

EXAMPLES.
1. Let* f(x, y}=,J\xy\, where the positive value of the square root is to be taken.

In this case
^-, ^-

both exist at the point (0, 0), and are both=0. We have

),*) r\kV U
and this has different constant values for different constant values of kjh, and is therefore

discontinuous at the point A=0, k= 0. In this case the equation f(h,k)= hp + Jk&amp;lt;r,
when

p and a- converge to zero with h and k, cannot hold.

2. Lett f(x, ?/)=^sin(4tan- 1
y/.r), for

.r&amp;gt;0; and /(0,y) = 0, for all values of y.

We find =o,
8

/gl)=0) and thus is continuous with respect to y, at

(0, 0). Also, we find ^9 =
4, ^0) =

, and therefore
8/(f 0)

is discontinuous
y vy oy

with regard to x, at (0, 0). The value of /fo*)~/( *)
is sin (4 tan-i^ ,

and this is
h V h)

discontinuous at A = 0, *=0; hence the relation df=^dx+/-dy does not hold at the
c/tt- oy

point (0, 0).

*
Stolz, Grundziige, vol. i, p. 133.

t Harnack s Introduction to the Differential and Integral Calculus, Cathcart s Translation, p. 93.
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HIGHER PARTIAL DIFFERENTIAL COEFFICIENTS.

-i /

311. If the function f(x, y} have the partial differential coefficient it
dx

o /

may happen that, at the point (a? , 3/0),
the function^ possesses a partial dif-

(/#/

ferential coefficient with respect to x. This is denoted by
-/^ ^^ an(j js

d&o

spoken of as the second partial differential coefficient of /(#, y) with respect

to a?, at the point x9 . The second partial differential coefficient
d2/^-

ffo)^
3?/o

2

with respect to y, is denned in a similar manner.

?2M is defined as the limit of \ M^L^ _ a/feiM -

it be
9#o

2 A
I dx dx, )

assumed that * has a definite value. It is not necessary for the

existence of this limit, as a definite number, that 2O_^
l 9)

)
for h^O, should

cteo

have a definite value. When -^sl has limits of indeterminancy

, y ) 8/Qo + A, y )

xi ^ i- o , n ,yn
it may happen that lim y

\

J -i^^ =
Q, and that

A~o I

Hm 1
7

/t ~o

has a definite value.

*^2 /*

Thus, in accordance with the definition of ^, this second partial dif-
GOC

ferential coefficient may exist, as a definite number, at the point (.r , y ), but

not at points in the neighbourhood ;
it is however assumed that exists

ox
at (# , y ).

It may happen that, at the point (a? , y ), the function / has a differential
ox

coefficient with respect to ?/ : this may be denoted bv f^L\ or^^ ^
y
dy.\tej &quot;cyte*

Similarly, when -i-
has, at the point (&, yfl ),

a partial differential coefficient

with respect to
,
this is denoted by o ^ These tial
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differential coefficients are said to be the mixed partial differential coefficients

of the second order at (x , y ), of / (x, y), with respect to x and y, the order of

differentiation being different in the two.

Under certain conditions which will here be investigated, the two mixed

partial differential coefficients of the second order, with respect to x and y,

satisfy the relation

dxdy

which may be regarded as the fundamental theorem for partial differential

coefficients of the second order.

o / 7]-f \ &quot;fft f
The differential coefficient ^ (

-
} ,

or ^ 4 ,
is defined as the partial dif-

osct \f)yj oa,oya

ferential coefficient at (XQ , y ),
with respect to x, of ~

,
it being assumed that

_J_\_^JM ex istS) as a definite number.

THUS - .
ox oy

//
i 7 \ / \ ~&quot;1

\*^0) y$ ~&quot;
&quot;^ /

~~j \^ot 2/0/

d2

f
For the existence of* as a definite number, it being assumed that

) has a definite value, it is not necessary that
8/(^ + h

&amp;gt; 3/o)

^
have a definite value for h 4= 0. ^ ^ may exist as

should

(x, + k, y )
illll y-

-j ^

When the differential coefficient ~. exists, it is equal to the repeated
(jQC OU

limit

, . / ( OCi\ ~T~ fl i Vn I fc )
~~

/ \ *^0 ~T~ w\ Vo /
~~

T \ ^0 &amp;gt; */0 *^ / i / ^0 Vo /hm hm i- ^
O;

Conversely, if this repeated limit has a definite value, and if also

/t~o

&f
exists, then v, exists, and is equal to the repeated limit.

cfcfcOjfe

It is however possible that the repeated limit may exist, and yet that

o j;

may not exist, if the condition that ^- exists be not satisfied.
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For example* let /(*y)-*tt(f)+&(y); where Xl (ar), %2 (y) are non-
differentiable functions of x and y respectively. In this case

df(xa + h, y ) a/(a? 0&amp;gt; y )

&amp;lt;tyo dy
3 2

/
1

do not exist, and thus 5^ does not exist, but
dx dyQ

lim 1im/(g^ -yp JLJ: ).&quot;&quot;/(^
+Ayo)!.-/foo 3/Q + &) +/Oo&amp;gt; ffo)

exists, and is equal to zero.

It would be possible to define~4^
- as the value of this last repeated

limit, when it exists, in which case ^ y y would not necessarily exist. It
tyo

is however more convenient to restrict the definition, as has been done above,

to apply only to the case in which J
y&quot;

.

exists, as a definite number
oy&amp;lt;&amp;gt;

accordingly this definition will be adopted.

It will also be assumed that ^ff
^

exists, only when ^/i^ J )
existsox 2

dx

A. similarly restricted definition of^~ will be employed.
oy d#o

312. Denoting

f(x + h, y, + k) -f(xQ + h, y ) -f((K , y, + k) +f(x , y )

by F(h, k), the condition that - =~{- holds is identical with the con-ox cy oy ox

dition that the two repeated limits of^^^, for /i~0, k~0, should both exist,

and have the same finite, or infinite, value; it being assumed that j- ^ both
oy dx

exist at the point (x0&amp;gt; y ). The necessary and sufficient conditions for the

equality of the two partial differential coefficients may be obtained by applying
the conditions given in either of the theorems in 804, and 306, to the
function F(h, k)/hk. It is however convenient, for application in particular
cases, to possess sufficient conditions relating to the partial differential coeffi
cients in the neighbourhood of the point (ac , y ).

The following theorem will be established:

Tf n \
x

, y

dydx
exists

&amp;gt;

and fimte,.at all points in a plane neighbourhood

(e) of the point (x , y ), except that its existence at the point (x , y ) itself is not

* See Hobson, Proc. Land. Math. Soc. (2), vol. v, p. 235.
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x y
assumed, and if (2), % V. ^s a unique double limit A, at the point (x , 7y ),

which is either finite, or infinite with a fixed sign, and if (3), V&quot; ,

OX

are /mte, Aen Vf(x ny&amp;lt;&amp;gt; ) d\f(x, y ) ^
83/0

&amp;lt;e same

d2f
In particular, the conditions of the theorem are satisfied if ^~ exists

dydx

everywhere, without exception, in a neighbourhood (e) of (x , y ), and is continuous

df
at (#o, y ),

and if ^-
exists at (x , y ).

vi\3C I/}

In the first place, we observe that, as a consequence of (1), \ exists
0&

everywhere in the neighbourhood (e) of (x , y^}; its existence at the point
f} T ( V 7/1

(^o, y ) being assumed, in accordance with (3). Moreover y must be con-

tinuous with respect to y, except possibly at the point (# , y ) itself. It also

follows that f(x, y} is continuous with respect to x, at every point of the

neighbourhood of (#, y ), including the point (x , y ) itself, on account of (3).

Let us suppose that h, k are both positive ;
the other three quadrants may

then be considered separately, in the same manner.

Since
&quot;

,
where &amp;lt; h &amp;lt; e, is continuous with respect to y, in the

(jOO

closed interval y ^ y y + k, where k&amp;lt; e, and since it possesses a differential

coefficient with respect to y, at every interior point of that interval of y, we

have, by the mean value theorem ( 262),

dx dx dydx

where 6 is some number such that &amp;lt; 6 &amp;lt; 1 . The expression on the right-

hand side is, by (2), equal to k [A + a (h, k)], if A be finite, where a (h, k) \&amp;lt;e1 ,

an arbitrarily chosen positive number, provided h, k are each less than some

fixed positive number 77, dependent on e^ In case A = + oo . the corresponding

result is that

df(x + h, y + k) df (x + h, ye)

dx dx

for &amp;lt; h &amp;lt; 77, &amp;lt; k &amp;lt; 77, where ^V is an arbitrary positive number, and 77

depends on JV.

Since the function f(x, y + k) f(x, yn) is a continuous function of x, in

the closed interval (x ,-a; + h), and since it possesses a differential coefficient
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with respect to x, at all points x in that interval, we have, by applying the

mean value theorem,

where # is a number such that &amp;lt; 6 &amp;lt; 1.

From the two results obtained, we have F(h, k)
= A + a (h, k), when A is

finite; where
j

a (h, k)\&amp;lt; 1} provided h, k are both less than 77.

In case A = + oo
, F(h, k) \

&amp;gt; N, if h, k are both less than 77.

The case A = oc can be treated similarly. In either case F(h, k)/hk has

7) f r\ f
the double limit A. Since-, ~- both exist at (x , T/O ),

as finite numbers,
dx dy

^\2 J? ^o j?

it follows that r ^
- ^ both exist, and have the value A.

dx dy dy dxQ

The sufficient conditions in the foregoing theorem are somewhat simpler
than those stated by Schwarz*, who assumed the additional condition that

df(x y)
~ exists, and is finite, for all values of x in the neighbourhood of x = x

,

fyo

for the constant value
?/ , of y.

A somewhat different set of sufficient conditions has been given-f- by
W. H. Young, in the following theorem:

32/
If (1), jHx- exists, and is finite, at all points of the neighbourhood (e) of

oy ox

the point (# , y ), except those points for which x x or y = y ,
its existence on

these straight lines not being assumed, and if (2), these values of ^ have a
y

7\f

unique double limit A (finite, or infinite with fixed sign), and if (3), ^- exists
OuC

on the two straight lines x x ,y = y (l
in the neighbourhood (e) of (x , y ),

in

cluding that point itself, and is continuous with respect to y, when y = y , x=^x ,

?\f
and if (4),

*- exists when y = y ,for all values of x in the neighbourhood (e) of

d-f(r y ) d
2 f(x n }

x
, including x itself, then ^^ y

,

J
.

v yo/
- both exist, and have the

dx dy dy dx
value A.

Only a slight modification of the proof of the last theorem is required in

order to prove this theorem.

*
GesammelteAbh., vol. n, p. 275 ; see also Peauo, Mathcsis, vol. x, p. 153, and also Stolz, Gritnd-

zilge d. Diff. Rech., vol. i, p. 147.

t Proc. R.S.E., vol. xxix, p. 136.

H. 26
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rlf
From (1) it follows that ~ exists, and is a continuous function of y, when

x ^ x
o&amp;gt; y =1=2/0 ; this, combined with (3), shews that ~ exists everywhere in the

ox

neighbourhood (e) of (x , y ),
and that it is everywhere continuous with respect

to y, except possibly at the point (* , y ). It follows that f(x, y) is everywhere
continuous with respect to x. The proof then proceeds as before.

313. If =---
,

^4rJ-^
Aaw fotaZ differentials* at the point (x , y ),

then

po. 3/o) 92

/(^ , yB)

In accordance with the condition stated, the two functions
,

are
ox oy

continuous with respect to (x, y) at the point (x , y ),
and they accordingly

exist in a neighbourhood of (, y ).
Hence f(x, y} is continuous both with

respect to x, and with respect to y. We have

, yc ) + p +

where p |,
j

a converge to zero as h, k do so in any manner.

We have

F(h, k) = {f(x + h, 2/ + k) -f(x + h, y,}}
-
[f(x , 2/ + k) -/(x,, y )}

+ eh, y )_
( dx dx

where is such that &amp;lt; 6 &amp;lt; 1. From this, we see that

:
F (h, ^ = h is hm*^. + km^ *) +gh .

+^
( dx 2

dy dx

_ eh ._&amp;lt;
.

3^ 2

J

where
j p [,

I o-
J, j p&quot; converge to zero, as h ~ 0, k ~ 0.

We now have

F(h,k) Vfte,y,) A
,

7t /7 .

TT
=

^ ^ + u j p + & v
-j- p ,hk 9?/o ox k r k r

hence, if h and k converge to zero in any manner such that hjk is greater than
^2 ( \

a fixed positive number e, F (h, k)/hk converges to - -L^J^L
, Similarly, it

dy ox

d 2f(x y }
can be shewn that F (h. k)/hk converges to ;

-&quot;
0/

,
if h and k converge to

ox
c/2/o

zero so that k/h &amp;gt; e.

* See W. H. Young, loc. cit.
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By letting h and k converge to zero, so that both h/k and k/h are &amp;gt; e, we

esee - ----
.

ox dy dy ox

It has been shewn, in 309, that the conditions of the above theorem are

satisfied if the four partial differential coefficients of the second order all exist

fff -ftf
at the point (a? , y ), and if ^ , ^-

exist in a neighbourhood of that point

and are continuous with respect to (x, y), at the point (a?0&amp;gt; y). The following
theorem has thus been proved :

If the four partial differential coefficients off(x, y) exist at the point (x , y),
92/ 32/and

*f?a* dy
2
exist a neighbourhood of (x , y \ and are continuous relative

to (x, y}, at the point x
, y , then

df^ ^ = 8
V&amp;gt;o. .Vo)

x y tyo 3^o

314. The partial differential coefficients of higher order n of a function

/(*, y) are of the form^^^-^^ ,
where p, ft r. ... I are positive

integers, including zero, such that p + q +r+ ... + l = n. Here, / is first

differentiated / times with respect to y, then k times with respect to x, and
so on. The total number of possible partial differential coefficients of order
n is 2n

;
the number of those in which r differentiations with respect to x,

and n - r with respect to y are involved is -- -
r ! (n r) !

Sufficient conditions for the existence of all the partial differential coefficients
of order n may be obtained by extending the theorem of 311, which refers to
the case n = 2. The following criteria*, which can be proved by induction,
will be sufficient for the purpose :

// the n-1 differential coefficients
- f

, ~^r- -^ have^ n- 2 -

definite finite values for all points in a two-dimensional neighbourhood of the

point (#, y )&amp;gt;

und are continuous at the point (a? , y ), with respect to (x, y), then
all the other mixed partial differential coefficients of order n exist at the point
(#o&amp;gt; y&amp;lt;&amp;gt;);

and each one of them has the same value at the point as that one of
those given above in which the same number of differentiations with respect to x,
and luith respect to y, occurs, as in the one considered.

EXAMPLE.

Lett the function f (x, y) be denned by f (x, y} = xy
X

^&amp;gt;~,

for all values of x and y

except when x= 0, y = ; for which / (0, 0) = 0. At the point (0, 0), the partial differential
^o j? ~\2

coefficients -njL, both exist, and have different finite values.

*
See Stolz, Grundzilpe, vol. i, p. 153. f Peano, Calc. Di/., p. 174.

262
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The function /(#, y] is continuous at the point (0, 0) ; for, writing x=rcosd, ?/
= rsin 6,

the function becomes j?*
2 sin 49; and this is numerically less than e, provided r&amp;lt; 2^/f-

We find
^= y +

2
at a &quot;y P int except ( 0); at which P int

3/ . .. /(a?, 0)-/(0, 0)
^- is hm t-*-2 ^ v

-

,
which is = 0.

ox x=0 x

The value of is -y, and that of ^5 0)
is x.

. ,
.

,

-
The value of ( V ^

,
as also that of . J ,

is 9 % n + .-s =y
,,J ,

at every- 2z 22
point except (0, 0). This value is cos 20 (1 -f 2 sin2

20), which is constant for a constant

value of 0, but has different values for different values of 6
;
and thus the partial differential

coefficients are discontinuous at the point (0, 0). The conditions of the theorem giving

sufficient conditions for the equality of i- and - - are therefore not satisfied for the
Gxoy oyox

point (0, 0).

315. Let
&amp;lt;/&amp;gt;(A)

be a function of h, such that
&amp;lt;(0)

= 0, and such that

in an open neighbourhood of the point h = 0, the first n 1 differential co

efficients of $ (h) all exist, and all have the value zero at h = 0.

We have then, from the theorem of 263,

hn nh^~l n(n-l)h 2
n~l nlh,^

where &amp;lt;

|

/in_j &amp;lt;

\

hn_2
1

&amp;lt; . . . &amp;lt;

|

A x &amp;lt;\h\.

Now let (f)(h)=F(h, x, y}\ and let us assume that, for all points (x, y)
in a given open plane domain D, and for all values of h in a given open

neighbourhood of h = 0, the first n 1 partial differential coefficients of

F (h, x, y) with respect to h exist, and are all zero, when h =
;
and also

that F (0, x, y}
= 0. We have then

F(h,x,y) = 1 dn

where A,l_ 1 is such that &amp;lt; /in_j I
&amp;lt; h

;
the value of An_j depending on the

values of h, x, and y.

If oLn-f have partial differential coefficients with respect to

h, x, y, that are continuous in the open domain for which (x, y} is in D, and

h in the given open interval, then, employing the theorem of 310, as ex-
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tended to the case of a function of the three variables h, x, y, we see that

_ ,,
dhn

where & converges to zero, as hn^ converges to zero, uniformly for all points

{x, y) in a perfect domain A, contained in D, and for all points hn_, that

correspond to a point h in a closed neighbourhood of h = 0, interior to the

given open neighbourhood.

Therefore, if h be sufficiently small, and h ^ h, we have

nl dh ) h= o

for all points (x, y) in A-

Now let

F(h, x, y} =f(x + h, y) -f(x, y}

, y) V
&amp;lt;?f(x, y) _ h&quot;^

dn
~l

f(x, y) .

~8^ 2!

this satisfies the conditions that F and its first n-l differential coefficients

with respect to h all vanish when h = ;
we have therefore, provided f(x, y}

and its partial differential coefficients of the first n orders are continuous

where R converges to zero, as h ~ 0, uniformly for all points (x, y} in the

perfect domain A ,
interior to D.

Similarly, we find that

^where R&quot; converges to zero, as k ~ 0, uniformly in A-

In the first of these equations, we can write y + k for y, where k is so

small that O, y + k) is interior to D, for all points (x, y\ of A- We have then

f(x + h, y + k) -f(x,y + k)

(&amp;lt;c, y + k) h Vf(x, y + *V
, .

&quot; ~~ + &quot; ~~

where R &quot;

converges to 0, as h ~ 0, uniformly in D } ,
and uniformly with

respect to k, for all values which do not numerically exceed a fixed number.

Since all the partial differential coefficients of the first orders are con

tinuous in D, we have, provided j

h
\

,
\

k
\

are so small that, when (x, y) is in

D lf the points (x + h, y + k) are all interior to D,

Qc. y) d^f(x, y) k-r
tt*f(x, y)

~r - -

where Rr converges uniformly to zero, as k ~ 0.
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Substituting this expression, for r = 1, 2, 3, ... n, in the expression for

f(x + h,y + k) f(x, y + k), and adding the expression for

/(, y +*)-/(*, y);

we obtain the formula

n!

where R = anl h
n + an2h

n- J k + ... + ann k
n

;
and o?ll , n2 ,

... ann all converge to

zero, as h, k converge in any manner to zero, uniformly for all points (x, y}
of the perfect domain Dlt interior to D.

+&quot;-] /&quot;is
used to denote

oy/
J

^Lf+^-n^L^ .*(*-!) ,,_,,. ay ..ay

That J
n_r

=
n_^ r

follows from the condition of the continuity of

the partial differential coefficients of the first n orders of the domain D.

That this is the case is verified by the fact that the expansion obtained

above may also be found by exchanging the parts which x and y play in the

process by which the expression was obtained.

It has thus been shewn that :

If f(x, y), and all its first n partial differential coefficients with respect to

x and y are continuous in an open domain D, of (x, y}, thenfor any pair of

points (x + A, y + k), (x, y}, in D,

where R = amhn + an2h
n- 1k + ... + omi&

M
; and ani ,

an2 , ... ann converge to zero,

as h, k converge in any manner to
zero&amp;gt; uniformly for all points (x, y) in a

perfect domain interior to D.

This theorem is the generalization of that of 310, which corresponds to

the case n = l.

The expression
(h-^-

+ k=-
j
f(x, y) is called the rth differential of/O, y\
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and may be denoted by B {r}

f(x, y); the theorem may then be written in

the form

f(x + h,y + k) -f(x, y)

, y) + /(, y) + ...

If (#, y) be a fixed point (#&amp;gt; y ), and

f(x + h, y

where # has the form and properties given above, the function f(x, y} is

said to possess an wth total differential at the point (x , y }. In accordance

with the above theorem this nth total differential certainly exists in case there

exists a plane neighbourhood of (x , y ) in which all the partial differential

coefficients of the first n orders exist, and are continuous. But, as has been

shewn in 309, for the case n =
1, less stringent conditions than these are

sufficient to ensure the existence of the nth total differential at the point

(x , y ). It has been shewn* by W. H. Young that, if/(#, y) have an

(n l)th total differential at (x ,
/&amp;lt;)&amp;gt;

while the partial differential coefficients

of order n 1 all exist, and are independent of the order of differentiation,

in a closed neighbourhood of the point (x , y ),
and further, if they all have

first differentials at that point, then the function has an nth total differential

at (x , y ),
so that the above expansion theorem holds for the number n.

FUNCTIONS DEFINED IMPLICITLY.

316. A function y, of the variable x, is said to be defined implicitly when

there is given a functional relation between the variables of the form F(x, y) = 0;

provided that this relation suffices to determine uniquely, in some domain of x,

the corresponding values of y.

The first general theorem as to the existence of the function y = &amp;lt;f&amp;gt;
(x),

determined implicitly by a relation F (x, y)
= 0, was given by Cauchy, for the

case in which F (x, y) can, in a neighbourhood of a fixed point (or, /3) at which

F (a, /3)
= 0, be represented by a convergent series proceeding by powers of

x -
a, y

-
/3.

The theorem was freed by Dinif from the restriction that F (x, y} must be

analytic, and his theorem may be stated as follows :

rlF

If F(x, y) is continuous in a neighbourhood of the point (a, /3), and if
û

exists, and is continuous in this neighbourhood, and does not vanish at the point

(a, /8); then, corresponding to a sufficiently small positive number 8, another

such number e can be so determined that, to each value of x in the open

*
Proc. Lond. Math. Soc. (2), vol. vn, p. 171. t Analyst inftnitesimale, vol. i, p. 162.
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interval (a. e, a + e), there corresponds a unique value of y in the open interval

(/3 S, ft + 8), so that these corresponding values of x and y satisfy the

condition F (x, y}
= 0. The function y = &amp;lt;f&amp;gt;

(x), so determined, is continuous in

the open interval (a e, a + e). Moreover, if the further condition is satisfied

?} Tf

that ^- exists, and is continuous, in the neighbourhood of (a, ft), the function
(jCu

&amp;lt;f&amp;gt; (x) has a continuous differential coefficient in the open interval (a e, a + e).

r&amp;gt;W

Since TT- is continuous in a neighbourhood of (a, ft), and does not vanish
y

at that point, a positive number h can be so determined that, if

a h&amp;lt; x&amp;lt; a + h, ft h&amp;lt;y&amp;lt;ft
+ h,

?lF

-^-
does not vanish at (x, y}, and has the same sign as at (a, ft). Let it be

y

assumed that the sign is positive. The number h can be so chosen that the

closed neighbourhood (h} of the point (a, ft) is interior to the neighbourhood
&quot;dF

in which F and -

7
-- are continuous.
ty

r^W
Since

^-
is positive forft h&amp;lt;y&amp;lt;ft

+ h, x = a, and F(x, y) vanishes when

x = a, y = ft, F(a, y} must be negative for ft h y &amp;lt; 0, and it is positive for

&amp;lt; y ft + h. Since F (a, /3 h} is negative, a positive number ^ (^ h) can

be so determined that F (x, ft h) &amp;lt; 0, for a. l\&amp;lt;xx. + k
l . Similarly, a

positive number kz (^ h) can be so determined that F(x, ft + h) &amp;gt; 0, for

a k2 &amp;lt; x &amp;lt; a + k2 . If A; be the smaller of the two numbers k1} kz , we see that,

for a - k &amp;lt; x &amp;lt; a + k, F(x, ft + h)&amp;gt;0, and F (x, ft
-

h) &amp;lt; 0.

riff

Since &amp;gt; 0, for ot k &amp;lt; x &amp;lt; a + k, there must be one value of y. and only

one, such that y ft &amp;lt; h, at which F(x,y) vanishes, for each value of x

such that x a &amp;lt; k. Thus the function y = &amp;lt; (a?) is determined for

j

x a &amp;lt;k. When h and k have been determined, we may take 8 ^ h; then a

value of e ^ k can be determined, corresponding to 8.

?&amp;gt;F ?)F
If ^- , TT- are both continuous, when x a.

\
h I y 8 k , where h &amp;lt; h

ox oy
k &amp;lt; k, the difference &F of the values of the function F at any two points

(x + A#, y + Ay), (x, y} in that neighbourhood, of (a, ft), is given by

A# + NT- + cr Ay,
\oy J

where p, a are continuous functions that converge to zero, as A, Ay dp so,

uniformly for all the points (x, y).

When y = &amp;lt;f&amp;gt;
(x), y + Ay =

&amp;lt; (x + A#), we have &.F =
;
thus

Ay _ ftF
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and the expression on the right-hand side converges uniformly to

_dF/w
dxf dy

Thus the differential coefficient
&amp;lt;f&amp;gt;

(#) exists, and is continuous in the open
interval a k &amp;lt; x &amp;lt; a + k.

In case the function F (x, y) has the form f(y) x, we have the case in

which the function &amp;lt; (x} is determined as the inverse of the function x =f(y).
The theorem then takes the following form :

Iff(y} and its differential coefficient/ (y) are continuous in a neighbourhood

f y = @&amp;gt;
and iff (y) does not vanish when y = @, then, corresponding to a

sufficiently small positive number 8, another such number e can be so determined

that, to each value of x in the open interval (a e, a + e), there corresponds a

unique value of y in the open interval (J3
-

8, @ + 8), such that the corresponding
values of x and y satisfy the relation x=f(y). The function y = &amp;lt;f)(x),

so

determined, is continuous, and has a continuous differential coefficient in the

open interval (a e, a + e).

317. With a view to the extension of the general theorem of 316, the

following lemmas* will be required :

Iff(xl ,
xz ,

... xp } is continuous in an open p-dimensional set 0, and is either

(1) positive, or (2) different from zero, at every point of a closed set G contained

in 0, then a neighbourhood of G, open or closed, can be so determined that

the function has the same property (1), or (2), in this neighbourhood, as in G itself.

Let K be a closed set that contains G, and is contained in 0. Those points
of K (if any) for which, in case (1), /^ 0, or in case (2),/= 0, form a closed

set K; this follows from the continuity of/ The two closed sets G, K have no

point in common, arid therefore a neighbourhood of G can be determined (see

113) so as to contain no points of K
,
this neighbourhood can also be so

determined as to be interior to K, and therefore to 0. In this neighbourhood
the condition (1), or (2), is satisfied.

If f(xlt xz , ... ^p) is continuous in an open set 0, and if it have the value

zero at all points of a closed set G, interior to 0, a neighbourhood of G can be

determined, interior to 0, such that at every point of that neighbourhood

|/(a?l, afe,...3Sp)|

is less than an assigned positive number e.

Let a closed neighbourhood H, of G, be determined, that is contained

in 0. The points of H (if any) at which |/| ^ e form a closed set L, which has

no points in common with G. Determine a neighbourhood of G that contains

no points of L, and is interior to H. At every point of this neighbourhood
the condition j/| &amp;lt; e is satisfied, and it is interior to H, and therefore to 0.

* These lemmas were established by Bolza, see Vorlesunyen ttber Variation*prinzip,pp. 155-158.

The proofs in the text were given by Hobson, Proc. Land. Math. Soc. (2), vol. xiv, p. 151.
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318. Let us now suppose that x, in F (x, y), denotes a point (xl ,
x2 ,

. . . xm)

of an m-dimensional set, and further that F(x, y} involves p parameters

GI, c2 ,
... cp . We may then state the following generalization of the theorem

of 316.

Let c1} c2 ,
... Cp have the systems of values corresponding to points in a

p-dimensional open domain Xp ,
and let the m + 1 variables xl ,

x2 ,
. . . xm , y have

the systems of values representing the points in an (m + \}-dimensional open

domain Dm+^; the p + m + 1 variables having accordingly the systems of values

representing the points in an open domain Dp+m+l . Let F(xl} x2 ,...xm , y,

Cj, c2 ,
... Cp) be defined for all points in Dp+m+l ,-and be such as to satisfy the

following conditions :

7)F
(1) F is continuous, and -

exists, and is continuous in Dp+m+l .

(2) At a fixed point (a1? 2 ,
... ctm , 0) in Dm+i, F has the value zero, and

rlF

^ ^0,/or all points (clt c2 ,
... cp) in Xp .

If 8 be an arbitrarily chosen positive number sufficiently small, another such

number e can be determined, such that, to each value of y for which
\ y ft \

&amp;lt; 8,

there corresponds one and only one set of values of (xl ,
x2 ,

...xm), for which

xr ar \
&amp;lt; e, for r 1, 2, 3, ... m, and for each point of any given closed

domain Xp interior to Xp ; and these values of x
j ,
x2 ,

... xm , y are such

that F(xlf xz ,
... xm , y; clt C2 ,

... Cp)
= 0. Thus a unique function

?/
=

&amp;lt;(#!, #2, xm\ cl} c2 , ...Cp)
is determined.

., dF dF dF , dF dF dF .. .

Moreover, if -= . = . ... =
,
and -^ ,

.- .... -= all exist, and are con-
9ar, dx2 dxm dcl dc.2 ocp

tinuousin Dp+m+l ,
the function (f&amp;gt;

has continuous partial differential coefficients

with respect to the m + p variables x1} x2 ,
... xm ,

clr c2 , ... cp .

The proof is similar to that in 316, but it is necessary to employ the

lemmas in 317.

The function F (xl ,
x2 ,

... xm , y; Cj,,c2 ,
... cp] has the value zero, when

*
i
=

i, v* = 2 , #m = , y = @,
rlF

whatever set of values c1; c2 ,
... cp may have in Xp . Since x is, for the same

sets of values, always different from zero, and is continuous in Xp ,
it has

everywhere the same sign in Xp ;
let it be assumed that that sign is positive.

A neighbourhood (h) of the set of points (a1( a2 am, @ ,
C1? c.2 ,

... c^), where

c1; c2 ,
. . . cp is in Xp ,

a closed set interior to Xp ,
can be so determined that, for all

o ri

points in that neighbourhood, ^
is positive. Thus for ,

ar - h &amp;lt; xr &amp;lt; ar + h, (r = 1, 2, 3, ... m), /3 h&amp;lt;y&amp;lt;/3
+ h, (cj , c2 ,

. . . cp ) in Xp)
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o rr o rr

;r is positive. If #,, #2 ,
. .. #m have the values c^, 2 ,

... om ,
since =- &amp;gt; 0, as y

oy oy
is increased from /3 h to ft -f A, ^ is increased, and therefore, since it is zero

when y = ft, it must be negative when ft h y &amp;lt; ft, and it must be positive

when ft &amp;lt;y&amp;lt;ft
+ h. This holds for every point of Xp .

A neighbourhood of the (m + p) dimensional set of points

(! , 2 ,
. . ttm , GI ,

C2 ,
. . . Cp)

at which, fory = ft h, F is negative, can be so determined that Fis negative
in that neighbourhood. Thus, for a properly chosen positive number &x (^ h),

f \x ,
x2 ,

. . . Xrm p li
5 Cj ,

C2 ,
. . . c^j &amp;lt;C U

for orr A- j &amp;lt; #r &amp;lt; ar + ^ , (r = 1, 2, 3, ... m).

Similarly, a positive number &2 (= A) can be so determined that

F(x1 ,
x.2 ,

... xm , ft + h
; d, C2 ,

. . . Cp) &amp;gt;

for ar ^2 &amp;lt; r &amp;lt; ar + kz , (r
=

1, 2, 3, ... ??^).

If & be the smaller of the two numbers k^, k2 , we see that, for

or, k &amp;lt; xr &amp;lt; &amp;lt;xr + k. (r = 1, 2, 3, ... m),

F is negative when y = ft h, and positive when y = ft + h
;
whatever point

riF

(d, c2 ,
...

c^,) may be of Xp . Since ^- &amp;gt; 0, for all points such that
tJ

OT k &amp;lt; xr &amp;lt; ar + k, (r
= 1, 2, ... m), ft h&amp;lt;y&amp;lt;ft

+ h, (c1} c.2 , ... c^) in Xp ,

we see that, for each point of Xp there is one point y, and only one, such that

| y ft
|

&amp;lt; h, at which F vanishes, for each set of values of x1} x2 ,
... xm . Thus

a function y = &amp;lt;j&amp;gt;(x
1 ,
x2 ,

... acm ;
c1; c2 ,

... cp) is determined, for

xr a
\

&amp;lt; k, (r = 1, 2, . . . m),

and (GJ, c2 ,
... cp) in Xp ,

such that F vanishes when y has the value of $.

The difference of the values of F at two points

(#!+#!, #2 + A#2 ,
... a;m + Aa?,n , 2/ + A?/; d + Acj, c2 + Ac2 ,

...

is given by

where all the m+p+1 letters crr , p, rr denote continuous functions that

converge to zero, uniformly for all values of the variables in the closed set

Dm+p+1 interior to Dm+p+1 .

When y = $(x^xz ,...xm ; c^Cg, ...Cp)

and
?/ + Ay = &amp;lt;/&amp;gt;(!+ A^CI, a;2 + A^2 , ...; Cj+ Ac1} c2 + Ac2 , ...),
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we have &F= 0. Thus if Ac 1; Ac2 ,
... Acp all vanish, and

Aa?!, A#2 ,
... Aav^, Aa?r+1 ,

... A#m
also vanish, we have

and since
o&amp;gt;, p converge uniformly to zero, we have

In a similar manner, we see that

80 = _aF jdF
dcr dcr/ dy

Thus the second part of the theorem has been established.

319. The theorem of 318 may be extended to the case in which y is

replaced by n variables 3/1,3/2, yn ,
and there are now n functions Flt F2 ,

. . . Fn

which involve the in +n+p variables. The theorem then takes the following

form :

Let d, c2 , ...cp have the system of values corresponding to points in a

p-dimensional open domain Xp ,
and let (xl ,

x2 ,
... xm , yl , y2 ,

... yn) have the

system of values corresponding to the points in an (in + n)-dimensional open

domain Dm+n ; the m + n + p variables having accordingly the values repre

sented by points in an open domain Dm+n+p . Let n functions

FT(XI, a, m, 2/i 2/2, yn , Ci, c2 ,
... Cp), (r

= 1, 2, 3, ... ?i)

be defined for all points in Dm+n+p ,
and be such as to satisfy the following

conditions :

(1) The functions Fr are continuous, and all the functions

exist, and are continuous, in Dm+n+p .

(2) At a fixed point (i, a2 ,
... am , /315 @2 ,

... /3n )
in Dm+n ,

all the r

functions vanish, and the Jacobian

d(F1 ,F,,...Fn)

3(2/1,2/2. yn)

has a value which is not zero, for all points (clt ... cp ) in Xp .

If 8 be an arbitrarily chosen positive number, sufficiently small, another

such number e can be so determined that, to each set of values of ylt y2 ,
... yn

for which
\ yr @r

\

&amp;lt; 8, (r = 1, 2, 3, ... n), there corresponds one, and only one,

set of values of xl ,
x2 ,

... x^for which xr o^
j

&amp;lt; e, (r
= 1, 2, . . . m), for each set

of values of (clt c.2 ,
... cp) in a closed domain Xp ,

interior to Xp ; and these
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values of a; and y are such that the n functions Fr are all zero. Thus unique

functions yr = 4&amp;gt;r(i,
xz, %m\ C-L, C2 ,

...
Cp), (r= 1, 2, 3, ... n) are determined.

MT f^ff oFr .
,

~

Moreover, it ^ , ^r exist, forJ dxs .dct

r = l, 2, ... n; s= 1, 2, 3, ... m; t=l, 2, 3, ...p,

and are continuous in Dm+n+p ,
the functions (f)r are all continuous and have

continuous partial differential coefficients with respect to the m + p variables.

The theorem of 318 is the particular case of this theorem which arises

when n = 1. Assume that the theorem holds when n = v 1
;

it will then be

shewn to hold when n = v, and thus it will hold generally.

* T, f T d (Flt F2 ,
... Fv )

As before, if -~=- -
&amp;gt; 0,

3(2/1,2/2, ... yv)

where xr = ar . (r
=

1, 2, ... TO), yr ^ r , (
r = 1, 2, 3, ... v),

for all points (a1 ,
a2 ,

... ap} in Xp ,
there exists a positive number h, such that

the same inequality holds, provided xr ar &amp;lt; h,
j yr /3r &amp;lt; h, for all points of

Xp a closed domain contained in Xp .

At a point at which the Jacobian is not zero it is impossible that all the

partial differential coefficients
, ^-

,
. . . can vanish. Choosing a number

fyi dy-2 ty,

h
(&amp;lt; h), at each point of the closed domain E given by

\yr -/3r \h\(r=I &amp;gt; 2,3,... v ),

\

vr &amp;lt;*r
|

= h
, (r = 1,2,... TO), and (c1} c2 ,

. . . cp)

in Xp , one at least of the above partial differential coefficients is different

from zero. For any point of the closed set E, a closed neighbourhood of the

point can be determined, in the whole of which one and the same differential

coefficient is different from zero. By employing the Heine-Borel theorem,
we see that a finite number of the cells that constitute these neighbour
hoods exists, such that each point of E is interior to one at least of the
cells of this finite set. We obtain in this manner a division of the set E
into a finite number of parts, such that, in each part, one of the differential

r) P1 T^W 7)W
coefficients -- ,.-,...-- is different from zero in the whole of that part.

Oyi oy-2 vJv
rtf

1

Let us assume that, in one of these parts,
-

&amp;gt;0,
and that this part contains

the points (a1; oa ,
. . . am , &, &,...,,; cl5 c2 ,

. . . cp) injts interior, provided that

(GJ, c.2 ,...Cp) belongs to a certain closed part of Xp which we may denote

by -Y/.

We now consider F^, x2 ,
... xm , ylt y2,...yv ; Cl , c2 ,

... cp ) as a function
of xlt x2 ,

...xm , yly and of the parameters y^ y3 , ...yv , d, C2 ,
... cp . Applying

now the theorem of 317, we see that positive numbers h lf ^ (^ h
) can be so

determined that one and only one value of y^ exists, such that yl & ! &amp;lt; h
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corresponding to each set of values of #n x2) ... xm such that xr a,. &amp;lt;klt

(r = 1, 2, 3, ... m), and provided (3/2, ys , ... y,, c1; ca ,
... fy) is in a certain closed

domain of v + p 1 dimensions. This value of y1 may be denoted by

2/i =/i (#1, #2 , #, 2/2, 2/3. 2^; GI, c2 , ...
c_p).

On substitution of this value of yl
in the equations

F2 =0,F3
= Q,...FV =0,

we obtain a set of v 1 equations which may be denoted by

&amp;lt;/&amp;gt;r
(#1, a?2 , m

2/2&amp;gt; 2/3,
. . y, ; c1; c2 ,

. . . Cp)
= 0,

where r = 2, 3, . .. i&amp;gt;. These hold when
j

xr ar &amp;lt; kl} and provided

(y*,ya, .-y*\ GI, c2 ,
... cp)

is in the specified domain. Assuming the theorem to hold for nv\
y we

see that there exist values of y2 , ys ,
... y v , given by equations

2/r
=

&amp;lt;rOi&amp;gt; a, ... xm \
cn c.2) ...cp) (r

=
2, 3, ... v),

and that these values are unique for every set of values of

#n 2 ,
... ,, GI, C2 ,

... cp ,
such that

j

xr
- ar

\

&amp;lt; k.2 (r = 1, 2, ...
?ra),

and such that (d, c2 ,
... cp ) is in J\TP ;

where k2 is some positive number. The
values of y2 , y3 , ...yv are such that

| yr @r &amp;lt; h3 , some fixed positive number
;

this must be so small that the points (y2 , ys ,
... yv , c1} c2 , ... cp) are all in the

specified closed domain. This holds, subject to the condition that

8 (&L&LllI_i) 4, Q
9(y2 , y, &quot;-yv }

at the points (a,, a2 ,
... am , /32 , ^3 ,

... /3r ;
c1; c2 ,

...
Cp),

where (c1} c2 , . . . cp) is in JT/.

The function /a has continuous partial differential coefficients with respect
to all the variables contained in it. Thus

, .,
^ =

^ / ^ , (r = 2, 6, . . . v)
dyr dyr l dy,

df,
SL?&quot;dxs

df,

df, dF, /dF, .

SL?&quot;-sr./sr(*-li 2
&amp;gt;--

dxs tixj dy,

On substituting the values of the partial differential coefficients in the

Jacobian, we obtain, after a slight transformation,
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and thus the condition is that

F2 ,
Fv) ,

at the points (j, 2 ,
... am , &, @2 ,

... /?; c1} c2 ,
... cp), where (c1} c2 , ... cp) is

in

It has now been shewn that there is a unique value of yn such that

2/i~A !

&amp;lt;
hi&amp;gt;

f r each set of values of y2 , y3 ,
... y v ,

xl} x2 ,
... xm , c1} c2 , ... cp ,

such that (y2 , ys ,
... y v ,d, c2 ,

... cp) is in a certain closed domain which includes

a set of points for which

2/2
= &, 2/3

=
/33 ,

... yv
=

/:? ;
and that

|

xr ar &amp;lt; k^

It has also been shewn that a unique set of values of y2 , y3 ,
... yv , such that

I yr ftr &amp;lt; h2 , (r
=

2, 3, ... i/) can then be determined for each set of values of

(x-i, x2 ,
... xm , d, c2 , ... cp ) such that xr ar

\

&amp;lt; k2 and that (d, c2 , ... cp) is in

-fiT/.
We can choose any value of h lt or of A2 , smaller than the value fixed

;

then &j and k2 will in general have to be diminished. By altering the value

of one of the numbers h lt h.2 we may make them have equal values, say h;
and for k we then take the smaller of the corresponding values kl} k2 . It now

appears tha-t there exists a unique set of values of
2/1,2/2, 2/K, such that

yr @r I &amp;lt; h, (r
= 1, 2, . . . v}, corresponding to each point

such that
j

xr
- ar &amp;lt; k, (r = 1, 2, ... m), and that (d, c2 ,

. . . cp) is in Xp .

As every point of Xp is in one or more of a finite number of such sets as

Xp , corresponding to each of which one of the partial differential coefficients

df\ .

^
is different from zero for the whole of that set, the above reasoning may

be applied to each such set Xp .

We have, in each case, a pair of positive numbers A, k, determined as

above
;
moreover we may take, instead of h, any number less than h

;
k being

correspondingly diminished. If we take for 8 the smallest of the numbers h,

it is clear that a corresponding number e may be determined so that & and e

can be used, instead of h, k, for all the parts of Xp . It has thus been shewn
that the theorem holds in the case n = v, if it is assumed to hold in the case
n = v-l. The theorem was proved in 318, for the case n = 1

;
and therefore

it holds generally.

It is easy to see that the above general theorem may be modified so as to

apply to the establishment of unique values of yl} y2 , ...yn which satisfy the
n equations

Fr &amp;lt;X, ar,, . . . xm ,2/1,2/2,... yn ; c, ,
c2 ,

. . . cp) =/, (d, Cj, . . . cp),

where the functions ft (clt c2 ,...cp) satisfy the conditions that they have
continuous partial differential coefficients in the domain Xp ;

the functions Fr

are to satisfy the same conditions as before.
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We have, in fact, only to consider the functions Fr fr ,
instead of the

functions Fr . It is then assumed, as before, that Fr fr
= 0, when

xr = ar , yr
=

(3r ,
for all values of (c1} c2 ,

... cp} in Xp .

An important case of the general theorem is that in which n = m, and in

which Fr is of the form $ r (y lt y2 ,
... yn ;

clt c2 ,
. . . cp) xr . We have then an

extension of the theorem of inversion.

The case of the general theorem which arises when d, c2 ,
... cp are absent

is the well known theorem of Dini relating to implicit functions*.

MAXIMA AND MINIMA OF A FUNCTION OF TWO VARIABLES.

320. Let us suppose that a function /(#, y) is defined at all points in a

two-dimensional neighbourhood of the point (# , y ).

If the function be such that/(a- + h, y + k) f(x , y ) &amp;lt; 0, for all values

of h, k which are riot both zero, and are such that
|

h
|, \k\ are both less than

some fixed positive number 8, then the function /(#, y) is said to have a proper

maximum at the point (x , y ).

In case the fixed number 8 can only be so determined that the condition

f(x +h,y + k)f(x ,y )^Q is satisfied, the function is said to have an

improper maximum at the point (#, y ).

If the conditions contained in these definitions be replaced by

/0o + h, y, + k} - /Oo, 2/ ) &amp;gt; 0, and f(x + h, y + k)
-
f(x0) y,} ^

respectively, the function f(x, y} is said to have, in the first case, a proper

minimum, and in the second case, an improper minimum, at the point

0*o, y \

A proper or improper maximum or minimum may be spoken of as an

extreme of the function.

At an extreme (x , y ),
/(#&amp;lt;&amp;gt;

+ /*, 2/o) -/0o, 2/o), f(x -h, y )-/0o, y }

both have the same sign, or are zero, for all sufficiently small values of h; it

follows that, if -

exist, it must be zero. A similar remark applies
OX

These conditions are necessary, under the hypothesis of the existence of

the two partial differential coefficients, but not sufficient, for the existence

of an extreme at the point (XQ , y ).

* See Jordan s Cours d Analyse, vol. i, 91, 92 ; also Osgood s Lehrbuch der Funktionentheorie,

vol. i, pp. 47-57. On the general theory of functions denned implicitly, see W. H. Young, Proc.

Land. Math. Soc. (2), vol. vn, p. 397; Hobson, Proc. Lond. Math. Soc. (2), vol. xiv, p. 147, and

Hedrick and Westfall, Bull, de la soc. math, de France, vol. XLIV, p. 1.
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If we write x = x + r cos 6, y = y + r sin 0,f(x, y) = &amp;lt;f&amp;gt; (r, 6), it is clearly

necessary for the existence of an extreme of f(x, y} at (x , y ), that
(f&amp;gt;(r, 6], for

each constant value of 0, should have an extreme at r = 0. Thus, for an assigned
value of 6, a positive number ag can be determined, such that one of the four

conditions (r, 0) -/(*, 2/o) &amp;lt; 0,
&amp;lt;f&amp;gt;

(r, 6} -f(x , y,} ^ 0, (r, 6)-f(x , y ) &amp;gt; 0,

(f) (r, 6) f (x0j y (} ) ^ 0, according as the point is a proper maximum, an

improper maximum, a proper minimum, or an improper minimum, shall be

satisfied for all values of?-, different from zero, and such that r
\

&amp;lt; ae . Thus
an extreme of a function is necessarily an extreme for values of the function

on each straight line drawn through the point.

This condition, though necessary, is however not sufficient
;
for o

fl may
have a definite value for each value of 0, and yet the lower boundary of a

e ,
for

all values of 0, may be zero. In this case, no value of 8 can be determined,
as required in the definition of the extreme in the two-dimensional domain.
It has thus been shewn that, in order that (x , y ) may be an extreme point

for the function f(x, y), it is necessary and sufficient (1), that r = should be

an extreme point of &amp;lt;j&amp;gt;
(r, 0) for each value of 0, and (2), that* the number ad

which is so determined for each value of 9 that, for r
&amp;lt; ae , the condition as to

(f&amp;gt;
(r, 0) f(x , y ) may be satisfied, should have a finite lower boundary, when all

values of 0, (0 ^ ^ TT) are considered. If the lower boundary of ae be zero, the

point is not an extreme point of the function.

When the lower boundary of ae is d ( &amp;gt; 0), the neighbourhood of (x , y ),

which must exist in accordance with the definition, is the square of which the
, , f .

. I d d \
corners are the four points ( # -TH

&amp;gt; 2/o -jn }
\ Y V-&quot;/

EXAMPLE.
As an example of a function which possesses no minimum at a point, although the point

is a minimum for each straight line through the point, we may take the function

(y
- bx*) =y*-y (ax*+ bx*) + abx\

where a and b have positive values.

The function is positive outside the two para
bolas y-ax*= Q, y- bx2=

0,

and in the space interior to the inner parabola ;

in the space between the parabolas, the function
is negative. Along any straight line QAR
through A (0, 0), the function exceeds /(O, 0) at

all points interior to AP, and everywhere in PA
produced ; thus for the line QAR the function has
a minimum at A. The point (0, 0) is not a mini
mum of the function, since the lower limit of AP
for all positions of QAR is zero; and thus there

FIG. 4.

exists no two-dimensional neighbourhood of A, in which the function is never less than at A.
* The necessity for this condition has been disregarded in many text-books. The insufficiency

(1) was first pointed out by Peano, Calcolo di/., Turin, 1884, p. 29, in connection with the example
given in the text. See also Dantscher, Math. Annalen, vol. XLII, p. 89, and Scheeffer, Math. Annalen
vol. xxxv, p. 541.

H.
27
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321. We may, without loss of generality, take the point at which the

conditions for the existence of an extreme of the function / (x, y} are to be

investigated to be the point (0, 0). It will be assumed that, at all points in the

neighbourhood of (0, 0), f (x, y} is continuous with respect to x, and also with

respect to y. The following theorem contains a criterion for the existence of

a proper maximum (minimum) at the point (0, 0).

The necessary and sufficient conditions that the point (0, 0) may be a

point at which f (x, y} has a proper maximum (minimum) are the follow

ing*: (i) A positive number 8 must exist which is such that, if x be any

number different from zero, and numerically less than 8, the upper (loiver)

limit off (x, y),for such constant value of x, and for alt values of y for which

- x^ y ^ x, being f(x, &amp;lt;j&amp;gt;(x)),

this upper (lower) limit is, for every value of

x ( S &amp;lt; a?=t= &amp;lt; 8), less (greater) than /(O, 0).

(2) A positive number 8 must exist which is such that, if y be any number

different from zero, and numerically less than 8, the upper (lower) limit of

f(x, y\ for such constant value of y, and for all values of x for which

-y^x^y, being f (^r (y), y), this upper (lower) limit is, for every value of

y (_ g &amp;lt; y ^ &amp;lt;
8

),
less (greater} than f (0, 0).

It will be observed that, since f(x, y} is assumed to be continuous with

respect to x, and also with respect to y, the limit f(x, &amp;lt; (x)) is actually

attained for some value &amp;lt; (x), of y, in the interval ( x, x}, and the limit

/(^ (y\ v) is actually attained for some value ^ (y), of x, in the interval

(_ y } y). It is clear that, unless both the conditions stated in the theorem

be satisfied, /(O, 0) cannot be a proper maximum (minimum) of the function.

If, for example, no such number as 8 in (1) can be determined, there are

points in every neighbourhood of (0, 0) at which f (x, y} is ^ (^)/(0, 0).

The conditions are sufficient. For, if 3, 8 exist, the value of f(x, y) at every

point, except (0, 0), within the neighbourhood, the corners of which are the

four points (+ 8&quot;, 8&quot;),
is less (greater) than /(O, 0), where 8&quot; is the lesser of

the two numbers 8, 8 .

The necessary and sufficient conditions that the function f(x, y) may
have an improper maximum (minimum) at (0, 0) are similar to the above.

In this case/(#, &amp;lt;/&amp;gt;
(x)) must be less than, or equal to (greater than, or equal

to) /(O, 0), for all the values of x in the interval, and /(T|T (y), y) must be less

than, or equal to (greater than, or equal to) /(O, 0), for all values of y in the

interval. Further, corresponding to every positive number 8 &amp;lt; 8, there must

be a value of
x(&amp;lt;S),

for which f (x, &amp;lt;(#)) =/(0, 0); or else a similar

condition must hold for f(^r (y), y); or in both cases, the condition may be

satisfied.

Other methods of determining whether (0, 0) be a point at which there is

a maximum or minimum of f(x, y} will be dealt with in Vol. II.

* See Stolz, Wiener Berichte (Nachtrag), vol. c, also Grundziige, vol. i, p. 213.
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PROPERTIES OF A FUNCTION CONTINUOUS WITH RESPECT TO

EACH VARIABLE.

322. Let a function f(x, y}, defined for all values of x and y in a con

tinuous domain, be everywhere continuous with respect to y, and be also

continuous with respect to x for every
&quot;

straight line parallel to the #-axis,

belonging to a set cutting the y-axis in an everywhere dense set of points.

Let A be the point (x, y), and let BC be drawn with A as its middle

point, parallel to the y-axis, and of length 2p. If co (p) be the fluctuation of

f(x, y} in the interval BC, then w (p) is a continuous function of p ;
and

lim to (p}
=

0, since f(x, y) is everywhere continuous with respect to y. Let cr

P~o

be a fixed positive number, and let /3V (x, y} denote the upper limit of those

values of p for which a (p) cr : thus co (p) ^ cr, if p /3 ff (x, y} ;
and co (p) &amp;gt; cr,

The function $a (x, y), thus defined for every point (x, y), is everywhere

positive ;
and it will be shewn to be an upper semi-continuous function with

respect to the two-dimensional domain (x, y), in accordance with the definition

in 230 and 234.

Take B A = A C =
-fi &amp;lt;r(ae , y ); and also BlB = C Cl

=
^e, where e is a

fixed positive number. The fluctuation of /(.T, y) c,

in B^C! is greater than cr
;

let it be cr -f k. If k^ be

a fixed positive number &amp;lt; k, two points M, N can be

found in BlCl ,
such that

\f(M}-f(N) &amp;gt;a + kl .

Moreover, these points M, N can be so chosen as to

lie on two straight lines parallel to the a,--axis, which

belong to the set along each of which f(x, y} is

continuous with respect to x
;

this follows from

the fact that this set of straight lines cuts B^C^ in

an everywhere dense set of points. Since f(x, y) is

continuous with respect to x, at each of the points

M, N, two segments M M&quot;, N N&quot;, with M and N
as their middle points, can be determined, so as to

have equal lengths 28, and to be such that

1ST

M M

Q
N&quot;

&quot;M&quot;

provided P be any point in M M&quot;, and Q be any
point in N N&quot;. ^ 6 .

From these inequalities and the former one, we deduce that

\f(P)-f(Q)\&amp;gt;cr.

272
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Take the square of which A is the centre, and of which the sides are

parallel to the axes, and are at a distance from A less than the smaller of

the two numbers e and 8. If A be any point in this square, the distance

of A from each of the straight lines M M&quot;, N N&quot; is less than CT (a? , y ) + e -

Through A let a straight line be drawn parallel to the y-axis, and mark off

on it the segment of which A is the centre, and of which the half-length is

Ar Oo, 2/o) + e
;
this segment will cut M M&quot; and N N&quot;, and therefore contains

two points P, Q which are such that

\f(P)-f(Q) &amp;gt;T.

Therefore the fluctuation of f(x, y) in this segment is
&amp;gt;&amp;lt;r,

and hence, at

the point A (x, y\ we have &. (x, y} &amp;lt; & Oo, 2/o) + 6. A square having been

determined with its centre at A ,
such that for every point in this square

$ (x, y)&amp;lt;&r(# .yo) + e,

it follows that /3v (x, y) is an upper semi-continuous function at A ,
with

respect to the two-dimensional domain (x, y}.

323. Let us now consider the linear set C, of points (x, y) defined by

y &amp;lt; (x^ where &amp;lt; (x) is a continuous function of x. At each point of G, the

function f (x, y} is defined, and it has at every point a minimum relatively to

the set C, the term being used in accordance with the definition given in 224.

If, at a point A (x , y ),
of C, the function &, (x, y) have its minimum with

respect to C positive, then we shall prove that the saltus of f(x, y} at A
,

with respect to the two-dimensional domain (x, y\ is 2cr. Let 7 denote this

minimum, and let
&amp;lt;y

: be a positive number &amp;lt; 7.

Let an interval (x -,%, + 8) on the line y
=

y, be so determined that

in this interval

| (a;)
-

&amp;lt;/&amp;gt;
0&amp;lt;&amp;gt;) &amp;lt;?7i-

This interval may, if necessary, be so

reduced, that for all values of x in it,

Q

M

M.

Describe the rectangle R, with A as

centre, the sides parallel to the axes of

x and y being 28 and 7! respectively. On

every segment PQ, of R, parallel to Oy,

the fluctuation of the function is ^ cr
;

for there is on PQ a point A of the set

C, and the segment with centre A, and

length 273,7 (A) &amp;gt; 2jlt contains the whole

segment PQ.

Taking a fixed positive number e, an area surrounding A can be deter

mined, in which the fluctuation off(x, y} is ^ 2o- + e. To effect this, take a

FIG. 6.
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point A! on the ordinate through A ,
and in the rectangle R, such that A l is

a point of continuity off(x, y) with respect to x; then on the straight line

y = y\, take a segment B1
C

1 ,
with centre A lf and of length 28 ^ 28, such that

the fluctuation of f in Bfii is &amp;lt; e. Consider the rectangle R contained in

R, such that the sides of R are of lengths 28 and 7X parallel to the axes, its

centre being at A n . The fluctuation of f(x, y) in this rectangle is &amp;lt; 2cr + e.

For if M, N be any two points in it, let M1} ^ be their projections on B1G1 ;

then

a-, f(M1)-f(Nl )\&amp;lt;e-,

from these inequalities we deduce that

\f(M)-f(N) &amp;lt;2&amp;lt;r+e.

Since this holds for every e, the saltus of f(x, y\ at A
, is ^ 2&amp;lt;r. If, at a point

A
,
the saltus off(x, t/) be &amp;gt; 2cr, then, at J.

,
the minimum of f3a with respect

to C must be zero.

Since $a is positive at every point of C, and is an upper semi-continuous

function of (x, y), it follows from the theorem of 232, that, in every arc D of

the curve C, there exists an arc D
l in which the minimum of /3a is positive.

Let us take a sequence cr
l ,

&amp;lt;r2 ,
...crn ... of positive decreasing numbers, of

which the limit is zero. It is then clear that, in every arc D, there exists a

point where @an has its minimum, with respect to C, positive, for every &amp;lt;rn .

At this point the fluctuation of f(x, y) with respect to the two-dimensional

domain (x, ?/) is = 2o-n ,
for all values of n, and is therefore zero. This

point must be a point of continuity of f(x, y) with respect to (x, y}.

The following general theorem* has thus been established:

If f(x, y) be a function of the two variables x, y, which is everywhere
continuous with respect to y, and is continuous with respect to x along straight

lines parallel to the x-axis, which cut the y-axis in an everywhere dense set of

points, then in every portion of a curve y = &amp;lt;j&amp;gt;
(x), where

&amp;lt;f&amp;gt;
(a) is a continuous

function, there exist points at which f(x, y} is continuous with respect to the

two-dimensional domain (x, y\

It follows from this theorem that points of continuity exist in every area,

that is f(x, y) is at most a point-wise discontinuous function.

The whole of the reasoning above is applicable, if only those points of

{x, y) are taken into account which belong to a perfect set G. It thus appears
that, under the conditions stated in the above theorem, f(x, y} is a point-wise
discontinuous function relatively to every perfect set G, of points in (x, y).

The points of continuity of f(x, y), on the curve y = &amp;lt;b(x),
are everywhere

dense with respect to every perfect set of points on the curve.

*
Baire, Annali di Mat., Ser, ina

, vol. in, p, 27.
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EXAMPLES.

1. If*/(& , y) be a function which is everywhere continuous with respect to each of the

variables x, y. then the points at which the saltus of /(*, y), with respect to the two-

dimensional continuum (x, y\ is &amp;gt;

er, form a set of points such that the projection of the set

on either axis, by lines parallel to the other axis, is a non-dense set.

2. If t a function f (x, y, z) of three variables x, y, z be everywhere continuous with

respect to each variable, then / (x, y, z} is at most a point-wise discontinuous function

relatively to the three-dimensional continuum (x, y, z}. Further, on every surface

x =(f)(y, z), where &amp;lt;j&amp;gt;

is continuous with respect to (y, z\ the function /(#, y, z) is at most

a point-wise discontinuous function with respect to (y, z}. The set of points at which the

saltus of /(#, y,z)&amp;gt;(T may contain all the points of a continuous curve.

3. Lett
&amp;lt;f) (x, y} be a function which is continuous with respect to each of the variables

x and y, and let (0, 0) be a point of discontinuity of &amp;lt; (x, y} with respect to (x, y}. Define

/fo y, *) by the condition f(x, y, z}
=

&amp;lt;$&amp;gt;
(x, y) ;

then the function f(x, y, z) is continuous

with respect to each of the three variables, but every point on the s-axis is a point of dis

continuity with respect to (x, y, z).

4. Lett f(x, y, z) be a function which is constant along any straight line parallel to

the straight line x=y=z, and is such that f (x, y, 0)= ^&quot;^, /(O, 0, 0)
= 0. This

(*+$*)*

function is discontinuous at every point on the straight line x=y = z.

5. Let J /(O, 0)
=

;
at all points at which y is positive and x*ly

&amp;lt;

1, let /(a?, y)=a%,
and when x2

/y
&amp;gt;

1, \etf(x,y)=y/x*. Also let /(a;, -?/)=/&amp;gt;, y). The origin is a point of

discontinuity, at which the saltus is 1
;
elsewhere the function is continuous with respect to

(x, y). The function is however continuous with respect to every straight line ;
for it is

continuous along the axis of x, where it has the value 0. Consider now the straight line

y=mx, where m=*=0; it lies entirely in the part of the plane in which

\f(x,y) =x*/\y\ = \x/m\,

so that, as the point (0, 0) is approached, f(x, y} converges to 0.

6. Let} (al5 6j), (02, 62), (, Zn) denote an enumerable set of points, and let

F(X,y) =^f(x-al ,y-bl ) +^f(x-a2,y-b2) + ... + f(x-an,y-bn ) + ...,

where f(x, y} denotes the function defined in Ex. 5.

The function F(x, y) is continuous with respect to any straight line, and is continuous

with respect to (x, y) at all points except those of the enumerable set. The enumerable set

may be everywhere dense in the plane.

324. The methods developed by Baire of dealing with functions of two

or more variables, in relation to the distribution of the points of discontinuity,

have been applied by him to the consideration of the following three

problems :

(1) What must be the nature of a function
&amp;lt;j&amp;gt;(x\

denned for a^ x^ 0,

in order that a function f(x, y} can exist which is denned for all points in the

*
Baire, loc. cit.

, p. 94. t Baire, loc. cit., p. 99.

t W. H. and G. C. Young, Quarterly Journal of Math., vol. XLI, where an example is also con

structed of a function that is continuous with respect to every straight line but is discontinuous,

with respect to (x, y) at points of an everywhere dense unenumerable set.



324, 325] Functions continuous in each variable 423

square a^x^ 8, a. ^y ^ ft, and is continuous at every point with respect to

x and with respect to y, and moreover is equal to &amp;lt; (x) on the straight line

a?-y?

(2) What must be the nature of a function
&amp;lt;/&amp;gt;

(x), defined for a ^ x ^ ft,

in order that a function f(x, y} can be defined for all points in the square

a ^ x ^ ft, a ^ y ^ ft, and which shall satisfy the conditions that it is con

tinuous with respect to (x, y} at every point for which y &amp;gt; 0, is continuous

with respect to y at the points of y = 0, and is equal to
&amp;lt;/&amp;gt;

(x) when y = ?

(3) A. function f(x, y} is defined in the rectangle a^x^ft, 7^2/^8,
and is everywhere continuous with respect to y. Further, there is a set of

parallels to the #-axis, along each of which f(x, y} is continuous with respect

to x
;
these parallels intersecting the straight line x = a in a set of points

which is everywhere dense in the interval (7, 8). What is the nature of the

function f(x, y} on a continuous curve drawn in the rectangle ?

The problems (1), (2) are particular cases of (3). It has been shewn above

that a necessary condition satisfied by f (x, y), in (3), is that it should be a

point-wise discontinuous function relatively to every perfect set of points.

That this condition is also sufficient, has been demonstrated by Baire in his

memoir quoted above. A proof of this will be given, for the case of problem

(2), in Vol. II, in connection with the theory of functions representable as

the limits of sequences of functions.

THE REPRESENTATION OF A SQUARE ON A LINEAR INTERVAL.

325. Let a point of a square whose side is unity be denoted by (x, y},

where O^x^I, Q^y^l; and let t denote a point of a linear interval (0, 1).

An account has been given in 62 of Cantor s method of establishing a (1, 1)

correspondence between the points of the square and those of the linear interval.

Such a correspondence denotes functional relations x =f(t), y=&amp;lt;$&amp;gt;(i)
between

x, y as dependent variables, and t as an independent variable. It will be shewn
however that no (1, 1) relation between the two sets of points can be a
continuous representation*; i.e. it is impossible that the functions f(t\ $(t)
can be both continuous.

Let us assume that such a continuous representation can be defined. To

any closed set of points [t],
in (0, 1), there will correspond a closed set in the

plane area. For if tly t2 ,
... tn ,

... be a convergent sequence of points t, of

which tu is the limiting point, then the point /(), &amp;lt;//(,)
is the limiting point

of the set ofpoints (xj , y^, (x2 , y2), . . . (xn ,yn),
. . . which correspond to tlt t2 ,

. . .tn ,
. . .

*
See Netto,

&quot;

Beitrag zur Mannigfaltigkeitalehre,
&quot;

Crelle sJl., vol. LXXXVI. ; alsoLoria, Giorn.
di Mat., vol. xxv, p. 97. In the proof given by these writers it is assumed that a closed curve corre

sponds to a linear sub-interval of (0, 1) ; this is not necessarily the case, for a non-dense closed set

may correspond to the closed curve.
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respectively; therefore to a closed set
[t]

there corresponds a closed set \(x, y}}.

Again, to a convergent sequence (xl} yj, (xz , y.2 ), ... of points in the plane area,

there corresponds a set of points tlt t.2 ,
... in the linear interval, the latter of

which has a limiting point tM which must correspond to (#,, y^)\ and since

only one value of t corresponds to one set of values of (x,y), there can be only

one such limiting point ta . Thus, to a closed set in the plane, there corresponds

a closed set in the linear interval. Take two points t1} t2 iu the interval (0, 1);

these points correspond to two points Pj ,
P2 in the square area. To the closed

linear interval (1, 2 ) there corresponds a closed set S which contains the points

PI, P2 . It can be shewn that there are points other than P1? P2 on the frontier

of S. Denote by C(S) the set of those points of the square area which do not

belong to S. Two points Q, R in the square can be determined, such that Q
lies on the straight line PiP2 ,

and R does not lie on this straight line
;
such

that neither Q nor R coincides with P1 or P2 ,
and such that one of the two

belongs to S and the other to C(S). The closed set consisting of the straight

line QR contains points both of S and of C(S); those points of S which lie on

it form a closed set, and there must be one such point of S at least which is

on the frontier of S; such a point may, or may not, coincide with Q or R.

Since then S contains points on its frontier besides Pl and P2 ,
we can take a

point t, within the linear interval (t1} tz ), such that the point T in the square

which corresponds to it is on the frontier of S. Since T is the limiting point

of a sequence of points of C(S), it follows that t must be the limiting point

of a sequence of points all of which are external to the interval (tl , 2); and

this is impossible. It has thus been established that :

No continuous (1, 1) correspondence can exist between all the points in a

square and all the points in a linear interval.

In particular, the correspondence shewn by Cantor to exist must be

discontinuous.

326. The reasoning of 325 would be inapplicable if the correspondence

x=f(t), y = &amp;lt;fr(t)
were such that, to a given point (x, y) more than one point

t may correspond, the functions f(t), &amp;lt;/&amp;gt; (t) being still one-valued continuous

functions, so that if t be assigned, (x, y} is uniquely determined. In this case,

the limiting point of the set of points external to the interval (tly t2 ) would

be not t, but another value of t which also corresponds to the point T.

Peano* gave the first continuous correspondence of the kind just indicated,

thus denning what, by a considerable extension of the use of geometrical

language, may be called a continuous curve which passes through every point

of the square at least once.

Let the points in the interval (0, 1) be expressed in the form

t a 1
a2a3 ... an ...,

* &quot; Sur une courbe, qui remplit toute une aire plane,&quot;
Math. Ann., vol. xxxvi, 1890
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in radix fractions in the ternary scale, so that each a is either 0, 1, or 2.

Let k (a) denote the number 2 - a, so that k (2)
= 0, k (1)

= 1, k (0)
= 2

;
and let

kn (a) denote the result of performing this operation n times, so that kn (a) is

a or 2 a, according as n is even or odd.

Let x, y be denned, for a prescribed t, by

a; = -61 62 63 ..., y = cl c9 c3 ...,

the ternary scale being again employed ;
the numbers b, c being denned by

the relations

1

(a2), c2 = F1+a &amp;gt;

(o4 ),
. . . cn =

thus bn is equal to am^ or to 2 a^-j , according as 2 + a4 + . . . 4- a^-a is

even or odd.

The numbers t may be divided into two classes :

(1) Those, other than or 1, which are capable of a double representation

t = ! a.2as . . . an 2 2 2 . . . = a
t
a2 . . . an + 1 ____

(2) Those which have a single representation only.

If t be a number of the second class, x and y are uniquely defined. If t be

a number of the first class

t = !., . .. an 2 2 2 ... = a
l
az ... an + 1 000 ...

,

let &! b.2 b3 ..,, bib2 b3 . . . denote the numbers obtained by applying the definition

of x to the two modes of representation of t. If n is even, say 2m, it is clear

that

&!
= &/, b2

=
b.2, ...bm = bm ;

also bm+1 = F ^+-+&quot;
(2 ), 6 m+1 = #&quot;+4+...+a+i (0),

nence yn+i o m+i &amp;gt;

t&amp;gt;m+2 b m+2 ,
. . .

;

and thus x has the same value whichever of the two forms for t is employed ;

the case in which n is odd may be similarly treated.

The same result can readily be shewn to hold for y. Therefore, corresponding
to any assigned t, x and y are uniquely determined.

Next, let us suppose x and y to be assigned. We have

^ = 6,, aa
= &*

(&amp;lt;;,),
a 3
= k^(b2\ a, = kbl+b*

(c2 ), ...

n _Wi+ca+... +&amp;lt;-, /i \ _ rA+M-...+6n /
r \.u-2n i * \u n/&amp;gt; ^-211 &quot; Vl/

for, ifp = kr
(q), then p + q is an even number.

In case x, y are both of the second class, t is uniquely determined.
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If x is of the first class, and y of the second
;

let

x = &! 62 . . . bn 2 2 2 . . .
==

&! &2 . . . bn + 1 . . .
,

y = C] c2 . . . cn Cft+j . . .
,

and let the two values of be denoted by a^a^i^ ..., a/a/

It is clear that

c*loO ^ 271 &quot;

\
^ 271/j ^271 -f-1

&quot; *k \^71/ ^ 271+1
~~~

* \H ~&amp;gt; / 3

thus a2n+l ,
a .M+l are not identical, although a2n ,

azn will be so if each is unity.
It is thus seen that t has two distinct values corresponding to one point (x, y) y

when # is a number of the first class, and y is of the second class. It can be

shewn in a similar manner that there are four points t corresponding to a

single point (x, y) such that x, y are both numbers of the first class.

The correspondence is continuous. For if t, t are identical as regards the

first 2n figures, x and x are identical as regards their first n figures, and the

same is true of y and y .

The curve which has thus been defined is a continuous curve which passes

through each point in the square at least once; there is an everywhere dense

enumerable set of points through each of which the curve passes twice, and

another everywhere dense enumerable set of points through each of which it

passes four times; through each point of the remaining unenumerable set of

points, the curve passes once only.

The plane measure of an arc of Peano s curve which corresponds to an
interval (t , ti) is not zero, i.e. the area which a number of rectangles enclosing
all the points of the arc have in common has a lower limit greater than zero.

The two continuous functions f(t), &amp;lt;/&amp;gt; (t), which define x, y as functions of

t, do not possess, for any value of t, definite differential coefficients, and are

perhaps the simplest examples of continuous non-differentiable functions.

327. It might at first sight appear that a curve having the same properties
as that of Peano might have been defined by restricting t = a l as ...to be such

that an infinite number of digits other than are present, and then defining

x = dia3as ..., y = a2a4 a6 ....

If however the double representation of x, y were not restricted, as in the

case of t, there would be no value of t corresponding to, say,

#=1000..., y = -2000....

If (x, y) were on the other hand so restricted, there would be no values of (x, y)

corresponding, for example, to

= 111010101.,
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It thus appears that some such rule as that given by Peano is necessary to

obviate the difficulty caused by the double representation of a certain class of

rational numbers, in a given scale.

The method may easily be extended to obtain a continuous correspondence

between the points in a cube and those in a linear interval.

A somewhat different method of establishing correspondence between the

points of the square, and. those of the linear interval, is the following* :

Let ti denote one of the perfect set of points denned by

, _i 2 a*
,h- 3+32 + 33
+

when every a is either or 2. For such a point t1} x and y may be defined by

_ 1
(Oi Os OB

,

~2\2 22 23

1
(a*

4
,

6

* 2 \2 22 2s

A point t which does not belong to the perfect set is interior to one of the

complementary intervals (/, t&quot;}
of the set; in such an interval we may define

x, 11 as linear functions of t, thus

y = y H

where (x , y }, (x&quot;, y&quot;} correspond to /, t&quot; respectively.

328. A method of constructing a continuous curve which fills a square has

been given in a geometrical form by Hilbertf.

1 234
FIG. 7.

* See Lebesgue, Lemons sur Vintegration, p. 44. f See Math. Annalen, vol. xxxvni, p. 459.
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Divide the interval (0, 1) into four equal parts, and number them in order

as 1, 2, 3, 4. Then divide the square into four equal parts, as in Fig. 7, and

number them 1, 2, 3, 4, to correspond with the segments of the linear interval.

Next divide each segment of the straight line into four equal parts, and each

6
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of the four squares into four equal parts as in Fig. 8. The sixteen squares so

formed are then numbered in order, so that each square has one side in common

with the one next in order ;
the squares then correspond with the segments

numbered in the same way. At the next stage there are (Fig. 9) 64 squares

corresponding to 64 segments of the interval (0, 1). Proceeding in this manner

indefinitely, any point of (0, 1) is determined by the intervals of the successive

set of sub-divisions in which it lies. The corresponding point in the square

area is determined by the succession of squares, each containing the next, in

which it lies. The curve is thus determined as the limit of a sequence of

polygons denoted by the thickened lines in the figures. The curve thus

obtained is continuous, but has no tangent. Hilbert remarks that, if the

interval (0, 1) be taken as a time interval, a kinematical interpretation of the

functional relation between the curve and the segment is that a point may
move so that in a finite time it passes through every point of the square

area.

Continuous curves of this kind can be constructed by any method by

which an everywhere dense enumerable set of points in the square can be

made to correspond with a similar set of points in the linear interval
; provided

the functional relation x =f(t), y = &amp;lt; (t), in such correspondence, is uniformly

continuous. For, when this condition is satisfied, the functions obtained by
the method of extension of f(t), (f&amp;gt; (t) to the remaining points of (0, 1) as

secondary points (see 287) will yield a correspondence of all the points of

the square with those of the linear interval, of the required character.

Another method differing from that of Hilbert has been given by E. EL

Moore* and by Schoenfliesf.

Let m be an uneven number (in the figure, m = 3); divide the linear interval

(0, 1) into ra2

equal parts, and also the square into ra2

equal parts. Let these

squares be passed through by a polygonal line, of which the sides are diagonals

of the squares, as in the figure ;
in this manner the squares are arranged in

order 1, 2, 3, ...m2
,
and are placed into correspondence with the segments

bearing the same numbers. At the same time the end-points of a diagonal so

traversed are made to correspond with the end-points of a segment of the linear

interval. Thus m- + 1 points in the linear interval are placed into correspondence

with points in the square, so that to each of the m2 + 1 points of the linear

interval there is one point in the square ;
but the converse is not the case.

Next, divide each of the m 2 linear intervals into m2

equal parts, and the

corresponding squares into m2

equal parts; then construct as before a polygon

traversing diagonals of all the ra4

squares, making their end-points correspond
to the end-points of the corresponding m4

parts of the linear interval. Pro

ceeding in this manner, we gradually place points in the square, consisting

* Trans. Amer. Math, Soc., vol. i, p. 77.

t Bericht iiber die Mengenlehre, vol. i, p. 121.
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of an everywhere dense enumerable set, into correspondence with a set in the

linear interval which possesses the same property; and the functional relation

so set up is uniformly continuous. The definition of the functions for the whole
linear interval is then obtained, as explained above, by the method of extension.

3 4 5

FIG. 10.

The case m = 3 corresponds to Peano s analytical method. In the method
of Moore and Schoenflies, the curve is determined, as the limit of a sequence
of polygons inscribed in the curve. In Hilbert s method the polygons which

approximate to the form of the curve are not inscribed in the curve, but are

otherwise determined.



CHAPTER VI

THE RIEMANN INTEGRAL

329. THE fundamental operation of the calculus, known as integration,

regarded from one point of view, consists essentially in the determination of

the limit of the sum of a finite series of numbers, as the number of terms of

the series is indefinitely increased, whilst the numerically greatest of the

individual terms of tEe series approaches the limit zero. The laws which

regulate the specification of the terms of the series must be supposed, in any

given instance, to be assigned, and to be of such a character that the limit in

question exists. It is in this form that the problem of integration naturally

presents itself in ordinary problems of a geometrical or physical character, such

as the determination of lengths, areas, volumes, etc. The method of integration,

so regarded, has its origin in the method of exhaustions employed by the Greek

geometers, and was developed later in forms whose theoretical exactitude de

pended at various epochs upon the stage which the development of Analysis
in general had reached. In the hands of Cauchy, Dirichlet, and Riemann,

the definition of the definite integral gradually attained to an exact arithmetic

form which fitted it for the purposes of modern analysis; and in fact the

definition given by Riemann leaves nothing to be desired as regards precision. t|

Riemann not only formulated a rigorous arithmetical definition of the integral

of a bounded function, but also established a necessary and sufficient con

dition for the existence of the definite integral of the function. This definition

of the definite integral was, in the latter part of the nineteenth century, the

one that was employed in all rigorous mathematical analysis, but in the present

century it has, for the purposes of theoretical investigations, been largely

superseded by the more general formulation of Lebesgue. In accord

ance with Lebesgue s definition, integrable functions, i.e. functions which

possess a definite integral, form a class which is markedly wider than, and

includes, the class of functions that are integrable in accordance with R^emann s

definition. Although the definition, of which the most precise formulation is

that of Riemann, is primarily applicable only to a bounded function over a

bounded interval, it was extended by Cauchy, Harnack, de la Vallee Poussin,

and others, to cases in which the function to be integrated is unbounded, and

to integration over unbounded intervals. It was also extended to the case of

double, or multiple, integration.

The process of integration, leading to the indefinite integral, is also regarded
as the operation inverse to that of differentiation

;
and the relation of this mode

of regarding integration with the one referred to above has been formulated

in what is known as the fundamental theorem of the Integral Calculus. Many
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important investigations are concerned with the relation between the two

modes of regarding integration, and with the establishment of the fundamental

theorem, including an examination of the limitations to which it is subject.

It is in this connection that the advantages of the Lebesgue Integral and its

generalizations, over the Riemann Integral, are most apparent.

The Riemann Integral is not only of interest from an historical point of

view, but it still possesses great intrinsic importance in Analysis, and will

continue to be the basis upon which practical applications of the Integral
Calculus rest. Accordingly an account of the theory of Riemann integration
will be given in the present Chapter. An account is also given in the present

Chapter of the properties of the Riemann Integral, and of some of its extensions

to the case of unbounded functions, or of integration over unbounded domains.

A more complete account of these extensions is however included in the more

general theory of Lebesgue integration, and its extensions, which will be

discussed in Chapters vn and vm.

THE RIEMANN INTEGRAL IN A LINEAR INTERVAL.

330. Let/(#) be a bounded function, defined for the closed linear interval

(a, b), where b &amp;gt; a; so that there exist an upper boundary U, and a lower

boundary L, of the functional values in the closed interval. Let a system of

nets, with closed meshes, be applied to the interval (a, 6), and let 8^, 82
{n)

,

&amp;lt;W

(n) denote the breadths of the mn meshes of the net Dn ,
of the system.

Let M (8r
{n)

) denote any number so chosen as to be not greater than the upper

boundary of the function f (x) in the closed mesh 8,.
{n}

,
and so as not to be less

than the lower boundary of f(x) in the same mesh, and consider the sum
Sn = 8^ M ($,&amp;lt;&amp;gt;)

+^ M(^} + ... +8^ M (8^&amp;gt;).

If the sequence Si, $2 ,
... Sn , ...be convergent, and have the same number 8

for its limit, whatever system of nets, applied to (a, b), be employed, and however

the numbers M (8r
w

) be chosen, subject only to their limitation in relation to the

upper and lower boundaries of f(x) in the meshes 8r
(n
\ then the function f(x)

is said to have a Riemann integral in the interval (a, 6), and the number S

defines the value of its integral. The integral, when the limit S exists, is denoted
rb

f(x) dx.

It will be observed that M(8) is not necessarily the value of f(x) at any
point in the interval 8

;
for all that is necessary is that it should not be greater

than the upper boundary, nor less than the lower boundary, of f(x) in the

closed interval 8. In this respect the definition is a slight generalization of

that given by Riemann*, who restricted M (8) to have the value of f(x) at

some point in the interval.

* See Riemann s Gesam. Werke, 2nd ed., p. 239.
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A Riemann integral will be spoken of as an ^-integral, and a function

/(as) which has an ^-integral, in (a, b), will be said to be integrable (R) in (a, b).

The definition of a definite integral, of which Riemann s definition is a

development, was given by Cauchy for the case of a continuous function.

Cauchy s definition* is in fact what arises whenM (8) is in every case restricted
to be the functional value at one end of the interval 8. Thus it may be ex

pressed by

f*

J ^
/(as) dx = lim [(as,

-
a) /(a) + (as,

-
as,) /(as,) 4- ... 4- (6

- *IW ) / (.%_,)],

where a, aslt o;2 ,
... xn^, b are the end-points of a set of sub-divisions of (a, b),

and the limit is determined under the conditions stated above, which involve
the convergence to zero of the length of the greatest of the sub-intervals

(a, x^, (x^x2), ... (_!, 6).

THE UPPER AND LOWER RIEMANN INTEGRALS.

331. The investigation of the necessary and sufficient conditions that the
bounded function f(x) may have an .R-integral in (a, b), in accordance with
the above definition, is considerably simplified by the introduction of the

upper and lower ^-integrals of the function /(#) in the interval (a, b).

If (a, /3) be any interval contained in (a, b), the upper and lower boundaries
of /(as) in the closed interval (a, ) may be denoted by UJ, L respectively.
The upper and lower boundaries of /(as) in (a, b) are accordingly denoted byUa

b
,
La

b
;
or simply by U and L. If the interval (a, /3) be denoted by a single

letter 8, we may write U (8), L (8) for
/&quot;/,

L*
respectively.

If (&amp;gt; b) be divided into any number ofparts denoted by Blt &,, ... 8m , taken

in order from left to right, the
sum^\ U(8r) has a definite lower boundary,

r =m
and the sum 2Sr L (8r) has a definite upper boundary, when all possible modes

of dividing (a, b) into parts are taken into account. These lower and upper
boundaries are defined to be the upper, and the lower^, R-integrals of/(as) in

~fb
rb

(a, 6), and are denoted by f(x) dx, f(x) dx respectively.
J a J a

In each of the sums, 8r denotes the length of the interval described by the

same letter. Since J\ U(Br) ZL(b- a),T r L (8r) U(b - a), it is clear
r-l r= i

that the first sum has a finite lower boundary, and that the second sum has
*

Jl. de VEcole Polytechnique, cab. xrx (1823), pp. 571 and 590.

t The upper integral and the lower integral are named by Jordan &quot;I lnte-rale par exces&quot; and
;egrale par defaut &quot;

respectively ; see his Cows d Analyse, vol. i, p. 34. They were introduced
by Darboux, Annales de V6cole normale, (2), vol. IT, and also by Thomae, Einleitung p. 12 and by
Ascoh, AM di Lincei, (2), vol. n, p. 863.

H&amp;lt;

28



434 The Riemann integral [CH. vi

a finite upper boundary. The upper, and the lower, integrals consequently

always exist.

The following theorem will be established :

If e be an arbitrarily chosen positive number, a number d can be so deter

mined that, for any net such that the breadths of all its meshes are &amp;lt; d, the

sum 2 Br U(Br) exceeds the upper integral of the function by less than e.

r=l

rb r=m
Since I f (x} dx is the lower boundary of the sum 2 Br U(Br), for all

r=m rb

possible nets, a net D exists, such that 2 8r U(Br) &amp;lt; f (x) dx + e
;
where

r=l -a

the summation is taken for the m meshes of the net D. Let d be chosen to be

such that (m + 1) Ud&amp;lt;^e\ and consider any net for which all the meshes

have breadths &amp;lt; d. Those meshes of this second net which contain end-points

of the meshes of D are at most m + 1 in number, and the part of the sum

2 BU(B\ taken for the second net, which corresponds to these m + 1 meshes

is &amp;lt; | e. All the other meshes of the second net are interior to meshes of D,

and the part of 2 8 7 (8) which corresponds to these meshes is less than

f f(x} dx + e. Therefore the sum 2 BU(B\ for all the meshes of the second
J a

T6

net, is &amp;lt; f(x) doc + e
;
and this is the case for every net the breadths of

. a

whose meshes are all &amp;lt; d.

For any system of nets {Dn },
the breadths of all the meshes of Dn are &amp;lt; d,

for all values of n, from and after some fixed integer. We thus have the

following theorem :

If a system of nets, with closed meshes, be fitted on to (a, b), and 2n denote

the sum B^ U(Bl
{n)

) + 82
&amp;lt;n) U(Bz

m
) + ... + B

nln
(n} U(Bmn in)

),
where Vn)

&amp;gt;

B2
(n}

,
...

f&amp;gt;mn

{n&amp;gt; denote the breadths of the mn meshes of the nth net Dn , of the system;

J
b

f(x) dx,

whatever be the system of nets employed.

rb

The corresponding theorem for f(x)dx may be proved in a similar
J a

manner
;
or it may be deduced from the above by observing that

If, in the sum 2n ,
we had taken, instead of U(B), the upper boundary of

f(x) in the open interval 8, we should have obtained the sum
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*~
where the interval 8rw is (arr_,, a?r), and U*r

~

+Q denotes the upper boundary
of f(x) in the open interval B/n}

.

We have 2n ^ 2,,, hence 2 and 2, the lower boundaries of 2n ,
2n , satisfy

the condition 2 = 2.

Let 2n+p be compared with 2n . In any mesh 8
,
of Dn+p , that is contained

in Or_i, arr), or 8, the value of U (8 ) is ^ ^f+QJ unless $ nas an end-point

at arr_! or ar
r&amp;gt;

in which case the upper boundaries of f(x) in the closed and in

the open interval 8 differ from one another by not more than UL. Hence
we have 2B+P -2n ^2(U-L) 8mn , where 8 is the length of the greatest mesh
in Dn+p. As p is increased indefinitely, 8 is diminished indefinitely, and there

fore 2 ^ 2n . As this holds for each value of n, we have 2^2; and since also

2 = 2, we have shewn that 2 and 2 are equal. It is clear that the corresponding
result will hold in the case of the lower integral. It has thus been shewn that :

In the definitions of the upper and lower integrals of a function the upper
and lower boundaries of the function in an open interval 8 may be employed
instead of the upper and lower boundaries in the corresponding closed interval.

332. It has thus been shewn that a bounded function /(#), defined for

the interval (a, b), always possesses an upper, and a lower, integral in that

interval. The necessary and sufficient condition that /(#) should have an

.R-integral in (a, 6) is that the upper, and the lower, integrals in the interval

should be equal.

That the condition is necessary follows from the fact that all the numbers

M(8), in the sums Slf S2 , ..., may be made identical with U (8); or that all

may be made identical with L (8). That the condition is sufficient follows
T=mn r=mn

from the fact that Sn lies between 2 S,.
(n)

Z7(8r
(n)

) and 2 8r
(n}L (8r

(n}
); and

r=l r=l

thus that, when the two latter sums have the same limit, that limit is also

the limit of Sn . We have therefore obtained the following theorem :

The necessary and sufficient condition* that the bounded function f (x) may
be integrable (R), in (a, b), is the following: Let F(8 (n}

) denote the fluctuation

/&quot;(&amp;lt;&amp;gt;) _((&quot;&amp;gt;) of the function in the interval 8W
, which may be either closed

or open ; then it must be possible to define a system of nets fitted on to (a, b),

such that, for the net Dnt the sum

has the limit zero, as n is increased indefinitely.

That this limit exists, and is equal to zero, is equivalent to the statement

* See Riemann s Gesam. Werke, 2nd ed., p. 240.

282
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that, corresponding to an arbitrarily chosen positive number e, a net Dn

belonging to a given system, exists, such that the absolute value of

for that value of n, and for all greater values, is less than e.

The necessary and sufficient condition for the existence of I f(x) dx may
J a

be stated in the following somewhat more convenient form :

If any system of nets be fitted on to the interval (a, b), and k be an arbitrarily

chosen positive number, the sum of the lengths of those meshes of Dn in which

the fluctuation off(x) is ^ k must converge to zero, as n is indefinitely increased.

To see that the condition so stated is sufficient, we observe that, if s (n) be

the sum of the lengths of those meshes of Dn in which the fluctuation off(x}

is ^ k, then TV&quot; ^ (,.&amp;lt;)
s&amp;lt;&amp;gt; (U-L) + k(b-a- s).

r = l

Since s (n} ~ 0, as n ~ oo
,
the upper limit of the sum on the left-hand side

is ^ k(b a). Since k is arbitrary, the sum converges to zero.

To shew that the condition is necessary, we observe that

r=mn _
2 8 ^F ($ *n ^ ks^ + (b a s

n
) F ks (n^

where F is the least of the fluctuations in all the intervals S (w)
. Unless s (n&amp;gt;

converges to zero, it is impossible that 2 Sr
wF(8r

(n)
) can have the limit zero.

The necessary condition for the existence of the E-integral may, in view

of the first theorem of 331. be stated as follows :

The necessary and sufficient condition that the bounded function f(x} may
be integrable (R) in (a, b), is that, corresponding to an arbitrarily chosen positive

number e, a positive number d can be so determined that, for every net such that

r=m
the maximum breadth of its meshes is &amp;lt; d, the sum 2 &r F(Sr) is less than e.

333. The most succinct form of the necessary and sufficient condition that

a bounded function is integrable (R) is the following* :

The necessary and sufficient condition that a bounded function may be

integrable (R), in the interval for which it is defined, is that the points of dis

continuity of the function form a set of measure zero.

It is convenient to express this condition in the form that the function

must be continuous almost everywhere in the interval.

To shew that the condition is sufficient, let us consider the closed set Gk

at which the saltus &&amp;gt; (x], of/(#), is = k, where k is a positive number. If an

interval 8 contain a point of G^ within it, the fluctuation of f(x) in 8 is = k.

If a point of Gk is the common end-point of two intervals, of equal length, the

*
Lebesgue, Annali di Mat., (3), vol. vn, p. 254.
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fluctuation of/(#) in one at least of these intervals is = | &; hence the part
which these two intervals contribute to the sum X SF(8) is ^ ^ kS. If we have

a net with equal meshes fitted on to (a, b), the contribution of all those

meshes which contain, within them or at an end-point, a point of G^, is not

less than the product of ^k into the sum of the breadths of these meshes.

TJnless the content of Gk is zero, the sum of the breadths of these meshes is

greater than some fixed positive number, for all the nets of a symmetrical .

system. ! lit is therefore necessary for the existence of the ^-integral that the I

content of Gk should be zero; &amp;gt;/and this must be the case for every positive ;

value of k. The set of points of discontinuity of the function is the outer

limiting set of [Gkn ],
where {kn }

is a sequence of diminishing values of k that

converges to zero. It follows that the set of points of discontinuity of the

function must have measure zero.

To shew that the condition is sufficient, we observe that, if the content of Gk
is zero, all the points of Gk are contained within intervals of a finite set the

sum of whose lengths is &amp;lt; 6. The intervals complementary to this finite set

have a total measure &amp;gt; b a e, and at every point in each of them w (x) &amp;lt; k.

In accordance with the theorem of 234, each of these complementary intervals

can be divided into a number of parts, in each of which the fluctuation is &amp;lt; 2k.

Let this be done for each of the complementary intervals. We have now a

net fitted on to (a, b), such that the sum of the breadths of those meshes in

which the fluctuation is ^ 2k is &amp;lt; e.

For this net 2 &F(S) &amp;lt; e
(
U L) + 2k (b a - e) ;

and since k and e are both

arbitrarily small, a net can be determined for which 2 BF(8) has an arbitrarily
small value. The condition of integrability is therefore satisfied if, for every
value of k, Gk has content zero, that is, if the set of points of discontinuity of

the function has measure zero.

334. The following theorem* will now be established:

Iff(x} be bounded in (a, b), and w (x) be the saltus off(x} ) at x, then

r?&amp;gt; rb &quot;Tb .

f (x) dx \ f (x) dx = I o) (x) dx.
a

_J
a J a

If be any point in (a, 6), there exists an interval (
-

77, | + 77 ) containing
as an interior point, such that, in any interval interior to that interval, the

fluctuation of f(x) is less than w (f) + e. If d be an arbitrarily chosen number,
and X be the smallest of the three numbers d, % 77, 77 ,

the interval (
-

X,

+ X), or the part of it in (a, b), is of length not greater than d, and the

fluctuation in it is &amp;lt; w () + e. Taking fixed values of the positive numbers
d, e, a single such interval corresponds to each point ,

of (a, b). Employing
* This theorem was given by de la Vallee Poussin, see his Cours d Analyse, 3rd. ed., vol. i,

p. 254. A proof of the theorem, other than that given above, was provided by Pollard, see Messenger
of Math., vol. XLIV, p. 141, where a criticism is given of de la Vallee Poussin s proof.
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the Heine-Borel theorem, it follows that there exists a finite set of overlapping

intervals, covering (a, b), such that, if 8 be any one of them, the fluctuation of

f(x) in 8 is &amp;lt; co (f) + e, where is a definite point interior to S.

Consider two overlapping intervals
(or, /3), (a , y3 ),

where /3 &amp;gt; #, of this

finite set. Let f, be the two definite points interior to these intervals. If

neither nor is in the part ( , /3), common to the intervals, we can replace
the two intervals by the non-overlapping intervals (a, /3), (/?, /3 )- In the first

of these the fluctuation of /() is &amp;lt; co () + e, and in the second it is

&amp;lt; co ( ) + e. If ( , fi) contains one of the two points , , say ,
we replace

the intervals by (a, a ) and (a , /3 ), which have the same properties as in the

last case. If
( , /3) contains both the points , ,

let co () &amp;gt; co ( ) ;
we then

take (a, ), (, ) in place of (a, /3) and ( , /? ).
In (a, f) the fluctuation is

&amp;lt;co() + e, and in (, /3 ) it is also &amp;lt; eo () + e. We can proceed in this manner
with any pair of intervals that overlap one another, and we finally obtain a

net, fitted on to (a, b), such that, in any mesh 8, the fluctuation of the function

is &amp;lt; co (s) + e; where %s is a definite point within, or at an end of, the mesh 8;

moreover the breadths of the meshes do not exceed d. If co (8) be the upper

boundary of co (x) for all interior points of the mesh 8, there is such a point
at which &&amp;gt; (#) &amp;gt; co (8) p; where p is arbitrarily chosen. Therefore the

fluctuation in the mesh is &amp;gt; to (8) p, and hence is ^ co (8), since p is arbitrary.
It follows that, for the net, S 8F(8) ^ 2 B co (8). Taking a sequence of values

of d that converges to zero, S 8co (8) converges to co (#) dx; hence

cb i b
~fb

f(x)dx\ f(x) dx^ \ co (x) dx.
a J_a J a

Again, the fluctuation in 8 is &amp;lt; co () + e; and hence, for the net,

It follows that Km 2 8 F(8) cannot exceed I co (x) dx + e (b- a); and since e
&amp;lt;/
~ J a

is arbitrary, we have

7& rb &quot;f-b

I f(x)dx-\ f(x)dx^\ co(x}dx.
&amp;gt; a J^a J a

It has thus been proved that

7& rb
Jb

f(x] dx \ f(x) dx = co (a?) dx.
J a J a J a

The theorem of 333 can be deduced from this result. For the condition
*b

co (x) dx = 0, is equivalent to the condition eo (x) dx = ;
and unless the

J a

set of discontinuities of the function has. measure zero, for some value of

k ( &amp;gt; 0) the set Gk must have positive content, in which case it is impossible
that the integral can have the value zero.

I

J
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PARTICULAR CASES OF FUNCTIONS THAT ARE INTEGRABLE (R).

335. The following classes of bounded functions satisfy the condition of

integrability (R) which has been expressed in various forms above.

(1) All functions which are continuous in the intervals for which they are

denned.

(2) All functions with only a finite number of discontinuities, or with any

enumerable set of discontinuities.

(3) Monotone functions, and all functions with bounded variation.

For, as has been shewn in 243, the points of discontinuity of a function

with bounded variation form an enumerable set.

(4) Generally, every point-wise discontinuous function which is such that

the closed set of points for which the saltus is ^ k has content zero, whatever

positive value k may have.

Dini* has given the theorem that a function is integrable (R), if at all

points where the discontinuity is of the second^ kind, it is so for all such points

only on one and the same side of the point ; and at these points the function may
be continuous on the other side, or may have ordinary discontinuities on that

side. In particular, any function which has only ordinary discontinuities is

integrable (R).

To prove this we observe that it has been proved in 239 that, for such

a function, the set of points for which the saltus is = k has content zero,

whatever positive value k may have. Therefore the condition of integrability

is satisfied.

Riemann s definition of an integral, and the condition for the existence of

the integral, are applicable, without essential change, to the case of a function

which, for particular values of the variable, has indeterminate functional values

lying, in the case of each such point, between finite limits of indeterminancy.

At each point of indeterminancy of the function, it is immaterial whether the

function be capable of having all, or only some, values between the limits of

indeterminancy ;
thus there is no loss of generality, if the function be regarded

as having two values only at each such point, viz. the two limits ofindeterminancy

at the point. In estimating the fluctuation of the function in a prescribed

interval, the upper boundary is found by taking the upper limits of indeter

minancy of the function at the special points as functional values at those points,

whilst the lower boundary is found by taking the lower limits of indeterminancy

at the special points as the functional values at those points. As in the case of

a function which is everywhere single-valued, the saltus at any point is defined

as the limit of the fluctuation in a neighbourhood of the point, when that

* See Grundlagen, p. 335.
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neighbourhood is diminished indefinitely. The conditions of integrability are

exactly the same as for a function which is everywhere single-valued, viz. that

the function be bounded in its domain, and that the set of points of discontinuity

of the function have measure zero; or, in other words, that it be bounded, and

continuous almost everywhere, in the domain.

EXAMPLES.

(x} (%?} (nx]
1. Riemann s function f(x)=W +W + + ^~^ + &amp;gt;

wnere (^) denotes the positive
L 2* 72-

or negative excess of x over the nearest integer, and (x)
= when x is half-way between

two integers, has been shewn in Example 2, 240, to be point-wise discontinuous, with all

its discontinuities ordinary ones, and everywhere dense in the interval (0, 1). Since all the

discontinuities are ordinary ones, and the function is limited, f(x] is integrable in (0, 1).

2. Let f(x) be denned for the interval (0, 1) as follows : If x be irrational, let /(&)-() ;

if x=p/q, where pjq is in its lowest terms, let f(x) = I/q; also let /(0)=/(1) = 0. This

function is an integrable point-wise discontinuous null-function; thus I f(x}dx = Q.

Jo
There is only a finite number of points at which the functional value exceeds an assigned

positive number.

3. Let f(x) = 0, for all rational values of x; and /(#) = ], for all irrational values of x.

This function is not integrable (R) in any interval, for it is totally discontinuous.

4. Let f(x} be defined* for the interval (0, 1) as follows : For \ &amp;lt; x &amp;lt;

1, let f(x) = 1
;

m

for
2

&amp;lt; x = let /(A )
=

5
f r &amp;lt;X =&amp;gt; let -^ =

2
: and enerall

y&amp;gt;

for
22

=
2

1, let /(*)-!; and/(0) = 0.

/x
X \

f(x)dx =----.
-

O2m _ 2 &amp;gt;

wnere x is between
o 2 6.2

and

GEOMETRICAL INTERPRETATION OF RIEMANN INTEGRATION.

336. Let f(x) be a bounded function, defined for the interval (a, 6),

of which the values are all ^ 0. Associated with the function there exists a

plane set of points (x, y} consisting of all the points of which the coordinates

satisfy the conditions a ^ x b, 0^y^/(V). In accordance with Jordan s

theory of measure of sets of points (see 142), this set has an exterior extent,

and an interior extent
;
and the set of points is measurable (J) when the two

have the same value, in which case their common value is the extent, or

measure (J), of the set. The extent of a two-dimensional set of points may
be regarded as a generalization of the conception of area

;
thus in general, the

exterior extent and the interior extent may be spoken of as the exterior area

and the interior area of the space bounded by the axis of x, the two straight

*
Dini, Grundlacien, p. 344.
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lines xa,x =
b, and the &quot;curve&quot; defined by y = f(x). This set of points G

has an area, in the ordinary sense, when the exterior area, and the interior

area, are equal; in which case the function y f(x) is said to be quadrable

in the interval (a, b}.

If a fundamental rectangle be taken, which contains the plane set in its

interior, we may fit on to this rectangle a system {Dn }
of nets, with closed

meshes. Consider those meshes of Dn which are such that every point of each

mesh is an interior point of G. If the segment (a, b), on the #-axis, be divided

by means of the boundaries of the meshes of Dn into intervals Blt S2 ,
... S^, we

see that the sum of the measures of those meshes of Dn which consist entirely
M

of interior points of G is 28L (B) + ijn ,
where r)n is a number which converges

to zero, as n is indefinitely increased. Similarly, the sum of those meshes of

Dn each of which contains at least one point of G, or of the boundary of G
n

is 2S U (B) + pn ,
where pn ~ 0, as n *w oo .

i

It thus appears that f(x)dx is the exterior extent of G, and that
. a

f(x} dx is the interior extent of G.

If f(x)dx exists as a definite number, the plane set G is measurable
- a

(J), and the value of the integral measures the area bounded by x = a, x=b,

y*0,y-/(*&amp;gt;

It has been shewn, in 142, that the condition for the measurability (J),

of the set G, is that the frontier of G should have the plane measure ze.ro.

It is clear that, in any case, the plane measure of the three rectilinear portions
of the boundary of G is zero

;
thus the condition for the existence of the integral

is that the set of boundary points which consists of points on the &quot;curve&quot;

y=f(x), or of limiting points of points on the curve, shall have plane measure
zero. This condition is equivalent to the condition that the linear measure of

the set of points of discontinuity of the function f(x} in the linear interval

(a, b) is zero.

In case the bounded function f(x) is not everywhere ^ in (a, b), we may
take f(x)*=fi(x)f(x)\ where fl (x)=f(x), for all values of x for which

f(x) ^ 0, and /j (x) = 0, for those values of x for which f(x) is negative. In

case the two sets of points (as, y} for which a ^ x b, O^y^ f\(\ and a^x^b,
Cb

g ?/^/2 (#) are both measurable (/), the integral / f(x)dx is the excess of
J a

the measure of the first set over that of the second set
;
and this may be in

terpreted as the excess of that part of the area defined by x = a, x = b, y =f(x}
which is above the ar-axis, over that part which is below it.
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If the two plane sets of points be not measurable (J), the exterior and

1b
t&quot;

b

interior extents of the first set are /i (x) dx, \ f^ (x) dx; and those of the
J a

J_a

T6
f
b

second set. are f2 (x)dx, f2 (x) dx respectively. The upper integral_ Ja la
f*
f(x)dx is then the excess of the exterior extent of the set a ^ x ^ b,

J a

^ y ^ /j (x), over the interior extent of the set a ^ x ^ b, ^ y ^ /2 (#) ;

f
6

whilst the lower integral f(x) dx is the excess of the interior extent of the
. a

first set over the exterior extent of the second set.

The condition that f(x) may be integrable (R) is that the frontier which

consists of the set of points a ^ x ^ b, y =f(x), when closed by adding the

limiting points, has its plane measure zero.

If a linear set of points H be defined on the #-axis, and lie in the interval

(a, b), a function &amp;lt; (x) may be defined by the rule that $ (x)
=

1, if x be a point
of H, and

&amp;lt;/&amp;gt;
(x)

= 0, if x be a point of C(H). The set H has an exterior linear

~rb rb

extent, and an interior linear extent, which are given by I
&amp;lt;f&amp;gt; (x) dx, I

&amp;lt;f&amp;gt;
(x) dx,

J a J a

respectively, as may be seen by referring to the definitions. For it is easily seen

that the exterior and interior linear extents of// are numerically equal respec

tively to the exterior and interior plane extents of the plane set a ^ x b,

^ y &amp;lt;f&amp;gt; (x). When H is measurable (J) the function
&amp;lt;/&amp;gt;

(x) is integrable (R)
rb

in (a, b), and I $ (x) dx is the measure (J) of H. This measure may be re-
J a

garded as a generalization of the notion of the length of a linear interval.

The condition that the linear set H is measurable (J) is that its frontier,

which consists of those -points of H that are limiting points of C (H), and of

those points of C (H) that are limiting points of H, should have the measure

zero.

PROPERTIES OF THE DEFINITE RIEMANN INTEGRAL.

f*
337. We proceed to consider the properties of the integral f(x) dx, of

J a

a bounded function f(x), defined for the interval (a, b), which is such that

the condition for the existence of the /^-integral is satisfied.

(1) The integral I f(x)dx is defined as the value of I f(x}dx.
J b J o,

(2) If f(x) be integrable (R) in (a, b), so also is \f(x)\, and
&amp;gt;

f(x)dx
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For the fluctuation of \f(x) \

in any interval 8 cannot exceed that of f(x)

in the same interval
; hence, if 8F(8), for a system of nets, have the limit zero,

when F(B) is the fluctuation off(x) in 8, it has also the limit zero when F(8)

denotes the fluctuation of \f(x)\; and thus the latter function is integrable

(R). Again U, the upper boundary of f(x} in 8, cannot numerically exceed

U
,
the upper boundary of \f(as) \

in the same interval
;
thus \^U8\ ^^U 8

}

and hence the absolute value of the limit of 2.U8 is ^ that of ^U 8.

(3) If f(x) be integrable (R) in (a, b), f(x-h) is integrable (R) in

rb rb+h

(a + h, b + h), and I f (x) dx = I f(% h) dx.
J a J a+h

This follows at once from the definitions of the integrals as the limits of

sums.

(4) // the values of the integrable function f (x) be arbitrarily altered at

each point of a measurable set of points G, the new function &amp;lt;j&amp;gt; (x) so obtained

is integrable (R),provided it be bounded, and also the measure of the derivative G

of the set be zero.

For the only points of discontinuity of
&amp;lt;/&amp;gt; (x} which are not points of dis

continuity of f(x) are points of G, or of G
..

and therefore form a set of measure

zero
;
hence all the discontinuities of

(f&amp;gt; (x) form a set of points of measure zero,

and
(f&amp;gt;(x)

is therefore integrable (R), provided it be bounded. In particular,

the theorem holds for any reducible set G.

Also, if &amp;lt;/&amp;gt; (x)=f(x), at all points belonging to a set ivhich is everywhere

dense in (a, b), then, provided $ (x) be integrable (R), its integral is identical with

that of f(x).

For, in the finite sum ^.8M(8), we may take the value of M (8) in any
interval 8 to be one of the values which the two functions f(x), (j) (x) have in

common in that interval
;
hence the sums may all be chosen so as to be the

same for the two functions. Thus, if the functions be both integrable (R),

their integrals are identical.

(5) A function f(x) which is integrable (R), in (a, b), is also integrable (R)

in any interval (a, /3) contained in (a, b).

For the measure of the set of points of discontinuity of f(x) in (a, b) being

zero, the measure of the set of those points of discontinuity which are in (a, /3)

is also zero, and thus the function is integrable (R) in (a, @).

If c is any point in (a, 6), we have

rb re rb

f (x) dx = f(x) dx + I f(x) dx.
la Jm J c

For the two integrals on the right-hand side both exist
;
also a system of

nets can be so chosen that the point c is always an end-point of two of the

meshes of each net. If this be done, the sum S83f(8), for (a, b), may be
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divided into two parts, one of which contains all the intervals on the left of

the point c, and the other all those on the right of that point; thus

2SM (S)
= ^8M (8) + 2 2 8# (8).

The limits of the three sums are the three integrals of f(x) in (a, b), (a, c),

and (c, 6) respectively ;
thus the theorem is established.

(6) If* fi, f, f, ... fn be a finite number of bounded functions, each of
which is integrable (R) in (a, b), and if F(f1 , f.2 ,

... fn) be a continuous function
with respect to (/lt /2 ,

... /), then the function F is integrable (R) in (a, b).

For the only points of discontinuity of the function F (x) are those of the

functions / (x), /2 (x), ... fn (x); hence the set of points of discontinuity of

F(x) has measure zero: and thus F(x) is integrable (R), since it is also a

bounded function.

Important particular cases of the general theorem are the following :

(a) If / (x) = f, (x) + /2 (x) + . . . + fn (x), where all the functions /, (x)
are integrable (R), then/O) is integrable (R).

Cb r=n i b

It can also be shewn that f(x)dx= 2 fr (x)dx. For, in any interval
J a r=l J a

8, the upper boundary of f(x) cannot exceed the sum of the upper boundaries

of the functions fr (x\ From this we see that
[ f(x} dx 2

/ /,. (x) dx, and
J a I J a

Cb n Cb

similarly we have f(x)dx^Z fr (x)dx.
J_a 1 J_a

(b) If f(x)=/1 (x).fz (x) ...fn (x), where all the functions fr (x) are

integrable (R) in (a, b), then f(x) is also integrable (R) in (a, b).

(c) If f(x), &amp;lt;f&amp;gt; (x) be integrable (R) in (a, b), and
j &amp;lt;/&amp;gt;

(x)
| always exceeds

some fixed positive number A, so that i-7~\ is a continuous function of ( /, 6}
&amp;lt;b(x)

v./&amp;gt;r/

f(x)
then

j
~ is integrable (R) in (a, b).

(7) If two functions f
+
(x\ f~(x) be defined as follows :Let f

+
(x) =f(x}

for all values of x such that
f(x)&amp;gt;0,

and let f+(x) = 0, when f(x)^0; let

f~(x}= -/O) for all values of x such that
f(x}&amp;lt; 0, and f~(x) = 0, when

f(x) ^ ; then iff(x) be integrable (R) in (a, b), the functions f
+
(x), f~(x) are

[b
fb rb

integrable (R) in (a, b\ and f(x) dx =
| f+(x) dx

-
f~(x) dx.

a .a .a

For the fluctuation of f +
(x) in any interval 8 cannot exceed that of /(a?)

in the same interval; hence, since 2SF(S), for f(x), has the limit zero, the

corresponding sum for/+(a?) has the limit zero; and thus/+( is integrable.
In a similar manner it can be shewn that f~(x) is integrable.

*

* Du Bois Eeymond, Math. Annalen, vol. xx, p. 123. See also W. H. Young, Quarterly Journal
of Math., vol. xxxv, p. 190.
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Since f(x) =f
+
(x) f ~(x), we see from (6) (a) that

(*/(*)
dx =

b

f+(x) dx -
\

b

f-(x) dx.
J a -a .a

It should be observed that it is not in general true that, if f(x) be in

tegrate in (a, 6), and be expressed as the sum fi(x)+f2 (x), of two bounded

functions, then /j (x), fz (x) are also integrable in (a, b). For it is clear that,

f (x) being given, we may take for f^ (x} any arbitrarily defined non-integrable

function, then /2 (x) is also determinate and non-integrable.

(8) If f(x), &amp;lt; (x} be both integrable (R), and be such that
\ f(x) j

^ $ (x) \

for every value of x, then f(x) dx
(j) (x) ! dx.

In particular, if (f) (x) is constant, and equal to P, the upper boundary of

\f(x) in (a, b), then
\ [ f(x) dx ^P(b- a).

I

J a

rb

For
{| (j&amp;gt;(x) | \f(x) \]

dx is =0, since in every interval B no value of
. a

&amp;lt;(#)] ]/(#) |

is negative, and thus the sums of which the integral is the

I

rb rb

limit are all ^ 0. Also from (2), we have II f(x) dx ^ !/(#) |

dx, and this
J a J a

f
6

is ^
| &amp;lt;f&amp;gt;

(x) \

dx. The particular case follows by assuming &amp;lt; (x)
= P.

J a

If U, L denote the upper and lower boundaries off(x) in (a, b), then

L(b- a)

For 2SZ7(8), 2&L (8) each lies between U2S and L2S, or between U(b - a)

and L(b a); the same must hold of the common limit, which is the integral
6

f(x) dx.

(9) If ??!, 7;2 ,
... rj n&amp;gt;

... be an enumerable set of non-overlapping intervals

contained in (a, b}, in descending order of length, then the sum of the integrals

of f(x) taken through rj : , rj2 ,
... rjn ,

... converges to a definite finite limit, as n is

increased indefinitely ; f(x) being a function which is integrable (R) in (a, b).

Let us denote by Sn the sum of the integrals of f(x) taken through the

intervals. rj l , rj^, ... t]n . Since tj l + rj2 + ... +tj n increases with n, and is always
less than b - a, it has a definite limit as n is increased indefinitely ;

we can
therefore choose n so great that ?7,l+1 + wn+2 + . . . + rjn+m &amp;lt; e

,
for every value of

m, where e is an arbitrarily chosen positive number. With this value of n, we
see that Sn+m -Sn \&amp;lt;e.P, where P is the upper boundary of

; f(x) \

in (a, 6).

If 77 be an arbitrarily chosen positive number, we can choose e such that
e &amp;lt; 77IP ; thus n can be so chosen that

j

Sn+m - Sn
j

&amp;lt; 77, and hence Sn has a
definite limit, as n is increased indefinitely.
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(10) If /j (x), /2 (x), ...fn (#), ... be a sequence of functions, defined in the

interval (a, b), and /(a?) be such that, for all values of x, in (a, b),

where e is an arbitrarily chosen positive number, provided n is = a fixed integer
n

, dependent on e; the sequence {/(#)} is said to converge uniformly to

f (x), in the interval (a, b).

If a sequence offunctions {fn (x)}, all integrable (R), in the interval (a, b),

converges uniformly, in that interval, to the bounded function f(x), then f (x) is

integrable (R), and
rb rb

I f (x) dx = Km I fn (x) dx.
J a n~aoJ a

At almost every point of (a, b), that is, almost everywhere in (a, b), (see

333), all the functions of the sequence {fn (x}} are continuous; for the set

of all those points at which any of them are discontinuous has the measure

zero. Let be a point at which all the functions / (x) are continuous
;

if

(
~

^. %+h) is a neighbourhood of f, the fluctuation of/We (x)
in (

-
h, % + h)

is &amp;lt; e, if h be sufficiently small; the integer ?i e having been so chosen that

\f(x}fne (x)\&amp;lt;f,
in (a, b). It follows that the fluctuation of f(x) in

( ^&amp;gt;
+ h) is &amp;lt; 3e. Since e is arbitrary, is a point of continuity of f(x) ;

therefore f(x) is continuous almost everywhere in (a, b), and is therefore

integrable (R). Also

b fb

&amp;lt; (b a) ;

rb rb

and therefore I f (x) dx = Km / / (x) dx.
J a w~oo J a

jR-INTEGRALS OF FUNCTIONS OF TWO OR MORE VARIABLES.

338. The Riemann definition of the integral of a bounded function,

defined for an interval (a, b), may be extended at once* to the case of a

bounded function /(# (1)
,
#(2)

) defined in a rectangular cell (a
(1)

,
a(2)

;
b(l

\ b{2}

),

or more generally to the case of a bounded function f(x
(l]

,
x(2)

,
... x(f&amp;gt;}

),
of

p variables, defined in a ^-dimensional cell (a
M

,
a(2)

,
... a(p)

;
6(l)

,
6(2)

,
... b(p)

).

In the definitions given in 330, 331, we have only to consider systems of

nets in two, or in ^-dimensions, instead of linear systems.

Thus the upper and lower integrals! of f(x
(l)

,
a/2)

) in the cell (a
(l)

,
a(2)

;

6 (l)
,
6(2)

) may be denoted by
* This extension was made by H. J. S. Smith, Proc. Loud. Math. Soc., (1), vol. vi (1875),

p. 152, and also by Thomae, Einleitung in die Theorie der bestimmten Integrate, 1875, p. 33
;

also Schlomilch s Zeitschr., vol. xxi, p. 224.

t See Jordan s Cours d Analyse, vol. i, p. 34. An elaborate treatment of double integration has
been given by Stolz, Grundziige, vol. in, where the triangle or polygon is employed in relation to

the measure of sets of points, instead of the rectangle. On this matter see Schoenflies, Benefit,
vol. i, p. 179.
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which represent the limits of the sums of the products of the areas of the

meshes of a net Dn into the upper, or the lower, boundaries of the function

in the corresponding meshes. That these limits exist, and are independent of

the particular system of nets, is proved exactly as in 332.

When the upper and lower integrals have equal values, f(x
(l]

,
a/2)

) is

integrable (R) in the fundamental cell, and their common value is denoted by

/(&( ),
W2

&amp;gt;)

J (aO), a&amp;lt;

2
))

*

The necessary and sufficient condition that f(x
(l}

,
x { 2)

) is integrable (R), viz.

that the plane measure of its points of discontinuity should be zero, or in

other words, that the function should be continuous almost everywhere in the

cell, is established in the same manner as in 333, the proof requiring only a

slight modification.

The integral

/(M
1

. M 21
)

f(x {1
&amp;gt;, x) d O 1

, x\ where f(x^, x (2)

) ^ 0,
J (at

1
,
a(2

))

*

in the cell is the measure (/) of the three-dimensional set of points

(#
(1)

, x^\ x) defined by

it being assumed that this measure (J) exists.

A function /(#
(])

,
# (2)

) which takes both signs in the fundamental cell

is the difference of two functions /j (x
(l}

,
x {2)

), f2 (x
{l)

,
x (2)

), both of which are

= 0. If the frontiers of both the three-dimensional sets

a ^ x^ ^ 6 (1
&amp;gt;

;
a (2) ^ x 6 (2)

;

&amp;lt; &amp;lt;

3

^/, (x,

a d) &amp;lt;

a-n) ^ jd)
;
am &amp;lt;

#(2) ^ j(
2 ) . o &amp;lt; x(3) /2 (a/

1

,

have their three-dimensional measures zero, the function f(x{
l

\ x{- }

) is in

tegrable (R) in the cell, and the integral is the excess of that of /i (V
1

*, #(2)

)

over that of/2 (&amp;gt;

(l)
,
^(2)

).

The integral

1

), W2
), ... 6(P))

may be considered in a precisely similar manner, and the condition for its

existence is an extension of that for the cases p=l, 2.
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339. Next, let G be a bounded set of points in plane space ;
it is

therefore contained in the interior of a fundamental rectangular cell (a
(1)

, a(2)
;

6(l)
,
b (2)

).
Let us suppose that a bounded function f(x

{l

\ #*2)

) is defined for all

the points of G. Let /(#
(l)

,
o;

(2)

) be defined in the fundamental cell by the

conditions

/O(1)
, x) =/0 (1)

,
tf (2

&amp;gt;),

at all points of G,

and /0 (1)

,
^ (2)

)
= 0, at all points of C (G).

If we consider, for the function f(x
w

,
# (2)

),
the sum 28 [U (8) L (8)}, for

those meshes of the plane net Dn ,
fitted on to the fundamental cell, which

contain a point of G and also a point of C(G), we see that, for all such meshes,

U(8) L (8) &amp;gt; 0, unless U(8) and L (8) are both zero, since there is at least

one point in the mesh at which /( ,
ar&amp;lt;

2

)
= 0. Thus 28 [U(8)

- L (8)},

taken for all such meshes, is
&amp;gt;0,

unless f(ac
w

,
# -

)
= at every point of all

these meshes.

Unless f(x
m

,
# (2)

)
= 0, at every point of the frontier of G, with the possible

exception of a part of G of which the measure (J) is zero, the limit of

28
{ U(8) L (8)}, as n ~ oc

,
will not be zero unless 28, taken for all meshes

that contain points on the frontier of G, converges to zero, as n ~ oc . Thus it

follows that the upper and lower integrals of f(xm , x^) in the fundamental

cell will have unequal values, and thus that f(x
m

,
# (2&amp;gt;

) is not integrable (R),

unless, either the set G is measurable
(J&quot;),

or f(x
w

,
# (2)

)
= at all the points

of its frontier with the possible exception of a part, of which the measure

(J) is zero.

We define the jR-integral

, x),
(G)

, x} over the set G, to be the value of

when the latter integral exists, which we have seen is only, in general, the

case when the set G is measurable (/).

In the definition of the E-integral of a bounded function /(# (1)
, x),

defined for a bounded set G, it will accordingly be assumed that G is

measurable (/) ;
and then the integral exists when the function that is equal to

f(x
(l

\ x) at all points of G, and is elsewhere zero, has an ^-integral in a

cell that contains G.

An integral
r(60, 6&amp;lt;

2
&amp;gt;)

J
(a&amp;lt;

1
), a&amp;lt;

2
))

^

or

(G)I.
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is, in accordance with tradition, spoken of as a double integral, although it is

defined as the single limit of a finite sum, and accordingly the sign of integra
tion is here employed only once. The term &quot;double,&quot; in the name double

integral, must be taken to have reference to the two-dimensional set of points
for which the function is defined. A similar remark applies to the case of a

jt&amp;gt;-fold integral. The above notation is such that if

O (1

&amp;lt;, x), or O (1

&amp;gt;,

#&amp;lt;

&amp;gt;, ...#&amp;lt;),

be denoted by a single letter x, a double, or p-fold, integral may be denoted by
rb

f(x) dx,

or by f(x)dx,
J (&)

independently of the number of dimensions of the space in which the points
a, 6, x lie. This is in accordance with the parity of the properties of the
J2- integral in any number of dimensions with those of the .R-integral in
linear space.

340. With slight adaptation, the properties established in 337 are

applicable to the case of functions of two or more variables. The notation

will be the same as for functions of one variable, provided the single letter x
is employed as typical of

(&amp;gt;;

(I)

, x^\ ...
#&amp;lt;*&amp;gt;)

in space of ^-dimensions.

The definition iri (1) of
ra

/(*&amp;gt;&, . - , -M
b

b

as the value of - I f(x)
J a

holds for a cell (a, b). The proof of the property (2) is unaltered by employing
for a cell, instead of a linear interval. The property (3) is unaltered

essentially ;
it becomes, for the case p = 2,

(6W,W

.(), aW)
/(M 1

) f //( ). M2
) + /,( -!))

(aO + fcO

The property (4) holds with its form unaltered. The property (5) holds for a
cell

(or, 13) contained in the cell (a, b).

If c is a point in the cell (a, b), the cell (a, b) is divided into 2? cells by
the

(^&amp;gt;- l)-dimensional planes through the point c, and

L

b

f(x)dx

is expressed as the sum of the integrals over the 2*&amp;gt; cells into which (a, b) is

so divided.

H. 29
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The properties (6), (7), (8) remain unaltered, and (9) holds for an

enumerable non-overlapping set of cells in the cell (a, 6).

A more general form of (5) which holds for ja-ple integrals is the following:

If G be a bounded set that is measurable (J), and if G be the sum of two

sets O l and G2 ,
both measurable (J), then

f(x)dx.
J (G) - (,) (G,:

To prove this theorem, let K be the set of points of G at which the saltus

of/(#) is ^k; then K has two components, Kl a part of G
l ,
and Kz a part

of G. The only points at which the saltus of /(#), considered as defined in

GI only, and zero elsewhere, is ^ k, consist of those points of K
l that are

interior to GI, together with points forming a set K
:
on the frontier of Gl

and G2 . Since the content of this frontier is zero, the measure (J) of K-{ is

zero; and the measure (./) of the set of points of K
l
interior to G^ is also

zero, since Kl has the content zero. Since the set of points at which the

saltus o(f(te) regarded as defined in G1} and elsewhere zero, is zero, it follows

that f(x) is integrable (R) in 6^; and similarly it can be shewn to be

integrable (R) in G2 . The integral

f(x) dx
&amp;gt;

is, by definition, the limit of the finite sum

82M (82) + ... + 8mM(8m )

taken for a net fitted on to the fundamental cell, or interval. The meshes 8

consist (1) of those which contain interior points of GI only, but no points on

the frontiers of Gl and G2 , (2) of those which contain interior points of G2 only,

but no points on the frontiers of Gl
and G2 ,

arid (3) of those which contain

points of G1
and 6ra which are not interior points of either set. but are points

on the frontiers of Gl
and G2 . The above sum may be divided therefore into

three portions containing those meshes 8 which respectively belong to (1), (2),

and (3). The limit of the first of these sums is

f(x)dx,
(G,)

that of the second is f(x) dx,
iG

and that of the third is at most numerically equal to U multiplied by the

content of the points on the frontiers of Gl and G2 \
where U denotes the

upper boundary of |/(#)| in G. Since the contents of the frontiers are zero,

the limit of the third part of the sum is zero. The theorem has accordingly
been established.



340-342] Integrable nidi-functions and equivalent integrals 451

INTEGRABLE NULL-FUNCTIONS AND EQUIVALENT INTEGRALS.

341. If f (x) be integrable (R) in the interval, or cell, (a, b), and be such

that in every interval, or cell, contained in (a, b), its integral is zero, then

f(x) is said to be an R-integrable null-function.

The necessary and sufficient condition that a bounded function f(x) may be

an R-integrable null-function is that f(x) = Q, almost everywhere in its domain.

Let G]f denote the set which contains the points x at which

I/O*) *,

where k is any positive number.

To prove the sufficiency of the condition, let Dn be a net with closed

meshes fitted on to the interval, or cell, (a, b), and let 28 denote the sum of

the measures of those meshes of Dn which contain at least one point of Gk .

If the condition of the theorem is satisfied, 28 has the limit zero, as n ~ oo .

The sum 581f(8) employed in 330 is in absolute value

&amp;lt; P28 + (A - 28 ) k,

where A is the measure of the interval, or cell, (a, 6), and P is the upper

boundary of f(x) \

in (a, b). If 28 converges to zero

is less numerically than the arbitrarily chosen positive number e, for all

sufficiently large values of n. If A; be chosen &amp;lt; e/J.,
j

28J/ (8)
[

&amp;lt; 2e, for large

enough values of n. It follows that lim 28^(8) =0, and therefore /(#) is
n~ao

integrable (R) in (a, b), and its integral has the value zero. The same argu
ment applies to any integral, or cell, (a, /3) contained in (a, b).

To shew that the condition is necessary, let it be assumed that f(x) has,

in every interval, or cell, contained in (a, b), an .R-integral that vanishes.

At any point #1; at which f(x) is continuous, /(#i) must be zero. For let

/(#i) have, if possible, the positive value c; then a neighbourhood of x
l can

be determined such that, at every point of it, /(#) lies between c + e and c e,

where e is an assigned positive number &amp;lt; c. The integral of f(x) over this

neighbourhood, which we take to have the measure X, is ^ X (c e) &amp;gt; 0,

contrary to the hypothesis. In a similar manner it can be shewn that f(x^
cannot be negative; therefore /(a?,)

= 0. Since f(x) is continuous almost

everywhere in its domain, it follows that f(x) has the value zero, almost

everywhere, that is, with the possible exception of points belonging to a set

of measure zero.

342. Two functions f(x), $ (x) both integrable (R), which have their

integrals equal, when taken over any interval, or cell, contained in the funda
mental interval, or cell, (a, b), must differ from one another by an 7?-integrable
null-function.

292
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If f(x) be integrable (R), and consequently point-wise discontinuous, and

ty(x) be that function defined, as in 241, by extension of the function

which is defined only at the points of continuity of /(#), and has at those

points the same functional values as/(#) itself, then
-\Jr (x} is integrable (R),

although it is in general multiple-valued at the points of discontinuity of

f(x). It has been explained in 285 that Riemann s definition is applicable

to such a function as
-v/r (x).

That
i/r (x) is integrable (R) follows from the fact

that its points of discontinuity form a set of which the measure is zero. The

function f(x)-^r (x) is zero at the points of continuity of f(x}, and is dis

continuous only at the points of discontinuity of f(x), which form a set of

measure zero. Consequently f(x\ ty(x) is an J^-integrable null-function,

and the two functions have equal integrals in any interval, or cell, for which

f(x) is defined. It has thus been shewn that:

A function f(x) that is integrable (R) in an interval, or cell, is the sum of

an R-integrable null-function and of the function ty (x) obtained by extension

of the function defined by the values off(x} at its points of continuity.

THE FUNDAMENTAL THEOREM OF THE INTEGRAL CALCULUS.

343. The fundamental theorem of the Integral Calculus asserts that the

operations of differentiation and of integration are in general inverse operations.

Before we proceed to consider the conditions under which this is the case, the

following theorem will be established :

Iff(x) be a boundedfunction which is integrable (R) in the interval (a, b), then

I f(x)dx is a continuous function of x, for the whole interval (a, b}, and it is

a

a function of bounded variation in (a, b\ It is also absolutely continuous

in (a, b).

It has already been shewn that / (x) dx exists, for any point x of the
. a

interval (a, 6); denoting its value by F(x), we have

F(x h} - F(x] = I

&amp;lt;CI

f(x) dx ;

J X

hence by (8), of 337, \F(x h) -F(x)\ Ph, where P is the upper boundary

of I/O)! in
(&amp;gt; &) If e be anv arbitrarily chosen positive number, and we

take hj, &amp;lt; e/P, then for all values of h which are ^ hlt we have

F(tck)-F(*)\&amp;lt; ,

but this is the condition of continuity of F (x) at the point x. In case x be one

of the end-points of (a, b), h must be restricted to have one sign only.

To prove that F (x) has bounded variation in (a, 6), let (a, b) be divided
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into n sub-intervals by the points a, x1} a-2 ,
... trn-\, b. The sum of the absolute

differences of the values of F (x) at the ends of these sub-intervals is

\\

Xl

f(x)dx
J a

f(x)dx

r&
|

and this is, in accordance with the theorem (8) of 337, ^ I I /(#) |

dx\ and
J a

therefore the sum is less than a fixed positive number. Since the total variation

of F(x) in (a, b) is bounded, it follows from the theorem of 246 that the total

fluctuation in the interval is also bounded.

If (ttj, frj), (a2 ,62
)&amp;gt; (an&amp;gt;

bn ), ... be a finite, or infinite, set of non-overlapping

intervals contained in (a, 6), of which the total measure is &amp;lt; 77,
we have for

the finite, or infinite sum

2 F (6r)
- F (ar)

|

72 (br
-

a,) &amp;lt;r) U,
r = l

where U is the upper boundary of j/(#)| in (a, 6). The number 77 being
taken to be e/U, where e is an arbitrarily chosen positive number, we see

that the condition, given in 218, for the absolute continuity of F (x) is

satisfied.

When f(x) is integrable in (a, b), the function I f(x) dx, which has been
a

shewn to be absolutely continuous, and of bounded variation in (a, b), is said

to be the indefinite integral corresponding to f(x).

If f(x) be any function defined in (a, 6), a function
&amp;lt;/&amp;gt;(#)

which, at every

point x of the interval, possesses a differential coefficient equal to /(#), is said

to be a primitive off (x).

The definition is, however, frequently extended to cases in which
&amp;lt;f)

(x) either

does not exist, or is not equal to /(#), at points belonging to an exceptional set,

of measure zero; the condition
&amp;lt;$&amp;gt;(x)=f(x) being satisfied at all points not

belonging to the exceptional set.

i X

Taking the function F(x)= I f(x)dx, as the indefinite integral corre-
J a

sponding to
_/ (#), the following properties will be established:

(A) Under certain restrictions F (x) possesses a differential coefficient

which is equal to /(* )&amp;gt;

and thus F(x} is a primitive of /(#).

(B) Also it will be shewn that, if 6 (x) be a function which possesses a

differential coefficient f(x), then f(x) may have an indefinite integral F(x),
in an interval (n, x), which integral differs from &amp;lt; (,*) by a constant only; and

thus that the indefinite integral of /(* ) is determinate except for an additive

constant.

It will appear that there are cases of exception to both theorems. When
F (x} is an indefinite integral, it may happen that at certain points F(x) does
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not possess a differential coefficient
;
and when

&amp;lt;/&amp;gt;
(x) is a function which

possesses a differential coefficient, it is not always the case that the latter is

integrable (R), and when integrated yields the function
&amp;lt;f&amp;gt;

(x} except as

regards an additive constant.

344. If f(x) be continuous in the interval (a, b), and F(x) denote the

i
x

indefinite integral I f(x) dx, then, at every point in (a, b), F(x) possesses a
J a

differential coefficient which is equal to f(x).

For since f(x) is continuous, an interval (x h1} x + h^) can be found such

that \f(x6h l)f(x) &amp;lt; e, for all values of 6 numerically less than 1. It

fk
follows that F (x // )

- F (OB)
=

I / (x) dx
J X

lies between h [/(#) + e] and h [f(x)
-

e],

provided h&amp;lt;h 1
. Hence, since

F(xh)-F(x)
h

lies between f(x) + e, f(x)
-

e,

for h &amp;lt; h 1} it follows that f (x) is the differential coefficient of F (x). At the

points a, 6, the function F(x) possesses derivatives on the right and on the left

respectively, and their values are f(a),f(b).

If &amp;lt; (x) be a function which at every point of (a, b} has a differential

coefficient, which is a continuous function f(x\ then

C

(f) (x} (j) (a)
=

I f(x)dx.
J n

For let I f(x) dx be denoted by F(x), then the function
&amp;lt;/&amp;gt; (as)

- F(x) has
J a

at every point a differential coefficient which is zero, and therefore, by the

theorem of 267, the function
&amp;lt;f&amp;gt;(x)-F(x)

is constant; it is clear that this

constant must be
&amp;lt;/&amp;gt; (a) ;

and thus the theorem is established. In this theorem
and elsewhere, a derivative at a on the right, and a derivative at b on the left,

are included in the term differential coefficient.

345. If a given bounded function f(x) that is integrable (R) be not every
where continuous in the integral (a, b), the proof given above is applicable

rx
to prove that, at any point of continuity off(x\ the function I f(x) dx has a

J a

differential coefficient equal to f(x\ and thus has a differential coefficient almost

everywhere in (a, b).

That F(x) has a differential coefficient almost everywhere has been shewn,
in 298, to follow from the fact that F (x) is of bounded variation. It has
here been proved independently, for the special case of an indefinite integral.
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At a point of ordinary discontinuity of /(#), the same proof, when modified

by taking only positive values of h, or only negative values of h, and using

f(x 4- 0) or f(x 0), in the two cases, instead of f(x), will shew that F(x) has

at such a point derivatives on the right and on the left, and that these are

f(x + 0), f(x
-
0) respectively. At a point at which f(x) has a discontinuity

of the second kind, the proof fails altogether; at such a point therefore F(x)

need not possess a differential coefficient, nor definite derivatives on the

right and on the left, but may have all its four derivatives D +F (x), D+F(x),

D~F(x\ D-F(x) of different values.

If f(x) be integrable (R), and consequently point-wise discontinuous, and

*lr(x) be the function formed by extension of the functional values of f(x) at

its points of continuity, as explained in 342, we have f(x}
= %(#) + ty(),

where ^ (x) is an integrable null-function
;
and therefore f(x) and ty (x) have

the same indefinite integral F(x). The derivatives of F(x) are independent

of the function ^ (x), and depend only upon -fy (x), which is determined by the

values of f(x) at its points of continuity.

rx-t-h

Since F (x 4- k) F(x) = -fy- (x} dx, and since the values of ty (x) in the

interval (x, x + h) all lie between ^r(x + 0)+e1 and ty(x+ 0)
-

?2 ,
where

F(x + h)- F(x) .. ,

e 1( e., converge to zero as h does so, we see that
,

lies between
it/

^lr(x + 0) + &amp;lt;?!

and i/r (x + 0) - e2 , hence D +
F(x}, D+ F(x) both lie between*

fy (x + 0) and
$&amp;gt; (x + 0). By taking h negative, we see that D~F(x), D_F(x)

both lie between
&amp;gt;/r (x 0) and ty (x-Q). In case

i/r (x) be continuous on the

right, F(x) has a derivative on the right, ^(x + Q); and in case ty(x) is

continuous on the left, F (x} has a derivative ty(x-Q) on the left. It may

happen that
-\|r (x) is continuous at a point of discontinuity of f(x) ;

at such

a point F(x) has a differential coefficient equal to the value of ^r (x). Even

when ^r(x) has a discontinuity of the second kind, it is possible that F(x)

may have a differential coefficient, or a derivative on the right or on the left,

or both.

If f(x) be integrable (R), and F (x) be the corresponding indefinite integral,

any one of the four derivatives DF(x), of F(x), is integrable (R), and has

F(x) for its indefinite integral.

For DF(x) differs from f(x) -only at a point of discontinuity of f(x), and

*
It is stated by Schoentiies, see Bericht iiber die Mengenlehre, p. 208, that the derivatives of

F(x) are equal to ^ (x~+Q)~, ^J_+) ^(ar-O), Ifo&quot; )- This, however, is not necessarily the

case. It has been shewn by Halm, Monatshefte der Math. u. Physik, vol. xvi, p. 317, that / (x)

may be so chosen that the corresponding integral function has, at a particular point, derivatives

on the right having arbitrarily given values lying between, or equal to, the values of \f/(x + 0),

i(/(x + Q) at the point; and in particular that f(x) may be so constructed as to have, at the point,

a definite derivative which has an assigned value between the two limits.
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at such a point DF(x) lies between the upper and lower boundaries of
ifr (x) ;

thus f(x)
- DF (x) is an integrable null-function. Therefore

\* ty(x)dx=\

X

D+F(x}dx= f

X

D+ F(x)dx = F D~F(x)dx
J a J a J a * a

= F D_F(x} dx = Ff(x) dx
= F(x).

J a a

It has been shewn that the indefinite integral of a function that is

integrable (R) has a differential coefficient at the everywhere dense set of

points of continuity of the discontinuous function ;
there may however also be

an everywhere dense set of points at which this continuous function does not

possess a differential coefficient.

346. It has been shewn that, if the continuous function
&amp;lt;fr(a?) possesses

everywhere a differential coefficient f(x) which is everywhere a continuous

function, then

&amp;lt; O) - (a)
= /

X

f(x) dx
= F(x).

J a

This is a particular case of the following more general theorem:

If &amp;lt;f&amp;gt;
(x) be a function continuous in the interval (a, b), and if one of its four

derivatives D +
$(x), &amp;gt;+&amp;lt;/&amp;gt; 0)&amp;gt; ~&amp;lt;/&amp;gt; 0)&amp;gt; D_$(x) be a bounded R-integrable

function in (a, b), then each of the other three derivatives is also bounded and

integrable (R) in (a, b), and
&amp;lt;f&amp;gt; (x)

-
&amp;lt;/&amp;gt;

(a) is the integral of any one of the four

derivatives through the interval (a, x}.

If (a, x) be divided into a number of parts (a, x^, (x1} x.2\ ... (xn_lt x), it

has been shewn in 280, that $ (xr)- 9 (&r-i) Heg between the upper and
xr xr_i

lower boundaries of any one of the four derivatives D$ (x) in the interval

Ov-i&amp;gt;
xr)-

It follows that
4&amp;gt; (x)

-
tf&amp;gt; (a) lies between two sums

(x,
- a)U(a, xlt D) + (x2 -x,} U (x,, x,, D)+..,+(b- xn_,) U(xn^, b, D),

(xl -a)L(a, x,, D) + (x2 -xl)L(x l ,
x2 , D) + ... +(b - xn_,} L(xn.. l , b, D),

where U(xr_ l ,
xr , D),L(xr_l ,

xr , D) are the tipper and lower boundaries of D0(.r)

in the interval (xr-i, r) ,
and it is known that these are the same for all four

derivatives. The limits of the above sums, when the intervals are diminished

indefinitely, so that the greatest of them converges to zero, are the upper and

lower integrals of any one of the four functions
D&amp;lt;j&amp;gt; (x).

If it be known that

any one of these derivatives is integrable (R) in (a, x), then the upper and lower

integrals are equal, and the other three are also integrable, the common value

.of the integral being &amp;lt;/&amp;gt; (x)
-

&amp;lt;f&amp;gt;
(a). Thus

- 9 (a)
= \* D+$ (x} dx =

X
D+$ (x} dx = D-&amp;lt;/&amp;gt; 0) dx = &-.$ (x) dx.
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It should be observed that, as has been shewn in 280, the four derivatives

are all equal to one another at a point at which one of them is a continuous

function
;
and thus at such a point there is a differential coefficient. If one

of the derivatives be integrable, there is therefore a set of points of measure

equal to that of the interval (a, 6), at which all four derivatives have equal

values, and at which therefore a differential coefficient exists.

347. In case
D(f&amp;gt; (x) be a bounded function which is not integrable (R),

the above proof shews that
&amp;lt;j&amp;gt;(x) $ (a) lies between the upper and lower

integrals, in (a, x), of any one of the four functions
D(f&amp;gt; (x}. This includes the

case in which
(f&amp;gt; (x) has a differential coefficient which is bounded but not

integrable (R) ;
in that case $ (x)

(f&amp;gt; (a) lies between

rx

&amp;lt;/&amp;gt;
(x) dx and I &amp;lt; (x) dx.

J a

7x+h
Since I &amp;lt; (x) dx is in absolute value less than h . U, where U is the

tu

upper boundary of
&amp;lt;/&amp;gt; (x) in (a, b), it follows, as in 343, that I

&amp;lt; (x) dx is a
J a

f
x

continuous function of x
; similarly it may be seen that I

&amp;lt;/&amp;gt; (x) dx is a
J a

continuous function of x. At a point of continuity of
&amp;lt;fi

(x), both

F$(x)dx, r&amp;lt;$&amp;gt; (x}dx
J a J a

have the differential coefficient
&amp;lt;/&amp;gt;

(x), as may be seen by a process precisely
similar to that in 344. Thus the upper and lower integrals of

&amp;lt;f&amp;gt; (x) possess

properties similar to those of the integral of &amp;lt; (a
1

),
when it exists, and both of

them may be regarded as
primitives&quot;

of
&amp;lt;/&amp;gt; (x), in the extended sense.

The function D&amp;lt; (x), when not integrable (R), may be a non-integrable

point-wise discontinuous function, or it may be totally discontinuous.

If /(#) be any non-integrable bounded function, the following theorems

may be established by proofs similar to those in 343 and 345:

The -upper and lower integrals \ f(x)dx, I f(x) dx are continuous, and
J a J a

of bounded variation in (a, b).

At any point of (a, b), at which f(x) is continuous, the upper and lower

~fx
r.r

integrals I f(x)dx, I f(x) dx each possess a differential coefficient which is
J a

Jji

equal to f(x).
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348. An important general class of continuous functions for which the

four derivatives are not integrable (R), even when a differential coefficient

exists, or when derivatives on the right and on the left always exist, is the

class of everywhere-oscillating functions. Those functions which become

everywhere-oscillating functions when a linear function is added have the

same property.

If a derivative DF(x) be such that, in every interval, it has no finite

upper boundary or no finite lower boundary, it is certainly not integrable (R) ;

it is therefore only necessary to consider an interval in which the function

DF(x) is bounded. Let (a, x) be such an interval, and let us suppose that

F(x) F(a} is not zero.

In every interval (xr_ly xr } contained in (a, x), U (xr_lt xr , D) the upper

boundary of DF(x) is positive, and L(xr_l ,a;r , D) the lower boundary of

DF(x) is negative; thus the two sums

(xl -a) U(a, Xi, D)+(x2 -x^) U (xlf xz , D)+ ...

+ (b- #_,) U (xn_^ , 6, D),

(#1 -a) L (a, x-i, D) + (x^ x
l)L (x^ x, L)} + ...

+ (b
- xn_,} L (xn_^ b, D),

are such that the first is essentially positive, and the second essentially negative,
the non-vanishing number F(x) - F(a) lying between them.

It follows that the limits of these two sums, as the number of sub-divisions

of (a, x) is increased indefinitely, must be different from one another, since

they cannot have zero as their common value
;
thus

f

X

DF(x)dx, I* DF(x}dx
J a J a

are distinct from one another.

It has thus been proved that a continuous function which is everywhere-

oscillating in (a, b) cannot have a derivative which is integrable (R) in (a, b),

even if it have everywhere a differential coefficient, or definite derivatives on the

right and on the left.

The function DF(x), or f(x), in the case- of such function, may be a

point-wise discontinuous function such that the measure of the set of points of

discontinuity is greater than zero, or it may be a totally discontinuous function.

A continuous monotone function, which is not reducible to a function with

an infinite number of oscillations by the addition of a linear function, has at

every point definite derivatives on the right and on the left, each of which is

either continuous or is an 72-integrable discontinuous function, since either

derivative has only ordinary discontinuities. Thus such a function has

^-integrable derivatives, provided these derivatives are bounded in the

interval.
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In case the continuous function F (x) have a differential coefficient, or a

derivative which is not everywhere finite, or is not bounded in the interval,

this derivative is not integrable in the sense in which we have hitherto denned

integration. This case will be considered in connection with the theory of

improper integrals.

349. The preceding investigations provide answers to the questions which

arise as regards the validity of the two propositions (A) and (B) of 343,

which together constitute the fundamental theorem of the Integral Calculus,

asserting that the operations of differentiation and of integration are in

general reversible. The definition of a definite integral has hitherto been

restricted to that of Riemann, and is applicable to bounded functions only.

The extensions of that definition to the case of unbounded functions, which

will be considered later, and also the more general definition of integration

due to Lebesgue, to be considered in Chap, vii, will lead to corresponding

extensions of the scope of the fundamental theorem.

X

As regards the theorem (A), that the indefinite integral F(x) = f(x) dx
a

of a bounded ^-integrable function possesses a differential coefficient equal,

at a point x of (a, 6), to f(x), it has been shewn that the theorem holds

without restriction in case f(x) is a continuous function
;
but that, if f(x} be

not continuous, the theorem still holds as regards every point of continuity of

f(x). It follows that the points of (a, 6) at which F (x) either possesses no

differential coefficient, or possesses one which is not equal to f(x), form a set

of measure zero, Avhich may however be everywhere dense in (a, 6).

The theorem (B) that, if
&amp;lt;f&amp;gt;(%) possess a differential coefficient f(x), then

Cx

the corresponding indefinite integral F(x)
=

I f(x) dx differs from &amp;lt; (x) only
. a

by a constant, holds if f(x) be a continuous function, and more generally, if

f(x) be bounded and integrable (R). In case &amp;lt; (x) does not at all points possess
a differential coefficient, the more general theorem is applicable that, if any
one of the four derivatives of

&amp;lt;j) (x) be bounded and integrable (R), then the

integral function corresponding to that derivative differs from
(f&amp;gt; (x) by a

constant only. The theorem fails either in case &amp;lt; (x) be not a function with

bounded derivatives, or in case it be a function with bounded derivatives, but

those derivatives do not satisfy Riemann s condition of integrability.

The problem of the determination of a continuous function which shall

have a given function f(x) for its differential coefficient, at every point at

which f(x} is continuous, may be considered here in the case in which f(x) is

restricted to be bounded in the interval (a, b) for which it is defined. This

problem of the determination of such a primitive off(x} is regarded as having
a unique solution provided functions exist which satisfy the condition, and
further provided any two such functions differ from one another by a constant
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only, that constant having one and the same value for the whole interval

(a, b). In the first place, the problem cannot be determinate unless f(oc) be

rx rx

mtegrable (R); for either of the two functions I f(x) dx, I f(j:}dx satisfies
J a J_a

the condition of the problem, and these functions do not differ from one

another by a constant, as they both vanish at the point a, and are elsewhere
rx

unequal. Next, if f(x) be integrable (R), the function 1 /(a?) dx satisfies the
J a

condition of the problem, but the solution is not necessarily unique. In case

however the points of discontinuity of the ^R-integrable function f(x) form an

enumerable set, the theorem of 267 shews that the solution is determinate;
for any two functions which have equal finite differential coefficients at all

points of (a, b) except those of an enumerable set, differ from one another by
rx

a constant. In this case I f(x] dx + C is the function required. When the
J a

points of discontinuity of the integrable function f(x) form an unenumerable

set, with a perfect nucleus, although that set must have zero measure, the

f*
problem has not a unique solution. For, although I f(x)dx is a function

J a

which has the required property, another solution is obtained by adding to

it any continuous function which has all the intervals complementary to the

perfect component of the unenumerable set as lines of invariability; that such

functions exist has been established in 269. There exists however only one

f
function, viz.

|
f(x) dx, with bounded derivatives, which satisfies the condition

a

of the problem; for it has been shewn in 286, that any two functions which
have bounded derivatives, one of which derivatives is prescribed at all points
not belonging to a certain set of measure zero, differ from one another by a

constant.

Similar remarks apply to the more general problem of the determination
of a function which shall have one of its four derivatives, say the upper one
on the right, equal to a given function f(x) at every point of continuity of

f(x). This problem has a solution whenever/(&) is bounded; in virtue of the

theorem of 267, the solution is unique when/(V) is integrable (R), and the

points of discontinuity of f(x) form an enumerable set. When f(x) is

integrable (R), and the set of points of discontinuity is unenumerable, there

exists, in virtue of the theorem of 286, only one solution for which the

derivatives are bounded. As before, if the restriction, that the required
function is to have bounded derivatives, be not imposed, the solution of the

problem is indeterminate.
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EXAMPLE.

The following example was given* by Volterra, as the first case of a continuous

function possessing a bounded differential coefficient, not integrable (R).

Let G be a perfect non-dense set of points in the interval (a, b\ and such that its

content is greater than zero. Let (, /3) be an interval complementary to the set G, and

let d&amp;gt; (x. a) = (x a)
2 sin . and therefore d&amp;gt; (x. a)= 2 (x a) sin cos . Thex-a x-a X-a

function &amp;lt;

(.?, a) vanishes at an infinite number of points in (a, /3) ;
let a + y be the greatest

value of x which does not exceed ^(+-/3), for which (#, a) vanishes. Let F(x) = Q at

every point of G, and in each interval (a, /3) complementary to G, let F (x} = &amp;lt;fr (x, a), for

values of x such that a^& ^Sa+y; let F(x)= (f) (a+ y, a), for values of x such that

a + y&amp;lt;.r^-y; and let F(.v)= -&amp;lt;f&amp;gt; (x, p), for -
y ^ * ^ 0. The function F(x} is

continuous, and has everywhere a finite differential coefficient which is limited in the

interval (a, V). It is easily seen that F (x) vanishes at every point of G. The function

F (x) has a discontinuity of measure 2 at each point of the set G, which is not of zero

content, and therefore F (x) is not an integrable function.

FUNCTIONS WHICH ARE LINEAR IN EACH INTERVAL OF A SET.

350. The existence of continuous functions which are linear in each

interval of an everywhere dense set of intervals has been already referred to

in 274. It has been shewn in 269 how a function f(x) can be constructed

which is continuous, and has as lines of invariability the intervals comple
mentary to a non-dense perfect set of points. It is clear that the integral

f
x

function f(x) dx is linear in each of the intervals, and being also continuous,
J a

it is a function of the type referred to. A more general function which is

continuous, and is linear in each interval of the set, may be obtained by
f
x

adding to f(x) dx any continuous function for which the intervals of the
j &

set are lines of invariability.

INTEGRATION BY PARTS.

351. If u, v denote functions of x, denned for the interval (a, b), and which

have continuous differential coefficients .
- in that interval, the formula

dx dx

d (uv) _ dv da

dx dx dx

leads at once, by integration over the interval (a, b), to the well-known formula

j

6 dv, L [
6 du, I&quot;

*]u j- dx + I v -j- dx =
\
uv

\

J a dx J a dx L J

for integration by parts, due to Leibnitz.

* Giorn.di liattaglini, vol. xix, 1881.



462 The Riemann integral [CH. vi

The simplest generalization* of this formula is that, if /(#), g(x) are

bounded and integrable (R) in the interval (a, b), then

rb C rx
|

rb i rx
j

rb rb

J a (.J a ) -a [J a } J a J a

To prove this formula, we employ the identity

r=p r=p r = p r=p
^ ^ /Q X&quot; t ^ /O

&amp;gt;

= ! r=\ r = \ r = l

where sr denotes ct1 + a2 + . . . + ar ,
and s r-i denotes & + &+...+ ^r-\-

In a net Dn fitted on to the interval (a, b), let ar BrMl (8r ), where M-L (Br)

is a number not greater than the upper boundary of f(x) in the mesh 8r ,
nor

less than the lower boundary of f(x) in 8r ;
let /3,. be 8rM2 (8r), where M2 (8r)

is defined similarly in relation to g (x). We have then, if p = mn ,

t=r -I

SJ\ V fr 1* /x \ I

Oy) _, O(Juj(Oj!
* = 1 J

r=\ ) = !

r6 j-=?nn

Let n be so great that f(x)dx differs from both 2 8r U1 (8r ) and
J a r = l

= m n rb

2 8r Z! (8r) by less than 77 ;
and so great that g (x) dx differs from both

2 Sr U2 (?&amp;gt;r)
and 2 BrL 2 (Sr) by less than 77; where 77 is an arbitrarily

chosen positive number. C/i(8r ), L^ (8r) are the upper and lower boundaries of

f(x) in the mesh 8r ,
and U2 (8r), L.2 (8r) those of g (x).

Then it is clear that, for every value of r,

Cx t = r

hence I

r

f(x)dx and 2 8t
M

1 (8t ) differ from one another by less than rj.

A similar result holds with relation to the function g(x); the mesh 8r being

If Ml (8r) =/(^,._ 1 ),
and M2 (8r)

= g (xr^), we see that

r=l

*=
&quot;n Cxrl T= n

differs from 2 8r f(xr-i) g (x) dx by less than 77 2 8r
| / (^-0

j

or by
= ! Ja r = l

less than A (b a) 77, where A is the upper boundary of
j f (x) in (a, b). A

similar result holds with respect to g (x}.

* See Thomae, Zeitschr. f. Math., vol. xx, pp. 475-478; also Hardy, Messenger of Math.,

vol. xxx, pp. 185-187, and vol. XLVIII, p. 90.
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As 77 is arbitrarily small, we now see that, when n ~ oo
,
the formula

obtained by proceeding to the limit of the expressions in (1). gives the above

formula for integration by parts.

The formula is equivalent to a somewhat more complex formula which was

given* by Du Bois Reymond.

Let or, ft be fixed points in the interval (a, b). Writing

F(x}=\
X

f(x)dx, G(x)=T g(x)dx,
J a J a

the above formula becomes

f f(x) G (x) dtc+f g (x) F(x) dx = f f(x) dx ^ g (x) dx.
a

-&amp;gt; a J a J a

If we subtract from each side the expression

G (/3) [ f(x) dx + F (a) !

b

g (x) dx,
J a J a

and express each of the integrals on the right-hand side as the sum of two

integrals, taken from a to a and from a to b, in the first case, and from a to @
and to 6,in the second case, we find, after a little reduction, Du Bois Reymoiid s

formula for integration by parts:

Cb f rx
)

rb
(
rx

)

/(*) g(x)dx \dx+\ g(x-}\\ f(x)dx\dxa (J /3 J a [Jo. J

r rx rx ~\b-
/(*)**] 9(x)dx\ .

L^a J P Ja
This formula reduces to the earlier one, if we take a = ft

= a.

The case of functions f(x^, x), g (x^, x\ both integrable (R) in a cell

(a
(1

,
a (2

&amp;gt;;

bw
, b), may be considered by applying the formula (1), when the

meshes 8 are those of a net of a system fitted on to the cell. The form of the

resulting expression when we proceed to the limit will depend upon the order
in which the meshes of the net Dn are arranged in the series. If we count the
meshes from left to right, first taking the lowest row along the xw axis, then
the next row also from left to right, and so on, it is easily seen that the
formula obtained is

, bW) r rlbW,

,,, ar
9( &quot;&quot; -t&quot;

a)
LJ,,, 1

,,,

, (bW, 6(2))

&quot;J ,.,. .,
f (*m XM) d

This is one of the formulae analogous to the formula for integration by
parts in the case of functions of one variable.

*
AbhaiKiltttirien d. Miinch. Akad., vol. xu, p. 129.
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CAUCHY S DEFINITION OF AN IMPROPER INTEGRAL.

352. The definition of the .R-integral of a function f(x), in a linear

interval (a, b), presupposes that f(x) is bounded in (a, b). A method was

given by Cauchy of extending the definition to cases in which f(x) is un

bounded in the neighbourhoods of points of a finite set.

Let us suppose that a point c, where a &amp;lt; c &amp;lt; b, is such that, in its arbi

trarily small neighbourhood, the absolute values of the function have no upper
limit, and let us suppose further that c is the only point of this kind, and that

the function f(x) is integrable in any sub-interval of (a, b) which does not

contain c within it, or at an end. The two integrals

re- e rb

f(x)dx, f(x}dx
J a J c+f

both exist, whatever sufficiently small positive values be assigned to e, e .

It may happen that, as e, e are diminished independently, so as to converge
in each case to the limit zero, the two integrals also converge to definite limits ;

if this be the case, we define the sum

lim I f(x} dx + lim f(x) dx
e~0 J a e ~0- e+e

to be the improper integral of f(x) in the interval (a, b), and we denote this

improper integral by
b

f(x} dx,
a

using the same notation as in the case in which f (x) is integrable (R) in (a, b).

The condition that

f
c~ f

lim I f(x) dx
e~0 J a

should exist, is that, corresponding to each arbitrarily small number 8 which

may be chosen, a number ex can be found, such that

i

/(*) dx

whatever value 6 may have, subject to the condition &amp;lt; 6 &amp;lt; 1.

A similar condition must be satisfied in order that

f
6

lim / (x) dx
e ~0 J C+ e

may exist.

It may happen that, although the two limits

rc-e rb

f(x}dx, f(x)dx
J a J c+f
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do not exist, yet if we take e = e, the sum
rc- rb

f(x)dx + f(x)dx
J a J c+e

may have a definite limit
;
when this is the case, the limit defines Cauchy s

principal value of the integral off(x), in (a, b).

It thus appears that a principal value may exist when the function

possesses neither an integral nor an improper integral in the interval (a, b).

In case the point a itself be a point of infinite discontinuity, then the limit

f(x) dx,
a+t

for e ~ 0, when it exists, is defined to be the improper integral

off(x) in the interval (a, b).

A similar definition applies in case the point b is a point of infinite

discontinuity of the function.

If, in the interval (a, b), there are two points of infinite discontinuity
c1; c2 (where a&amp;lt;c1 &amp;lt;c.2 &amp;lt; b), let c be any point between ^ and c2 . Then in case

the four improper integrals

c, re rc2 rb

f(x)dx, \ f(x)dx, I f(x)dx, I f(x}dx
J c\ J c J 02

all exist, their sum is defined to be the improper integral of f(x) in (a, 6),

and is denoted by
6

f(x) dx ;

and it is clearly independent of the value of c. The definition, in case one
of the points c1; ca is an end-point of the interval (a, b\ is of the same
character

;
or both of them may be end-points. If c 1

= a, c.2
=

b, then if the

two improper integrals

f f
6

f(x}dx, f(x)dx
- a J c

exist, their sum defines the improper integral

I f(x) dx.
J a

The definition of an improper integral can now immediately be extended
the case in which there are any finite number of points of infinite discon

tinuity in the interval. If these be c,, c2 , c3 ,
... cn ,

taken in order from left

right, and the improper integrals
rh

dx

30

I

(l

f(x) dx, r/(x) dx, ... !

b

f(x)
&amp;gt;a J c

t
J cn
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all exist, their sum is defined to be the improper integral
b

f(x]dx.

The definition can be extended to the case in which there is an infinite

number of points of infinite discontinuity of/(#), forming a set G, of the first

species, and of the first order. In that case G consists of a finite number of

points Cj, c2 ,
... cn .

If the improper integrals

l

f(x)dx, I

2

f (as) das, f(x)dx,...,
. a J Ci+ e, J C2+e2

each of which falls under the last case, all exist/and have values which converge

to definite numbers as e1} e/, e2 ,
e2 ,

... converge to zero, independently of one

another, the sum of their limits is taken to define the improper integral

rb

f(x)dx.
J a

It is clear that this definition admits of extension to the case in which G
is of the first species, and of any order.

It is easily seen that an integral which exists in accordance with this

definition is such that the integral also exists in the interval (a, x), where x is

any point in (a, b), and that it is a continuous function of x. Moreover

rx rb

f(x)dx=\ f(x)dx+ I f(x)dx.
J a J x

This definition of an improper integral was given* by Du Bois Reymond,
for the case in which G is finite. The definition has been extended f by

Schoenflies to the case in which G is enumerable, but possesses transfinite

derivatives.

353. When the integral of a function f(x), with a finite, or an enumerable,

set of points of infinite discontinuity, exists, it may, or may not, be the case

that \f(x) \

has an integral in the same interval.

The improper integral
&quot;b

f(x} dx

f
J a

is said to be absolutely convergent in the interval (a, b), in case

\f(x}\dx

exists ;
otherwise it is said to be conditionally, or non-absolutely, convergent.

The integral is said to be absolutely convergent at a point c, of infinite

discontinuity of the function, when both the integrals

f \f(x) dx, (

e+

\f(ai) **
J C-t J C

* Crelle s Journal, vol. Lxxrx. t See Bericht, vol. i, p. 185.
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exist, provided e be sufficiently small. If either of these does not so exist,

the integral
rb

f(x}dx
J a

is non-absolutely convergent at the point c.

An absolutely convergent integral is absolutely convergent at each of the

points of infinite discontinuity of the function. The converse also holds.

rb rb

^
I f(x)\dx exists, then f(x)dx exists. For, if c be a point of
J a. J a

infinite discontinuity of /(#), we have

p-fe
ro+f

f(x)dx \f(as)\dx&amp;lt;i)\
J C+e J C + e

for all sufficiently small values of e, whatever value e
(&amp;lt; e) may have. The

corresponding condition, on the other side of c, is also seen to be satisfied. The

[
b

condition of convergence of I f (x) dx, at the point c, is therefore satisfied.
J a

EXAMPLES.

/&quot;

1 1- sin - dx exists, but is non-absolutely convergent. For consider
Q X X

T T
1

sm -
x dx, taken over the set of intervals

We have

1 . 1
- sin -
x x

hence the integral taken over the set of intervals is

1 . n=m / i \
i

&amp;gt;-;=log. n H- _)&amp;gt;_

thus, as m increases indefinitely, the value of the integral does so, and therefore

cannot be integrable in the interval (0, 1), in accordance with Cauchy s definition. On the

other hand I
- sin - dx converges to a finite limit, as e~0, so that the integral /

- sin -dx
J t x x

J $x x
exists in accordance with Cauchy s definition, but it is not absolutely convergent.

2. Let f(x) denote a function which is integrable (11} in every interval (a, b), where

&amp;lt; a &amp;lt;b ;
and let f(x} be, in the neighbourhood of the point 0, of the form ^4^ ,

where

k is positive, and $ (x) is a bounded function, defined for the interval (0, c).

We have

where A is some positive number.

302
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/y
&amp;lt;

tx\

If 0&amp;lt;&amp;lt;1, it is clear that I t^-dx is arbitrarily small, for a sufficiently small
J e A

re

value of
(&amp;gt;e),

and therefore the improper integral I f(x) dx exists, being convergent
J o

at the point x=0. If ^1, the improper integral does not exist.

3. Let / (x) be, in the neighbourhood on the right of the point 0, of the form

&amp;lt;h (x)
r/ ;, , where p is positive, and d&amp;gt; (#) satisfies the same condition as in Ex. 2.

x [log x]
1 +P

We have

I/:

0(.r) dx
A

P
re

and thus the improper integral I f (x] dx exists, being absolutely convergent.
Jo

4. I
-

dx, taken through any interval which contains a point of infinite discontinuity

of tan x, does not exist.

Tt

,-, f 2
e
tan x 2 sin e

ror dx &amp;gt; log 7 ,

J TT x TT sin e

and this is arbitrarily great, for a sufficiently great value of e/e ;
thus the integral does not

converge at the point X=\TT. The integral possesses however a principal value at the

point \n. For the sum of the integrals taken through the intervals (\ir
-

e, ^TT
- e )

and

is

_

and this converges to 0, with e.

l
- 1

J
^

5. The function cos (e*) + - e* sin (e
2
)
oscillates between indefinitely great positive and

negative values, in the neighbourhood of the point #=0. For every value of x, except x= 0,

7 1

the function = -=- {x cos (e
x
)}.

(JbOC

re d
Also I -T- {x cos (e

2
)} dx = e cos (e^) e cos

J t (X^

where e &amp;gt; e &amp;gt;
0. It thus appears that the integral of the function converges at the point

#= 0; and therefore the function is integrable in an interval containing that point.

RIEMANN INTEGRALS OVER AN UNBOUNDED INTERVAL.

354. The definition of the integral of a bounded integrable function given
in 330 is applicable only to the case in which both the limits a, b are definite

points, and in which therefore the interval of integration is finite.

Let xl ,
xz ,

... scn ,
... be a sequence of increasing numbers having no upper

.limit ; it may then happen that the sequence of 72-integrals

r*i r% c*n

f(x)dx, / f(x)dx, ...
I f(x)dx, ...

a J a .a
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has a definite limit A, independent of the particular sequence [xn ]
chosen.

When this is the case f(x) is said to have an integral (R)
t

/O) doc,

in the unbounded interval (a, oc
), the value of this integral being A. It has

been presupposed that, in every interval (a,#),the functiony(#) is integrable (R).

If the integrals

rb rb rb

f(as) dec, \ f(x)dx,... f(x)dx,...,
J X

t
J -X.2

J Xn

where x1} x2 ,
... xn ,

... is a sequence of decreasing values of x which has no

lower limit, all exist, and the sequence of integrals have a limit B, independent
of the particular sequence chosen, the limit B is denoted by

f(x) dx.
J 00

If the two integrals

I f(x)dx, I f (as) das,
JO J 00

as thus defined, both exist, their sum is denoted by
,co

f(x) dx.
J -x

The three numbers

[ f(as) das, I f(x)dx, ! f(x)dx,
J a J oo J oo

being the limits of integrals, and__not^themselves in the proper sense of the

term integrals, belong to the class of improper integrals.

In each case it is necessary, but not sufficient, for the existence of these

improper integrals, that f(x) be integrable (R) in every finite interval con

tained in the intervals (a, oo ), (- x , 6), or (- oo
,
x

); and it will at present be

assumed that f(x) is bounded in every such finite interval, and has therein a

proper integral.
re

In case the integral I f(x)dx have a definite limit, as c is indefinitely
J c

increased, that limit is said to be- the principal value of

This principal value may exist, even when the integral

f*

f(x) dx,
J 00

as defined above, does not exist
;
but in case the latter does exist, its value is

equal to its principal value.
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The necessary and sufficient conditions for the existence of the integral
o

f (x) dx,i
j a.

are (1) that the integral exists in every interval (a, x), where x&amp;gt;a, and (2) that,

corresponding to every arbitrarily chosen positive number e, a value
, of x, can

be found such that

*

f(a-) dx

for every value of ,
such that % &amp;gt; %.

A similar condition applies to the case of

rb

| /() dx.
. X

355. It was shewn in 332 that the necessary and sufficient condition that

the bounded function f(x) be integrable (R) in the interval (a, b) is that, for

a particular system (Dn) of nets, fitted on to (a, 6), the sum 2
ral

should converge to zero, as n ~ co . It was also shewn that, if this condition

be satisfied for one system of nets, it is satisfied for all such systems.

We have to enquire how far a corresponding condition applies to the case

of an ^-integral through an infinite interval.

C f
b

Since I f(x) dx, when it exists, is the limit lim I f (x) dx, we see that
J a b~&amp;lt;x J a

the integral is given as the repeated limit lim lim 2Sni
(n) U (Sm (n)

),
or as

b~-JC M~00

lim lim ^.8m (n)L(8m(n}
).

The question then arises whether, or under what con-
6~00 JJ~00

ditions, the order of the repeated limits may be reversed without altering their

values. When this can be done, we have

where the summations are taken for the meshes of a net fitted on to the in

finite interval (a, oo
).

In the first place it is necessary that the two sums should not be divergent.

The following theorem will be established :

If, for the function f(x), bounded in the interval (a, oo
), a system of nets

fitted on to the interval exists, such that 2 Sm(n) (7 (SmM), 2 8mML(Sm{n}
) both

m=l m = \

exist, as definite numbers, 2 n , 2n ,
which converge, as n &amp;lt;x/ x

,
to one and the same

,=0

number A, then f(x)dx exists, and its value is A.
J a
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00

From the condition stated in the theorem it follows that S Sm(n)F (3m
(n)

)

ro-l

exists, and converges to 0, as n ~ &amp;lt;x&amp;gt; . It will be shewn that this condition is

rb

sufficient to ensure that I f(x)dx exists in every finite interval (a, b), where
J a

b&amp;gt;a. If b is not an end-point of a mesh of the system, we may modify the

system of nets by dividing into two each mesh that contains the point 6.

The first sum will thereby be not increased, and the second sum will not be
00

diminished; accordingly the condition that ^ 8m(n]F (8m(n)
) exists and con-

m =1

verges to zero, as n ~ oo
,
will still hold good. It then follows that, when we

take the finite sum 2 *^n}f(Sm(n]
),
where 6 is an end-point of 8^ n}

,
this sum

-i
rb

will converge to zero, as n^ oc
;
and thus f(x)dx exists as an J?-integral.

J a

Again w have, for any finite value ra, of m,

. m=m
J

1 m=m
2 0,:

and thus &amp;lt; 77, where 77 is an arbitrarily chosen positive number, and n is chosen

00

so large that S &m(n)F(8m(n)
)&amp;lt; r).

The number m may be chosen so large that

r,- hence
, m-m+l

for m &amp;gt; ??ii ,
some fixed integer.

We may also suppose n to have been chosen so large that

^ 8 (n] U(8 (n)
} - A &amp;lt; ni um V \um ) a- ^~ / i

m-l

/+?
we see then that I f(x)dx .differs from A by less than 3??, for all values of

J a
m

which are equal to a + % 8m (

&quot;\
where m ^m^ If X be any number greater

m = l

than the least of these values of , two values of f exist, between which X
rX

lies. If
j
be the smaller of these, I f(x) dx lies between Ud and Ld, where

1

d is the maximum of the meshes dn of Dn ;
and U, L are the upper and lower

rA&quot;

boundaries off(x) in (a, oo ). It now follows that f(x) dx differs from A by
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less than 3r) + ,
where is the greater of the two numbers Ud, Ld. Since

,-X

rj, are both arbitrarily small, it follows that I f (x] dx converges to A, as
J a

/&quot;*X ~ oo
;
and thus that the jR-integral I f(x)dx exists.

3 a

32

It should be observed that the convergence of 2 8m(n)F(8m(n)
) to zero, as

m = l

w ** oo
,
for a particular system of nets, is not by itself sufficient to ensure the

r - f
b

existence of I f(x) dx, but only that of I f(x) dx, for every finite value of
J a J a

b
(&amp;gt;

a). In this respect an integral (R) over an infinite interval differs from

one over a finite interval
; since, in the latter case, the convergence of the

finite sum ^8(n)
F(8

M
) to zero, as w~oc, for a particular system of nets, is

sufficient to ensure the existence of the integral.

356. The converse theorem will now be proved, that :

.CO

If f(x) dx have a definite value, a particular system of nets can always
J a

oo

be determined for (a, oo
), such that 2 8m(n) U(8m(n)

) exists for each net Dn ofm = l

the system, and converges to the value of the integral, as n ~ oc .

Let us consider a set of points a, x1} x2 ,
... xn ,

... which diverges as n ~ oc .

A net can be determined for the interval (a, x^, such that

similarly, a net can be determined for (x1 ,
x2),

such that

28^(8)-
|J/(*)^&amp;lt;ie;

and generally, a net can be determined for (xn_l ,
xn), such that

Z8U(8)-f
rn

f(x)dx&amp;lt;e.
J *n-i

Z

Thus a net can be fitted on to (a, xn),
for which

&amp;lt; 77 ;
therefore a

r*&quot; r
90

Now xn can be taken so large that I f(x) dx I f(x) dx
J a J a

n = m r 00

net can be fitted on to (a, oc
). such that 2 8U(8) differs from I f(x) dx by

w = 1 J a

less than an arbitrarily small number, for all sufficiently large values of m.
* 00

Therefore 2 8U(8) converges to a limit which differs from f(x)dx by
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not more than e. By taking a monotone sequence of values of e which con

verges to zero, we obtain a system of nets, fitted on to (a, oo
),
such as is

required.

It may also be possible to define a system of nets Dn such that 28 7(8),

taken over (a, b), does not converge, as b ~ oo
;
and thus the theorem

(*)&amp;lt;&
=lim I Sm Z7(Sm

(

)
= lim 2 SmML(Bm )

~x m = \ ~oo n= \

only holds, provided the nets are such that the sums exist for each net of the

system, from and after some fixed value of n.

It can also be shewn that :

When the integral I f(x) dx has a definite value, then for any system of
J a

oo

nets fitted on to (a, oc ) which is such that 2 8m(n)F (8m(n}
) exists, and converges

m=l
00

to zero, as n~&amp;lt;x&amp;gt;
, the set of numbers 2 8m(n] U(8m(n)

~) exists, and converges to
m = \

the value of the integral.

Since, for every value of m,

r+2imM m /a+2fi()

f(x} dx * 2Sm&amp;lt;&quot;&amp;gt; U (BnM) &I f(x)d
m

we see that the number 28w &quot;i) U(SmW) has, as m ~ oo
, limits of indeterminancy

between I f(x}dx and
[ f(x}dx+ 2 8mMF(Smw).

Therefore as n ~ oo
,

* - a m = \

cc rl

28mM U (Sm(n)
) converges to f(x)dx. For a system of nets which is not

J a

such that

2 S (n)-* m
m=l

M

converges to zero, 2 $m(n]U (8mM ) does not in general converge, as m~ x .

7=1

rx rb

357. The definitions of f(x}dx, f(x} dx may be extended to the case
J a J oo

in which f(x) has points of infinite discontinuity. If the improper integral

J
f(x) dx exist for every value of X which is &amp;gt; a, and if it converge to a

definite limit, as X increases indefinitely, then that limit defines

,-cc

f(x)dx.
J a

f
00

rx
The integrals f(x)dx, / f(x)dx, when they exist, possess many of the

J X J - 00
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rx

properties of a proper, or an improper, integral f(x) dx. These integrals are
J a

continuous functions of the finite limit x. For

rx ra rx

I f (x) dx = I f (x) dx + I f(x) dx,
J oo J oo J a

rx

where
a&amp;lt;x; and since

|
f (x) dx is a continuous function of x, so also is
a

f f(x)dx.
J OO

f
00

[xWhen the integral f f(x)dx exists, the integral / f(x)dx is continuous
la J a

for all values of x in the interval (a, x ), including x = x
, as it is there con

tinuous in the extended sense of the term, when the point x is regarded as

belonging to the domain.

If the integral I f(x) dx exist for every finite value of x in the interval
J a

(a, x ), and if &amp;lt; (x) be a function which is finite and continuous for every such

value of x, and be such that

f
x

&amp;lt;p (x) &amp;lt;&amp;gt; (a)
=

I / (a?) dx,
J a

then, provided &amp;lt;j&amp;gt;(x)

be continuous for x= x
,
the function f(x) is integrable

,00

in (a, x ), and
&amp;lt;/&amp;gt;
(x ) &amp;lt;jf&amp;gt; (a) = I f(x) dx. If the function

&amp;lt;j&amp;gt; (x) have a deri-
J a

vative, say D+$ (x), which is integrable in every interval (a, x), of (a, x ); then

if the integral be a proper one, or be such an improper one that the relation

- a

subsists, then, provided the limit
&amp;lt;(x ) exist, we have also

f&quot;

(f&amp;gt; (x ) &amp;lt;f) (a)
=

I D+
d&amp;gt; (x) dx.

J a

A similar statement applies to each of the other derivatives of &amp;lt; (x). In the

f
*

case in which
(/&amp;gt;(#) (j&amp;gt;(a)

differs from I D+
f(x) dx by an integrable null-

/ a

function, this holds also for the limit x = x .

358. An integral f(x)dx is said to be absolutely convergent when
J a

the integral
| \f(x) dx exists; otherwise it is said to be conditionally or

- a

/OO

,-00

\f(x) \

dx exists, then also
| f (x) dx exists; for

3, a
x.2 I p2

f(x) dx
\

^ \f(%) \
dx, and hence the convergence of the latter integral

PI J x.

follows from that of the former one.
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If*f(x) andf(x) &amp;lt; (x) be both integrable in every interval (a, x), contained in
,00

(a, oo
), and if f(%) dx be absolutely convergent, and if &amp;lt;j) (x) be, from and

a

after some fixed value of x, numerically less than some fixed number, then the
,

integral I f(x) &amp;lt; (x) dx exists, and is absolutely convergent.

,00

For, since I f(x) dx is absolutely convergent, we can find, corresponding
J a

rt+h
to a fixed positive number a-, a number &amp;gt; a, such that

| \f(&) \dx&amp;lt;&amp;lt;r,
for

all positive values of h; we have then

f f(x)6(x)dx l
Jte

where K is the upper boundary of &amp;lt; (x) ,
and is by hypothesis finite. It is

.

thus seen that I f (x) cf&amp;gt; (x) is convergent. Also since
J a

rf+A

we see that the convergence is absolute.

359. An important set of tests of the absolute convergence of an integral

f(x} dx is the following :

If f(x) be integrable in every interval (a, x}, then f (x) dx converges to
J a

a definite finite value, provided f(x) converge to zero, as x is increased indefi

nitely, in such a manner that one of the expressionsf (x) . xi+k,f(x)x (log x)
l+k

,

f (x) x log x (log log x)
l+k

, f(x) % log x . log log x (log log . . . log x)
l+k

,

converges to zero, as x is indefinitely increased, k denoting some fixed number

greater than zero.

The integral f(x) dx is not convergent, in case f(x] be of invariable sign,
J a

from and after some fixed value of x, and provided also any one of the above

expressions remains numerically greater than some fixed number
(&amp;gt;0),

as x is

increased indefinitely, when k has the value zero.

rx+k
We see that, in the first case, I f(x) d i numerically less than one

J X
of the expressions

.X-}-h A n\ f X-{-h rJ nt
ri I r, I ri I _ &quot;&quot;^

_l-l-fc ^1 -/!__ ...\l4-fc &amp;gt; -1 /I 1 \l+jt# (log a,-)

1+fc
J x x log x (lg log^

* Riemann s Ges. Werke, p. 229; also Pringsheim, Math. Annalen, vol. xxxvn, p. 591.
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where C is a constant, dependent on X, which converges to zero as X is

indefinitely increased. These expressions have the values

cT-L jL T 5T JL 1

k \_X
k

(X+h)
k
] kl(logX)

k
(logX

c r

k |_(log log X)
k

(log logZ + /*)*J

hence, k being positive, it is clear that X may be so chosen that

rX+h

f(x) i

dx

is less than an arbitrarily fixed number, and thus

!/(*)!*

is convergent. In the second case, k being now zero, we see that

X+h

is numerically greater than one of the expressions

,[
A+h dx

p [

x+h dx r*+h dx

Jx % Jx as log a; Jj

X + h

\x xlogx Jx x log x log log x

or than one of

, Clog log
-

and these expressions increase indefinitely, as h is increased. It follows that

r
1 / (as) dx is in this case divergent.
J a

CHANGE OF THE VARIABLE IN A SINGLE INTEGRAL.

360. Let f(x) be a function that is bounded in the interval (a, b). We
now assume that x is a continuous monotone function, ^r (), of another vari

able |, defined for an interval (a, /3), of and such that a = ^ (a), b = ty (@).

The following theorem will be established:

If .Di/r (), one of the derivatives of ty(i;), be integrable (R) in the interval

(a, /3), then

Let a system of nets (J5n |
be fitted on to the interval (a, /3). Since the

incrementary ratio
y

^. has, in any interval, the same upper and lower
l

&quot;~

?2

boundaries as
&amp;gt;$(%)

in the same interval (see 280), to a mesh E (n) of Dn

there corresponds a mesh 8 (n)
,
of a net Dn ,

fitted on to (a, b), such that
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8 {n) k8 in
\ where k is the upper boundary of Dty () in (a, ft). If u (n) denote

the upper boundary of f{ty(y)} Dty (y) in the interval 8 {n
\ we see that u (n}

lies in the interval bounded by U(8 (n)
)u (n)

,
and L(8 (n)

)l
(n)

, where u^, IM
are the upper, and the lower, boundaries of D-fy () in the mesh 8 {n)

. Also 8 (/l)

lies in the interval bounded by u (n) S (n
) and 1

M 8 (n)
,
we may therefore write

S; (n) _ X (&quot;)
{ ? / (n) _ /9 () A/ (

wi m \
am um \ t*m

We have then

)_Vg()^(n)
(n)

[{u
(n) - e (n)

(u
(n) -

= 2 S (M)
[u

(n] U (8
(n}

)
- UM

}
- 2 (n) 8 (n)

(u
(n} - 1

M

the summations being taken for the mn meshes of the net Dn ,
or of the net Dn .

Now we have

2 8 (n)
{u

(n) U (8
(n)

)
- u (n}

}
^ S 8 {n)

U(8 (n)
) (u

(n) - W)
and 20 (n) S (n

( UM-1^) U(8
{l&amp;gt;})^^8 (n)

U(8
(n}

) (u
(n) - l

Since D^(%) is integrable (K) in (a, yS), it follows that 2 8M (u
(n) - l

(n)
) is

arbitrarily small, when n is sufficiently increased; it thus appears that

is arbitrarily small. Therefore as &amp;gt;i
~ oo

, the two sums
m=mn _

(n) rT/J (?i)\ V ^ &amp;lt;n

converge to the same limit. Thus the theorem is proved for the case of the

upper integrals; for the lower integrals it can be proved in a similar manner.

We deduce at once the following theorem for the transformation of a

single integral:

If D^r(%), one of the derivatives of the monotone function ^ (), be inte

grable (R) in the interval (a, ft), of ,
and if either of the R-integrals

[
b

/. i

b

f(x)dx, I f {&quot;^(f); Dty ()
J a J a

exists, the other also exists, and they have the same value; f(x) being a bounded

function.

Since ^(f) has a finite differential coefficient ty (%), almost everywhere
in the interval (a, ft), and // () is integrable (R) in the interval, provided
one of the derivatives D-^r(^) is integrable (R), we have

provided either of the integrals is known to exist as an jR-integral.

In case
i/r (), although not monotone, is such that it is monotone in each

of a finite number of intervals (a, 7^, (7! , y.z ), . . . (jn , ft), where ^ , 7., ,
. . . do not

necessarily all lie between a and ft, these intervals of may be considered

separately, and the above result can be consequently extended to such a case.
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The following theorem* for the transformation of a single ^-integral is

a particular case of the above theorem:

If the function f(x) is integrable (R) in (a, b), and if a monotone function
rt

^r () is defined by x = ty (f)
= c + I $ (f) d%, ivhere

-^r () varies from a. to ft

as x varies from a to b, and
&amp;lt;/&amp;gt;()

has an R-integral in (a, ft}, then

361. It may happen that, when
-fy () is a monotone function of

,
the

interval (a, b), of x, corresponds to the infinite interval (a, oo ), of . We now

assume that ty (oc ) is the limit of ty (), as ~ x
,
i.e. that ty (f) is continuous

at oo . If the conditions of the first theorem above are satisfied for every
interval (a, b e), of x, with the corresponding interval (a, ft ),

of
,
we have

f
&quot;

/(*) dx = f/ ty ()} Zty (f) rff
- a -a

Since this holds for every value of e, we have, on proceeding to the limit e = 0,

in accordance with the definition in 355, of the integral on the right-hand

side. Similar considerations apply to the case in which the value a of #

corresponds to =
x&amp;gt; .

(b

If it be desired to transform the integral / (x} dx, by means of the
) a

relation y = $ (x}, where &amp;lt; (x) is a single-valued function of x, then, unless

&amp;lt;(#)
be monotone in the interval (a, 6), the inverse function Dty(y} will

not be everywhere single -valued.

If it be assumed that
&amp;lt;/&amp;gt;

(x) is monotone in (a, b), and that a =
&amp;lt;j) (a),

ft
=

(&amp;gt; (b), a derivative
D(f&amp;gt; (x), of

&amp;lt;/&amp;gt; (#), is reciprocal to a derivative D-fy (y)

of ^r(y). If it be assumed that is integrable in (a, /3), and that

#
the same holds for -^7

- considered as a function of y, or else that/(#)
JJ(f&amp;gt; (X)

is integrable in (a, b), then we may use the transformation

If
&amp;lt;/&amp;gt;
() be not monotone, f(x) dx cannot in general be transformed into

. a

a single integral in y. If, for example, &amp;lt;/&amp;gt;
(x) increases from x = a to x = k,

and then diminishes from x = k to x b, we must take

r b

J

-Lebesgue, Annales de Toulouse, (3), vol. i, p. 44.
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and the integrals on the right-hand side cannot in general be combined into

one integral through the interval
(or, fi), because in the two integrals the

integrand has different values for the same value of y.

Thus, for example, if y = sin x,

du + - _ - du,

the value of cos x in the second integral on the right-hand side of the first

equation being negative, and the values of sin&quot;
1

y, cos&quot;
1

y being in the

interval (0, \TT\

REPEATED INTEGRALS.

362. The actual evaluation of a double integral over the fundamental

rectangle, of which the sides are x = x
,
x = x1} y = y , y = y\, is usually made

to depend upon the evaluation of successive single integrals taken, first with

respect to one of the variables, and then with respect to the other. The

expression

I&quot;*! [Vl pi fj/1

f x
dx

j
f(x, y) dy, or

J |
f(x, y} dydx,

in which f(x, y) is supposed to be integrated first with respect to y, for

a constant value of x, and then with respect to x, is called a repeated

integral. Similarly, the expression

rvi pt

J Si J J-o

in which the integrations are performed in the reverse orcher, is called a

repeated integral. The question of the existence of these repeated integrals,

and, in any given case, their relation with one another, and with the double

integral, will be here investigated. It will be observed that the double

integral has been defined as a single limit
; whereas the repeated integrals,

when they exist, are each obtained as the results of repeated limits. W&amp;lt;-

have then to investigate whether, or under what conditions., a double integral
is capable of representation as a repeated limit, of one of the forms indi

cated. It cannot be assumed a priori that the existence of the double

integral necessarily implies the existence, for each value of x, of the single

integral

flh

f(xt y)dy
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as a definite number. Neither is the existence of this single integral, as a

definite number, necessary for the existence, as a definite number, of the

repeated integral

pi
dx f(x, y} dy.

J 2/o

In fact, if we assume that the upper and lower integrals

&quot;pi pi

J /(**$) *y&amp;gt;

J /(** y&quot;&amp;gt;

dy

have different values for some of the values of x, it may happen that the two

repeated limits

~Vi pi pi
f (x, y} dy, I dx I f (x, y) dy

TO J
2/o J %o l_Vn

have identical values.

The repeated integral will consequently be regarded, in this case, as

existing; and thus it may be defined as

pi 75/1

dx f(x,y}dy,
J X

Jj/o

where the upper or lower integral with respect to y is to be taken in

differently, provided the repeated limit exists as a definite number.

pi &quot;pi

In a similar manner I dy If (x, y} dx,
J 2/o J_x*

when it has a definite value independent of whether the upper or the lower

integral with respect to x be used, will be regarded as the repeated integral,

first with respect to x and then with respect to y.

363. It was first established by P. Du Bois Reymond* that, when the

limited function f(x, y} has a double ,R-integral in the fundamental rectangle,

then the two repeated integrals exist, and are each equal to -the double

integral. We shall first give a prooff of this theorem which exhibits its

relation with the theory of sets of points.

The following preliminary theorem will first be established :

If I f(x, y) d(x, y}, taken over the fundamental rectangle, have a definite

value, then the values of x for which the single integral I f(x, y) dy, taken with

x constant, has a definite value, define a set ofpoints on a side of the rectangle,

of linear measure equal to the length, of that side.

*
Crelle s Journal, vol. xciv, 1883, p. 277.

t The investigation is founded on that of Schoenflies, Bericht, vol. i, p. 193.
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It follows from this theorem, that the set is everywhere dense in the

interval, and of cardinal number c. Moreover, the points at which

\f(x,y}dy, \f(x,y}dy

differ from one another form a set of measure zero.

On the assumption of the existence of the double integral, the set K of all

the points at which the saltus of f(x, y} is = k, where k is an arbitrarily chosen

positive number, is a closed set, of plane content zero. If a straight line be

drawn parallel to the y-axis through the point x of the side of the rectangle,

then the component of K on this straight line will be denoted by Kx ,
and its

linear content by / (Kx)- It has been shewn in 143 that, a- denoting a

prescribed positive number, the linear content of that set of points x, on the

side of the rectangle, for which / (Kx) ^
&quot;&amp;gt;

is zero
;
and thus that / (Kx),

considered as a function of x, is an integrable null-function, for each value

of k. The function % (x),
= lim I (Kx), is also an integrable null-function

;

fc~0

for the set of points at which ^ (x) does not vanish is made up of those sets

of points at which I (Kx
(l}

),
I (Kx (

- ]

), ... I (K^\ ... do not vanish; where

K(l

\ K(2)
,

... K (n}
,

... correspond to a diminishing sequence of values of k

converging to the limit zero : and since each of these sets has zero measure,

it follows that the set of points at which ^ (x) does not vanish has zero measure.

At any point x1} at which ^ (x) vanishes, / (KXl ) vanishes, for every value of k.

It should be observed that, at a point ofKx ,
it is not necessarily the case

that f(x, y\ considered as a function of y, with x constant, has its saltus = k]

in fact, this saltus may be less than k, or may be zero. However, all the

points at which the saltus of f(x, y}, taken with x constant, is = k, are

certainly included in the set Kx .

For any fixed value of x, the upper and lower integrals

r

f(x,y)dy, Jf(as,y)dy

both exist, and the two have equal values at any point of the everywhere
dense set of points x, at which ^ (x) vanishes. The preliminary theorem

above stated has thus been established.

Let F(x) denote I f(x, y)dy, where F(x) consequently has a single

determinate value at each point x, at which

//(, y} dy, /(x, y) dy

are equal. At any point of that set, of measure zero, at which

31
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have different values, F (x) is regarded as indeterminate ;
and the upper and

lower integrals are the upper and lower limits of indeterminancy. It will

now be shewn that the function F (x), so defined, is an integrable function.

Let x be a point on the side of the rectangle (0, 0; 1, 1), such that the compo

nent Ktf, of K, on the line x=x ,
has content &amp;lt; &amp;lt;r. A finite number of intervals

e1; ea , ... ew can be determined on the straight line x = x
,
neither abutting

on, nor overlapping, one another, such that their sum e
l + e2 + . . . + em &amp;gt; b &,

where b is the length of the side of the rectangle parallel to the t/-axis, and

such also as to contain, in their interiors and at their ends, no points at which

the saltus off(x, y} is ^ k. For each point of one of these intervals e there

exists a rectangle, with the point at the centre, such that the fluctuation

of/(a?, y) in that rectangle is &amp;lt; k. The breadths of these rectangles for all

points of e must have a finite minimum, for otherwise there would exist a point

of e which would belong to K. It follows that, for the point x, an interval

(x a, x + /3) can be determined, such that the straight lines x x a,

x = x + $ intersect all the rectangles corresponding to all the points of the

intervals e1; e2 ,
... em . If #, ,

x.2 be any two points in the interval (x a, x + $\

we have
|
F(xJ - F (a?8) &amp;lt; bk + &amp;lt;r ( U- L).

Now a finite number of separate intervals S1; S2 ,
... 8r can be determined

. on the side x of the rectangle (length
=

a), such that 8l + B2 + ... +8r &amp;gt; a-Tj,

where rj is a prescribed positive number, and such that each point of each of

the intervals 8 is a point x, for which an interval (x a.,x -\-j3) can be deter

mined as above. By applying the Heine-Borel theorem we see that

Sj, S2 ,
... 8r

will all be covered by a finite number of these intervals (x a,x + /3).
It

thus appears that the #-side of the rectangle can be divided into a finite

number of parts
T! T2 ) Tp ,

and Xj , \2 , ... \q ,

such that T1 + r2 + ...
+Tp&amp;gt;a r),

and Xj + Xj-H ... + X
9

&amp;lt; 17,

so that the fluctuation of F (x) in any one of the parts T is

Let fc = e/26, &amp;lt;r
= e/2(tf-j&);

then we see that F (x) is such that the #-side of the fundamental rectangle

can be divided into a finite number of parts, such that the sum of those parts,

in which the fluctuation of F (x) is ^ e, is less than the arbitrarily chosen

number 77.
It follows that F(x) is integrable along the side of the rectangle.
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It has now been shewn, on the assumption of the existence of the double

integral, that the repeated integral

I F (x) dx, or I dx I f(x, y) dy,

taken through the fundamental rectangle, has a definite value. Moreover,
this value is equal to that of the double integral. For, let the fundamental

rectangle be divided up by means of straight lines parallel to the y-axis,

through the end-points of each interval of the two finite sets |r} and {X}. Any
one of the rectangles so constructed, with r as base and with height b, can be
divided into parts, by means of straight lines parallel to the #-axis, such that,
in each one of a number of these parts the sum of whose heights is &amp;gt; b - a-,

the fluctuation of f(x, y) is &amp;lt; k. The fundamental rectangle has now been
divided into a finite number of parts, such that the sum of the products of each

part, multiplied by the upper boundary of/(a?, y) in that part, exceeds the sum
of the products of each part, multiplied by the lower boundary of the function

in that part, by less than abk + (aa + bn)(U-L\ which is arbitrarily small.

Also
I
dx

J/(, y) dy, and
[/(*, y) d (x, y\

both lie between the two sums of products, and therefore differ from one
another by less than abk -f- (atr + 617) (U -

L). The equality of the double

integral and the repeated integral is thus put in evidence by the mode of

sub-division of the rectangle which has been adopted.

Similar reasoning applies to the repeated integral in which the integration
is taken first with respect to x, and then with respect to y.

It has thus been established that, if the double integral through the funda
mental rectangle exist, then the two repeated integrals also exist, and are each

equal to the double integral.

All the points at which -^(x) vanishes are points of continuity of the
function F(x)\ but there may also be other points at which F (x} is con

tinuous; because the existence of a saltus of f(x, y) at a point (x, y) is

consistent with f(x, y) being continuous with respect to x, and also with

respect to y, at the point.

The function F(x] may be replaced by ^ (x}, the most nearly continuous
function related to it (see 242). We thus have

I f(x &amp;gt;

J
(x} dx.

If it be assumed that the set of points G, for which f(x, y) is defined,
is measurable in accordance with Jordan s definition of a measurable set (see

142), then the double integral ofthe bounded function may be replaced by that
of the function /(a;, y), defined for all points of a rectangle which contains G,

312
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by the convention that f(x, y) shall vanish at all those points of the rectangle

which do not belong to G. If the set G be such that each straight line

parallel to the y-axis contains points of G which fill up a finite, or an

indefinitely great number of continuous intervals, or more generally, if the set

of such points, for each value of x, be linearly measurable (J), then the integral

f(x, y) dy,

taken along the whole segment of the line between the sides of the rectangle,

may be replaced by the same integral taken through the component of G on

the same segment. In particular, if the points of G on the straight line

through the point x consist of all the points in the linear interval

(/,&amp;lt;*),/,(*)),

we may replace I/O

by
J

. f(x, y)dy;

and therefore in this case,

f /&amp;lt;X y) d (x, y}
=

I

l

dx\ f(x, y} dy.
J G . x fi(x)

364. A simple proof* of the fundamental theorem of 363 will be given,

which depends upon the fact that, for any bounded function f(x, y), if the

operation of taking the upper integral first with respect to y, and then with

respect to x, be performed, the result cannot exceed the upper double integral ;

and that, similarly, the result of successively taking the lower integrals with

respect to x and to y cannot be less than the lower double integral : thus

5, y) I dx I f(x, y}dy^\dx\ f(x, y} dy

&amp;lt; Jf(x= 7l.

the integrals being all taken over the fundamental rectangle.

Iff(x, y) be integrable, so that

J
/0&amp;gt; y} d (x, y) =

j
f(x, y) d (x, y),

* This method of proof was first employed by Harnack; see his edition of Serret s Differential

and Integral Calculus, p. 282. Other proofs of this kind have been given by Arzela, Mem. dell 1st.

di Bologna, ser. 5, vol. n, p. 123; by Jordan, Liouville s Journal, ser. 4, vol. vni, p. 84, or Cows

d Analyse, vol. i, p. 42; also by Pringsheim, Sitzungsberichte d. Munch. Akad., vol. xxvin, p. 59,

and vol. xxix, p. 39. See also Pierpont s paper &quot;On multiple integrals,&quot; Tram. Amer. Math.

Soc., vol. vi, 1905, where a proof of this character for multiple integrals is given.
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it follows that

I

dx
l/(a, y}dy

=
j
dx

jf(x, y) dy

[ T r r-
j
&?

j
/(, y) cfy

=
J dx\ f(x, y} dy,

and thus that the repeated integral

I dx I f(x, y) dy
J J

has a definite value equal to the double integral.

To prove this, let the rectangle be divided into a number of parts 8, by
means of straight lines parallel to the sides. Since the double integral is

assumed to exist, this may be done in such a manner that, e denoting an

arbitrarily chosen positive number, the conditions

are satisfied, where the summation 2 is taken for all the rectangles 8, and

U(8), L(8) denote the upper and lower boundaries of/(#,?/) in a rectangle 8.

Now, if we take the upper and lower integrals off(x, y) along a straight line

parallel to the y-axis, we have

where the summation 2j refers to all those rectangles 8 which are intersected

by the straight line along which the upper and lower integrals are taken; and

in the case when that straight line is along one or more boundaries of the

rectangles 8, &quot;2, refers to all the rectangles on one side of that -line : also 8

denotes that interval along the line of integration which is in the rectangle 8.

It follows that

dx f(x,y)dy^{8U(8)\^(f(x,y)d(x,y) + e
* J

and since these inequalities hold for every value of e, we have

T 7&quot; T
tats I/ (x, y)dy& f(x, y) d (x, y),
J J J

j
dx

j
f(x, y)dyZj f(x, y) d (x, y} ;

and thus the theorem is established.
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365. The converse questions now arise whether, from the existence of one

of the repeated integrals, or from the existence and equality of both repeated

integrals, that of the double integral can be inferred. The answer to both

questions must be in the negative. Continuity of a function f(x, y} with

respect to x and y separately does not necessarily imply continuity with respect

to (x, y} ; moreover, the saltus of the function at a point with respect to x,

when y has a constant value, or with respect to y, when x has a constant value,

is not necessarily equal to the saltus of the function with respect to (x, y\ It

may happen that the component of K on a straight line parallel to one of the

axes may consist of points, some or all of which are points of continuity of the

function when considered as a function of one variable on that straight line.

ThusK may have a plane content greater than zero; and yet the linear content

of the points on all straight lines parallel to the axes, at which the linear saltus

of the function is ^ k, may be zero. Hence either, or both, of the repeated

integrals may exist, whilst for values of k, the sets K are not of content zero *
;

and therefore whilst f(x, y} does not admit of a double 72-integral.

EXAMPLES.

It. For the rectangle bounded by #= 0, #=1, y= 0, #=1, let f (x, y) = l, for all

rational values of x, and f(x,y}= 2y, for all irrational values of x. We have then

f(x, y) dy= \, whatever value x may have
;
and hence the repeated integral

ri n
dx f(x,y}dy

Jo Jo

has the value- 1 : but the double integral does not exist, since I
(K}&amp;gt; 0, for any value of k

in the interval (0, 1).

2J. Let x be represented by a finite or infinite decimal, excluding those decimals in

which every figure from and after some fixed place is 9. Let px denote the number of

decimal places in the representation of x in the manner described. Let y be represented

in a similar manner, with a corresponding definition of py . Let the function f(x,y] be

defined in the rectangle bounded by #= 0, #=1, y=0, y=l, by f(x,y) = -

Px+L
when px and pv are both finite

;
otherwise let f(x, y) = 0.

ri i
We have I dy=0; for there is only a finite number of values of y, in (0, 1), for

J o Pv + 1
&quot;

which py is less than an arbitrarily chosen fixed integer, or is greater than an
ftr&quot;*&quot;*

arbitrarily chosen fixed proper fraction. The function f(x,y] vanishes, except when one

at least of x and y is representable by a finite decimal
;
and thus the double integral

f(x, y} d (.v, y) vanishes.

* An incorrect theorem, relating to this point, has been given by Schoenflies, see his Bericht,

vol. i, p. 197. In this theorem, the condition that K should be closed is stated to be the condition

for the existence of the double integral. If, however, K were not closed, it could not represent

the set of points at which any function had a saltus &amp;gt; k. The examples given by Schoenflies do

not in reality accord with his theorem.

t Thomae, Schlomilch s Zeitschrift, vol. xxm, p. 67.

Pringsheim, Sitzungsber. d. Leipziger Akad., vol. xxvm, p. 71.



36s] Repeated integrals 487

T1 i f
1

Now I /(#,y)d&amp;lt;y
=

j-j,
\f(x,y)dy= Q;

and thus I f(x,y)dy has no definite value for any value x of the everywhere dense
Jo

enumerable set of points for which px is finite.

Nevertheless I dx I f(x,y}dy= Q=lf(x,y)d(x,y).
Jo 2

3*. With the same notation as in the last example, let f (x, y)
=

0, when px ,py are

both finite, or both infinite; let f(x,y} = ^
--

,
when px is finite, and pv infinite; and

f(x,y}= --
,
when pu is finite, and px is infinite. In this case f(x,y] differs from at

&quot;

an unenumerable set of points; and yet the set of points at which f(x, y}&amp;gt;*
has the

plane content zero, since all such points are on a finite number of lines parallel to the

coordinate axis, although they are everywhere dense on .those lines. The double integral,

and consequently the repeated integrals, exist in this case.

4*. An example has been given in Ex. 1, 143, of a set of points K which is every

where dense and unclosed, whereas the sets Kx ,
Kv are all finite. Let f(x,y)-=c, at every

point of K, and = c, at every other point. In this case, the double integral does not exist ;
but

I f(x,y)dx= c, \ f(x,y}dy= c,

Jo Jo

whatever values y and x may have in the first, and in the second, integrals respectively.

ri ri ri ri

Consequently I dx I f(x,y}dy and I dy I f(x,y)dx
J o J o J o J o

both exist, and have the same value c.

5*. Let a set {(# , y
1

}} be defined as follows: Let x have any value for which px , is

finite; and with such a fixed value of x
,
let every y be taken for which py

, ^.px,. On

every line parallel to the y-axis there is only a finite number of points of the set
;
but

the set is everywhere dense on every line which is parallel to the #-axis, and which has for

its ordinate one of the y . Let f(x, y) = c
,
for the set {(x , y

1

)}, and let f(x, y) = c, for all

remaining points.

We have, in this case, / f(x,y)dy= c, and I dx I f(x,y)dy = c.Jo- J o J o

But I f(x, y }dx has c and c for its upper and lower values; and the set of values
J o

(i
ri

of y being everywhere dense, I dy I f (x, y) dx does not exist.
Jo Jo

6t. Let f(x,y) be defined at all points of the rectangle bounded bj #=0, x\
y= 0, y=l, by the condition that f(x, y)

=
0, except at those points (x , y } at which

where

i, n, p and q being positive integers.

In this case the double integral exists, and therefore the repeated integrals both exist J.

*
Pringsheim, Sitzungsber. d. Leipziger Akad., vol. xxvin, p. 71.

t Du Bois Reymond, Crellc s Journal, vol. xciv, p. 278; also Stolz, Grumlziige, vol. in, p. 73.

* This is denied by Stolz, Grundzttye, vol. in, p. 88, on the ground that f(x, y) for x= +
I

is not integrable with respect to y, but has n and for its upper and lower values. We have,

however, shewn that this is no justification for denying the existence of the repeated integral.
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IMPROPER DOUBLE INTEGRALS.

366. As in the case of single integrals, the definition of a double integral

may be extended to the case in which the function has a set of points of infinite

discontinuity. This set is necessarily closed, and it will be assumed throughout
that its plane content is zero. It will also be assumed that the domain for

which such a function is defined is bounded, and that the frontier has the

content zero, the domain being therefore measurable in accordance with Jordan s

definition; and consequently the function may be replaced by another function

defined for all the points in a fundamental rectangle, the new function being
taken to vanish at all points not in the original domain, and to have the same
value as the original function at all points of that domain. These assumptions

being made, a definition of the improper double integral which is substantially
the one given by Jordan*, and adopted by Stolzf, may be stated as follows:

Let D1} D2 , ... Dn ,
... denote a sequence of domains contained in the funda

mental rectangle, each one of which consists of a finite number of connex closed

portions, each with its frontier of zero content, and in which the number of the

portions may increase indefinitely luith n. Further, let us suppose that none of
these domains contain, in their interiors or on their frontiers, any point at

which f(x, y) has an infinite discontinuity, and that the sequence is such that

the measure of Dn converges to that of the fundamental rectangle ; then if the

upper integrals

T T T
f(x,y)d(x,y), f(x,y)d(x,y\... f(x,y}d(x,y),...,

J Dl J Dt J Dn

taken over the domains Dlt D2 ,
...

, converge to a definite limit, independent of
the particular sequence \Dn } chosen, this limit is defined to be the improper

upper integral

j
/(*. x, y}

of f(x, y} in the given domain. A similar statement applies to the case of the

improper lower integral. When the improper upper and lower integrals both

exist, and have the same value, then the improper integral

f(x,y}d(x,y}

over the given domain is said to exist, and to have this common value.

It will be observed that the domains Dn are all measurable in accordance

with Jordan s definition of a measurable set, and therefore also in accordance

with the definition of Borel and Lebesgue.

In case the function f(x, y} be integrable (R) in all the domains D
1 ,D.2) ...,

* Cours d Analyse, vol. u, p. 76.

t Grundzilge, vol. m, p. 124.
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however this sequence may be chosen, subject to the conditions stated above,

then, if the sequence

f(x,y)d(x,y\ \ f(x,y)d(x,y\...
J D, J D.2

converge to a definite limit, independent of the particular sequence {Z)n},that

limit defines the improper double integral

f(x, y} d (x, y).

If a function f(x, y) have an improper integral in the fundamental rect

angle, then f(x, y} has a proper Til-integral in any connex closed domain of

which the frontier has measure zero, and which is contained in the fundamental

rectangle, but itself contains no points in its interior, or on its frontier, at

which f(x, y} is infinitely discontinuous. For, by the definition, the integrals

/O, y} d (x, y\ \ f(x, y)d(x, y)
J D

converge to one and the same definite limit, as D converges to the fundamental

rectangle ; therefore D can be so chosen that, if e be an arbitrarily chosen

positive number,

f(x, y) d (x, y}
-

I f(x, y) d (x, y) &amp;lt; e.

D J D

Now, if D be any domain of the type defined above, in the interior of D, it is

clear that the difference between the upper and lower integrals of f(x, y)

throughout D cannot exceed the difference of the upper and lower integrals

throughout D, and is therefore &amp;lt; e. Since e is arbitrarily small, it follows that

the upper and lower integrals throughout D must be identical, and therefore

that f(x, y} is integrable in D . It has thus been shewn that if f(x, y) have

an improper double integral in the fundamental rectangle, it must possess a

proper R-integral in any connex closed domain interior to that rectangle, such

that the domain has its frontier of zero measure, and contains no points of infinite

discontinuity of the function, either in its interior or on its frontier.

367. The necessary and sufficient condition for the existence of the improper

upper double integral

I
f(x, y) d (x, y}

is that, corresponding to any arbitrarily chosen positive number e, another

positive number 8 can be determined, such that, if A be any connex closed

domain whatever, of which the frontier has measure zero, and which is contained

in the fundamental rectangle, but itself contains no points of infinite discontinuity
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off(x, y), either in its interior or on its frontier, then, provided the measure of
A is &amp;lt; 8, the condition

f(x,y)d(x,y)

taken over A, is satisfied.

A similar theorem applies to the improper lower double integral.

To shew that the condition stated in the theorem is sufficient, let D, D
be two domains of the kind specified in 366, such that m (D), m (D ) both

differ from the area of the fundamental rectangle by less than 8
, they are

both interior to the fundamental rectangle, and contain none of the points
of infinite discontinuity of the function. Let d be the set of points of D which

do not belong to D
,
and d the set of points of D which do not belong to D ;

then

m(d)&amp;lt;A-m(D )&amp;lt;8,

and m (d } &amp;lt;A-m(D)&amp;lt; 8,

where A is the area of the fundamental rectangle. Also, since the domains

D + d
, D + d are identical, we have

ID ~ ID = Id Id 1

,

where / denotes the upper double integral

f(x, y) d (x, y}

taken over the domain indicated by a suffix. It follows that

. \ID -ID \

Id
\

+
1

1d
\

&amp;lt;
2e

;

hence it is easily seen that any two sequences

{I*.},
!M

both converge to one and the same definite limit.

To shew that the condition stated in the theorem is necessary, let us suppose
that it is not satisfied. We thus assume that a domain d, of arbitrarily small

measure, can be found, such that Id &amp;gt; e.

Let D be interior to the rectangle, and such that

A-m(D)&amp;lt;8.

Taking D to contain d, we then have

m(D-d)&amp;gt;A- 2S,

provided m (d) &amp;lt; 8.

The two domains D, D d both converge to A, if 8 be decreased indefinitely;

and lD -ID _ d = Id ;

thus \ID -ID_d &amp;gt;e,

however small 8 may be
;
hence the limit does not exist in this case.
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The necessary and sufficient condition that the improper upper and lower

integrals of f(x, y) in the fundamental rectangle may both exist is that the

improper upper integral of f(x, y) may exist.

To shew that the condition stated is sufficient, we observe that, on the

assumption of the existence of

it follows from the theorem established above that the upper integral of

I /&amp;lt;*,*) I

through a connex domain D, interior to A, and containing none of the points

of infinite discontinuity, tends to the limit zero, as m(D) does so. Also

L f(x, y) d (x, y)

are both less than, or equal to

r

f(x, y) d (x, y}
. D

\f(x,y) d(x,y\
i

as is easily seen. It follows that both the integrals

[ f(x,y}d(x,y), \ f(x,y)d(x,y}
J D J_D

converge to zero, as m(D) does so, and uniformly for all such domains D; and

that these are the sufficient conditions for the existence of

J
f(x, y) d (x, y\

jf(x,
y} d (x, y}.

To prove that the condition stated is a necessary one, let us assume that,

for every connex domain Z), satisfying the specified conditions, and such that

m (D) &amp;lt; S, we have

T !

f(x, y} d (x, y} \

&amp;lt; e.

J D

Now let f(x, y} =f+ (x, y) -f~ (x, y\
where /+ (x, y) =f(x, y)

at all points where f(x, y) is positive, and everywhere else let

also /- (x, y)
= -f(x, y),

at every point where f(x, y) is negative, and everywhere else /~ (x, y} is zero.

The domain D may be divided into a finite number of rectangles 8, some of

which may lie partly outside D
;
the functions being taken to be zero in all

such outlying portions. Denoting by U* the upper boundary of a function in

the rectangle 8, we have

US {f(x,y)}=Us{f+(x,y)},
in all elements 8 in which f(x, y} has positive values; and in all other elements
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The elements may be taken such that, if
77 be an arbitrarily chosen number,

the inequalities

S*0t{/toy)}-f f(v,y)d(x,y)&amp;lt;&amp;lt;ri,
J D

/+(*,?)}- f+ (x,y)d(x,y)&amp;lt;r,
JB

are both satisfied. These conditions are also satisfied for any domain contained

in D.

We have now

f /+ (x, y} d (x, y) ^2SU&
{ /+ (x, y}}*2SUs { f(x, y}}D

^, i / X \ 1 /

(x,
DC

=
,

where A consists of the domain which is composed of those elements B, of D,
in which f(x, y} has positive values. Since

77 is arbitrarily small, we have

Again, since

/ /tey)&amp;lt;*(*,y)=
^_D

we see that I -
{ f(x , y}} d (x, y}

. D
has the limit zero, when m(D) has the limit zero; and from this it follows, as

before, that

Since *

we have f
| f(x , y] d (x, y} 2e

;

J D

and therefore
[ \f(x,y}\d(x,y}
J D

has the limit zero, when m (D) converges to zero. It now appears, by employ

ing the first theorem of this section, that

f(x,y) d(x,y],

taken throughout the fundamental rectangle, has a definite value.

It should be observed that since

I I /&amp;lt;&amp;gt;, y} \d(x,y}^\ f(x, y) \

d (x, y),
J D J D
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the lower integral I f(x, y} \

d (x, y)
L?

has the limit zero, whenever zero is the limit of

i f(x, y} \

d (x, y) ;

and that therefore I
j f(x, y} \

d (x, y}

always exists when I f(x,y} d(x,y)

does so, the integration being over the fundamental rectangle.

368. It has been seen in 366 that, in case f(x, y) have an improper
integral in the fundamental rectangle, it has a proper integral in any closed

connex domain D contained in that rectangle, which has a frontier of zero

measure, and contains no points of infinite discontinuity of the function. It

follows by the theorem (2) of 340, that \f(x, y} is also integrable in the
domain D; and we have already seen that the existence of the improper upper
integral of f(x, y} \

is a necessary consequence of the existence of the improper
integral of f(x, y). It thus appears that the improper upper, and lower,

integrals of \f(x,y) must be identical, and therefore that, if f(x, y} be a

function which has an improper double integral, in accordance with Jordan s

definition, then
j f(x, y} j

has also an improper integral, so that every such im
proper integral is absolutely convergent.

We have seen that Cauchy s definition of an improper single integral is

applicable not only to the cases in which the convergence is absolute, but also
to cases in which the convergence is not absolute. The same remark applies
to Harnack s extension of Cauchy s definition, which will be considered in

Chapter vii. Jordan s definition of an improper double integral is however
much more stringent than Harnack s definition of an improper single integral.
In the latter case the integral is defined as the limit of the proper integral
taken through a finite number of intervals, not chosen arbitrarily in any manner
consistent with the condition that the sum of these intervals is to converge to
the length of the interval of integration, but chosen so as to satisfy the special
condition that they are complementary to a finite set of intervals which contain
within them all the points of infinite discontinuity of the function, each
interval of the finite set containing at least one such point.

If the proper integrals, of which the improper integral, in Harnack s de
finition, is the limit, were not subjected to the above mentioned restriction,

reasoning preciselysimilar to that applied abovewould shew that everyimproper
single integral must be absolutely convergent. In order that a definition of
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the improper double integral should admit of the existence of double integrals

which do not converge absolutely, it would be necessary to subject the domains

D1} Dz ,
... Dn , ..., (the proper integrals through which define, as their limit,

the double integral), to some restriction which would allow of the existence

of a limit in cases in which such a limit does not otherwise exist, independently
of the particular set {Dn }

chosen. Such a restriction as to the nature of the

domains Dn would correspond to the restriction to a special class of sets of

intervals, of the intervals through which the proper integrals in Cauchy s or

Harnack s definition of an improper single integral are taken. The true ex

tension of Harnack s definition to the case of double integrals would be the

following :

Let the points of infinite discontinuity off(x, y) (the set of such points being

of zero content) be enclosed in a finite set of rectangles with sides parallel to

those of the fundamental rectangle, each rectangle of tlie finite set containing at

least one point of infinite discontinuity, and no such point being on the frontier

of the set ofrectangles ; and let Dn denote the remaining part of the fundamental

rectangle when the finite set of rectangles is removed. Then, if f(x, y) have a

proper integral in every such domain Dn ,
and if this proper integral converge

to a definite limit when any sequence ivhatever of such domains Dn is taken, such

that the measure of ]Jn converges to that of the fundamental rectangle, this limit

shall define the improper double integral off(x, y\

This extension of Cauchy s definition would admit of the existence of non-

absolutely convergent improper double integrals, as in the case of improper

single integrals. With this definition, the theorems of 367 would no longer

be valid.

When it is asserted that non-absolutely convergent double integrals do not

exist, the assertion must be taken to mean that such integrals do not exist in

accordance with the definition of Jordan, and not that it is impossible to give

definitions, such as the above extension of Harnack, in accordance with which

double integrals would exist that do not converge absolutely.

The properties of improper double integrals which are not necessarily

absolutely convergent are more restricted than those which exist in accordance

with Jordan s definition, and it is consequently a matter of opinion whether,

though the former certainly exist as limits, the name integral may be ap

propriately applied to such limits.

EXAMPLE.
If we take, as the domain of integration, the rectangle bounded by #=0, x= a, y= 0,

y= b, then the double integral of- sin - is not convergent, and therefore in accordance with
3C X

Jordan s definition does not exist
; although the single integral I

- sin - dx is nou-absolutely
J Q X X

convergent, and exists in accordance with Cauchy s definition.
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fa i i r i i
The existence of I - sin - dx depends upon the fact that I

- sin -dx converges to a
J X X J t X X

definite limit, as e converges to zero, and this is sufficient to ensure the existence of the

single integral. Although /
- sin - d (x, y\ taken over the domain bounded by x=t, x=a,

y= Q,y= b, converges to a definite limit, as e converges to zero, this is not sufficient to

ensure the existence of the Jordan double integral. Taking Jordan s definition, let the

domain Dn consist of the rectangular spaces bounded by the lines y=0, y= b, and the lines

parallel to the _?/-axis at the extremities of the intervals on the #-axis

1 \ / 1 1

&quot;

\ / 1 1

The double integral taken through these spaces is

[a- Cb 1 . 1 p=2n ,-^,~ fb 1 . 1
I / -sin dxdy + 2 / / -sin-dxdy,

(2+l)ir (2p+l)rr

fa fb 1 1 /V p = 2n j
or I I

- sin -dxdy-\- b I sin z 2 -dz;

which is greater than

/&quot;

j

1

^x
(2W+1)7T

/a
j j 2nb- sin - dx+ , ;

i x x (4+l)ir
(2w+l)ir

fa 1 1 b
and this converges to b I

- sin - dx H :

Jo x x 2ir

whereas I
- sin - d (x, y}, taken over the domain bounded by x= f

, x=a, y=0. y= b. con-
/ 3C X

verges to b I
- sin - dx.

Therefore the mode of choice of the intervals Dn affects the limit to which

I
- sin - d (x, y)

converges, as Dn converges to the complete domain. Thus it is clear that the double

integral, in accordance with Jordan s definition, does not exist.

THE DOUBLE INTEGRAL OVER AN INFINITE DOMAIN.

369. The definition of a double integral has been extended by Jordan* to

the case in which the field is unbounded. Let the function f(x, y) be defined

at every point of an unbounded set of points G, and let it be assumed that the

upper and lower integrals of/ exist over each set of points A, that is measur
able (J\ contained in G, in accordance with the definition in 338, or in

accordance with that of 366. This does not make it necessary that the

function / should be bounded in G, even if it be bounded in every such set.

We shall denote the upper and the lower integrals of/ in A, by 7A (/), 7A (/).
* See Cours d Analyse, vol. n, p. 81.
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Consider a sequence {An },
of sets A, such that An contains as a part, all

those points of G, whose distance from the origin is &amp;lt; pn ;
where [pn ]

is a mono

tone increasing sequence of positive numbers which increase indefinitely with n.

If I&n (f) converges to a finite number as n ~ oo
, independent of the par

ticular sequence {An}, subject to the above condition, then the upper integral

IG (f), of thefunction over the set G, is said to exist, and is defined by that number.

A similar definition may be applied to /G (f), as the limit of
/&amp;lt;* ( /).

When
Io(f)&amp;gt; LG (/) both exist, and are equal, their value is said to define

I (f), the integral off over the unbounded domain G. The necessary and suffi

cient condition for the existence of /&amp;lt;?(/)
is that, if e be an arbitrarily chosen

positive number, the inequality \

/^ (f) &amp;lt; e holdsfor every bounded set A, measur

able (J), ofpoints contained in G, and such that all the points ofA are at a distance

from the origin ^ p (e), where p (e) is some positive number dependent on e.

To prove that the condition is sufficient, let A(1)
,
A(2) be any two such sets

of points, measurable (J), each of them containing every point of G whose

distance from the origin is &amp;lt; p (e). Let (1) be the set of points of A(1) which

do not belong to A (2)
,
and let S(2) be the set of points of A(2) which do not belong

to A (1)
;
thus the sets A(1) + S (2)

,
A(2) + S (1) are identical. Therefore

and since B, & each contains no points of G at a distance &amp;lt; p (e) from the origin,

we have TA(D(/) JA(2)(/) |

&amp;lt; 2e.

If
{
An]

be a sequence such as has been defined above, then if n be sufficiently

large, pn &amp;gt;p (e); if then A&amp;lt;
&amp;gt;= An ,

A&amp;lt;

2
&amp;gt;=AM+W ,

we have /An (/)-/An4W (/) i&amp;lt;2e,

for a sufficiently large value of n, and for all positive values of m. Therefore

I^A(/)) ig a convergent sequence. Again, if {A/} be any other such sequence

as |An],
and n, n are sufficiently large, we may take A(1) = AM ,

A(2) = A n &amp;lt;

;
and

thus
|

T&n (/) TAV (/) !

&amp;lt; ^e. As *his holds for every value of e, when n, n are

sufficiently large, corresponding to each value of e, the two sequences {/AW (/)},

{^4 (/)} converge to the same limit
;
and thus IG (f) exists as a finite number.

To shew that the condition is necessary, let us assume that it is not satisfied.

Then e can be so determined that, for every value of p, however large, there

are sets A which contain no points of G at a distance &amp;lt; p from the origin, and

for which /A (/) |

= e. If {An }
be any sequence of the kind employed above,

then for any fixed value of n, the set A can be so determined that every point

of it is at a distance from the origin greater than the upper boundary of the

distances of all points of A ?l ;
we have then /An+A (/) ^An (/) i

= e- If this

be done for each value of n, the sequence {/AW+A (/)} cannot converge to the

same limit as {?AW (/)} ;
the set A depends on n. It should be observed that

the choice of A, for each value of n, is a case where the multiplicative axiom

is employed.

The theorem for the lower integral may be proved in the same manner, or

may be deduced by changing the sign of /.
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370. The following theorem will be established :

The necessary and sufficient condition for the existence of the upper and the

lower integrals off over the set G is that the upper integral of\f\ over G should

exist as a finite number.

It will first be shewn that the condition is sufficient.

The upper boundary of \f\ in any cell is the greater of the numbers

U\, L
;
where U and L are the upper and lower boundaries of/ in the celL

and the lower boundary is the lesser of these numbers. Either U or L may
be infinite. If D be any closed set of points, measurable (J), and contained

in A, we have accordingly

If m (D) converge to the inner extent of A, we see that these relations still

hold, when A is written for D.

If then /A (I/ 1)
&amp;lt; e, for every set of points A, all the points of which are at

a distance = p (e) from the origin, we see that
|

I& (f) \
&amp;lt; e, and

j

7A (f) \

&amp;lt; e.

Hence the conditions for the existence of IG (/), 7 (/) are satisfied.

To prove the necessity of the condition, let f=f+
f~, where /+ =/ at

every point at which /is =0, and elsewhere let /+ = 0. By hypothesis, if A
be any set of points such that all the points of G contained in it are at a

distance = a- from the origin, we have
j

7^ (/) |

&amp;lt; i f,
|
/A (/) |

&amp;lt; i e-

Let AJ, A2 be the two parts of A in which /^ 0,/&amp;lt; 0, respectively; and

let Aj, A2 contain closed sets D1} D2 ,
measurable (J). I(f+

) is the limit. of

I
Dl (f

+
), or of TDl+D2 (/

+
)&amp;gt;

as m (A + A) converges to the lower extent of A.

Hence Dlt D2 can be so determined that JA (/
+
) IDl+D2 (/

+
) &amp;lt; rj, and

/A (/&quot;) ID^+DI (f~) &amp;lt; i) ;
where 77 is an arbitrarily chosen positive number.

Since the conditions
j

T
Dl (/) &amp;lt; e, lDz (f) \&amp;lt;\e,

hold by hypothesis, we

have IDl+Da (/+) &amp;lt; |e, IDl+D, (f~) &amp;lt; K and therefore JA (/+) &amp;lt; | 6 + 77,

3u(/~)&amp;lt;i + * Now

L (/+ +/-) = lim IDl+D2 (/+ +/-) = ^ (/+) + 7A (/-)
i e + 2rj

and since y is arbitrary, 7A (j/|) ^ |e&amp;lt;
e

;
therefore |/ has an upper integral

over Gr. Thus the sufficiency of the condition has been established.

371. It will now be shewn that :

In order that /(/) may exist, it is necessary and sufficient that /G (/|)
should exist as a definite number.

To shew that the condition is sufficient, we observe that, D being any
closed and measurable set of points, &quot;lD (f)\ and

| //&amp;gt;(/)!
both lie between

lad/I) and lD (\f\). Hence we infer that, in the interval, T (|/j), /o(i/|),

both / (/), / (/) are contained. If then TG (j/j) and 7 ( /j) are equal, which

H. 32
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is the case when the integral IG (\f\) exists, it follows that IG (f) exists. To

shew that the condition is necessary ;
we observe that if ID (/) exists, in any

closed set D that is measurable (.7), so also does ID (\f) (see 368), hence

the same holds good for any set A, to which D converges ;
and proceeding to

the limit, as A converges to G, we see that, if IG (/) exists, so also does IG (\f\).

It thus appears that, in accordance with Jordan s definition of the integral of

f(x, y) over an unbounded domain G, given in 369, the integral is necessarily

absolutely convergent, in the sense that \f(x, y)\ has a finite integral in the

domain G. It has been seen, in 358, that this is not the case for a single

integral of a function f(x) over an indefinitely great interval of x, as this

integral may exist, and yet the integral of )/(#) over the same interval may
sm cc

not exist as a finite number. For example, the integral of - - over the un-
vC

bounded interval (0, oo ) is not absolutely convergent. The reason for this differ

ence between the two cases is that Jordan s definition for the double integral is

much more stringent than the definition in 354 for the single integral. The

single integral is defined as the limit of a sequence of integrals taken each over

a single finite interval. If the integrals, of which the integral over the un

bounded interval is the limit, were not restricted in this manner, but might be

integrals over other sets of points measurable (./), it would be possible to give a

definition in accordance -\ith which only absolutely convergent single integrals

over an unbounded interval would exist. It would be possible to restrict the

domains A in Jordan s definition in such a manner as to admit of the existence

of.non-absolutely convergent double integrals over an unbounded domain G.

When it is asserted that non-absolutely convergent double integrals over

unbounded domains do not exist, the assertion must be taken to mean that

such integrals do not exist in accordance with Jordan s definition, and not that

it is impossible to give a definition in accordance with which double integrals

exist that do not converge absolutely.

EXAMPLES.
1*. The integral

sin (ax+ by) x
r ~ l

y*
~ l d (jc, y\

where 0&amp;lt;r&amp;lt;l, 0&amp;lt;a&amp;lt;], taken over the positive quadrant, has no existence as an

absolutely convergent improper integral. We find that the integral taken over the rect

angle bounded by #=0, x=/i, y=0, y= k tends to the limit a~ rb~ i
T(r) r(*)sin(r+s)r,

as h and k are increased indefinitely. If the integral be taken over the domain x &amp;gt; 0,

y &amp;gt; 0, ax + by &amp;lt; A, then when h is indefinitely increased, the integral has no limit if

1&amp;lt; r + s &amp;lt; 2 ;
but it tends to the same limit as before, when r + s &amp;lt; 1. The integral may

be regarded as conditionally convergent, if we adopt a definition in accordance with which

it is sufficient that the integral taken through the rectangle #=0, x=h, y=0, y= k should

have a definite double limit, as h and k are indefinitely increased.

*
Hardy, Messenger of Math., vol. xxxii, p. 96.
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2*. The integrals

[
cos (ax

2+ Zhxy+ by*) d (x, y\ f sin (ax
2+ Zhxy + by

2
)d (x, y),

where a, ab-h- are positive, taken over the positive quadrant, do not exist as absolutely

convergent integrals. It may be seen that, if the integrals are taken over the quadrant of

a circle bounded by r=R, the value of the integral has no definite limit, as R is increased

indefinitely. If the integral be taken over the rectangle bounded by x= 0, x= A
, y = 0, y= if,

then, when h and V are increased indefinitely, the integrals have

for limits respectively, the inverse cosine having its least positive value. These may be

regarded as the values of the integrals, subject to a suitable restriction on the domains of

which the positive quadrant is the limit.

If a=0, 6= 0, A=
,

I siaxyd(x,y),

over the positive quadrant, has no existence, even considered as the limit of an integral

over the rectangle. But

I cosxyd(x,y)

exists, and is equal to \it, when the integral is defined as the limit of the integral over the

finite rectangle. It may be remarked that the single integrals

/h
[k

cos xydx. smxydy
o jo

are both non-convergent.

THE TRANSFORMATION OF DOUBLE INTEGRALS.

372. Let (x, y) be a point of a bounded perfect and connex domain H, and

let x and y be expressed by means of two functions /i,/2 in terms of two new

variables , 77, which may be represented by points (, 77) in another plane.

Let us suppose that the functions

and the reciprocal functions

=&amp;lt;f&amp;gt;i(v,y), V = ki(x&amp;gt;y\

are such that the following conditions are satisfied :

(1) To each point (x, y) there corresponds one point ( 77) ; and, conversely,

to each point (, rj) there corresponds&quot;
one point (x, y) ; and to the bounded

domain H there corresponds a bounded domain H.

(2) The functions / (|, ;), /z (f, ;) are continuous functions of ( ij)

throughout the domain H.

Hardy, Messenger of Math., voL zxzn, p. 159.

322
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(3) The functions /i (, 77), /2 (, 77) have, at every point (f, 77), of #,

definite partial differential coefficients with respect to and 77, and each one

of these is everywhere continuous with respect to (, 77), and nowhere vanishes.

(4) The Jacobian of /j (f , 77), /2 (, 77) with respect to and 77 does not

vanish in the domain H. In virtue of (3) the Jacobian is everywhere con

tinuous, and of fixed sign.

From (2) and (3) it follows that, if ( + Af, 77+ AT?), (, 77) be two points

of H, and (x + A#, y + Ay), (x, y) the corresponding points of H, then

Ay = (i + 0sW+(| + 4 )Ai/,
\0g / VCT? /

where ly 2 , 3&amp;gt; 4 converge to zero, as A, AT? do so, and (see 310)

uniformly for all points (, T?)
in any closed domain contained within H. On

solving these equations, we find

A *. _

with a similar expression for AT?, where / denotes the Jacobian

9 (/i./.)

9(617)

and ! is a function of 1} 2 , 3 , 4 which converges with them to zero.

Since, by (4), / never vanishes, it follows from these equations that A, AT?

converge to zero with A#, Ay, and thus that the functions fa (x, y}, fa (x, y}

are both continuous functions.

The partial differential coefficients

dfa _ d/2 / r dfa dfa dfa

dy dx dy

are also continuous in H; and therefore

where %!, %2 ,
^3&amp;gt; ?6 converge to zero with A#, Ay, and uniformly so for all

points (x, y) in a closed domain contained within H.

Corresponding to any closed set h, of zero content, contained within H, there

is a closed set h, of zero content, contained within H. It is clear, from the

continuity of the functions which define the transformation, that a limiting



372,373] Transformation of double integrals 501

point of a sequence of points in H corresponds to the limiting point of the

corresponding sequence in H
;
and thus h is closed, since h is so.

Writing A = L&x + M&y, A
77
= L &x + M &y,

it follows, since

LM+LM l,2

(A#)
2 + (Ay)

2

where Z, L , ... converge uniformly to

that, if A#
|

,
| Ay j

be both restricted to be less than a fixed positive number

e, the ratio

(Ag)
2 + (A77)

2

has a finite upper limit A2
,
for the whole domain H. Now let the points of

h be enclosed in a finite number of circles, the radii of which are all &amp;lt; e
;

it then follows that the points of h can be enclosed in a finite number of

circles of which the radii are all less than eA. The sum of the areas

of these circles on the (, 77) plane, which contain within them all the

points of h, has to the sum of the areas of the circles on the (x, y} plane,

which enclose all the points of h, a ratio less than A 2
. Since the sum of the

latter circles can be taken to be arbitrarily small, it follows that the points of

h can all be enclosed in a finite number of circles the sum of whose areas is

arbitrarily small. Therefore A has the content zero.

373. Let/(#, y} be a bounded function, defined for all points of a closed

connex domain G, contained in H, the frontier of G having content zero;

and let f(x, y} be integrable (R) in G. If x, y be expressed in terms of
, 77

by the relations

x=fi(Z&amp;gt; n), y=/2 (*?)&amp;gt;

which satisfy the conditions of 372, then, corresponding to f(x, y) in G, we

have a function F(g, 77) in the domain G, contained in H, which corresponds

to G. The frontier of G, corresponding to the frontier of G, has also the

content zero. A point of discontinuity of f(x, y\ in the (x, y) plane, corre

sponds to a point of discontinuity of F (, 77) in the (f, 77) plane, the measures

of discontinuity at the corresponding points being the same. Since those points
of (x, y} at which the saltus off(x, y} is ^ k form a closed set of zero content,

it follows that the points of (, 77) at which the saltus of F (, 77) is ^ k form

also a closed set of zero content
;
and therefore F(%, 77) is integrable in G.

In order to transform I f(x, y) d (x, y\ taken throughout G, into an integral

taken throughout G, it is convenient to make use of an intermediate transfer-
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mation* x =
-fy (u1} uz), y=u2 ,

followed by the transformation &!=, M 2 =/2(, ?]) ,

the function ^r(ul ,
u2) being such that

It is easy to see that each of these transformations satisfies the conditions of

372.

Since f(x, y} is integrable in G, we may, in accordance with the result of

363, replace the double integral

r

J

by the repeated integral I dy I f(x, y) dx,

or by \dy \ f(x,y}dx.
J J

Applying the transformation x = ty (MJ, -M2) to the upper and lower integrals

\f(x,y}dx, \f(x,y)dx\

these may, in virtue of the theorem of 360, be transformed into the single

upper and lower integrals

.dx , f . , N dx j
I &amp;lt;b (tti , MO) ^ aw, , &amp;lt;p (HJ, U.) ^ aMj ,

J OU-L J C7M!

where
&amp;lt;j&amp;gt;(u

1} M 2) represents the function of w1} M2 which corresponds to

f(x, y). We thus have

the double integral being taken through the domain in the plane (HI, ?/2),

which corresponds to G in (#, y).

Since ^
is the Jacobian of (x, y} with respect to (uj} u^), we have,

,. _ dx d (MI ,
H2)=

8^ 3(f,n)
;

* This method is employed in the general case of multiple integrals by Pierpont; see his

paper
&quot; On multiple integrals,&quot; Trans. Amer. Math. Soc., vol. vi, p. 432. It is, however, there

assumed that f(x, y) is integrable with respect to x for each value of y : but this is unnecessary.

f

J
/te y) ^ ( y)

=

= I du 2
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hence, since J never vanishes,

dx , 3 (MI, w2)and
8 (

i&amp;gt;)

also never vanish.

Applying the same method of transformation to

where u^ %, u2 =/2 (f, 77),

we have
J
f(x, y) d(x,y) = jF(%,

77)^ -^
d ( 17),

where a^
a*

hence finally we obtain the formula

/(x, y} d (x, y)
=

|

&amp;gt; (

which is the formula of transformation of the integral of f(x, y) throughout

G into an integral throughout G.

It has been assumed that J has a fixed sign throughout the domain of

integration. If now this sign be negative, the product AfA?;, in JAA?7,
which corresponds to A#Ay in the plane of (x, y), must be accounted negative,

when A#A?/ is positive. It is however more convenient to consider A^AT; as

essentially positive, otherwise the measure of a set of points in the (, 77) plane

would have to be reckoned as negative. Adopting this convention, we write

\J d(%, 77) instead of Jd (, 77); and therefore the formula of transformation will

be written in the form

374. Let us now assume that, at certain points of G, which form a set L
of zero content, either (1), f(x, y) has an infinite discontinuity, or (2), one or

more of the partial differential coefficients

3 5
8 877 df 877

is discontinuous, or (3), the Jacobian J vanishes. In case J be positive over a

part of G, and negative over another part, it is convenient to divide the double

integral into two portions, taken over these two parts of G respectively, and

to transform these two portions separately. It will accordingly be assumed

that J never actually changes its sign in the domain G, although it may vanish

at the points of the part L, of G. We may denote by L the set of points on
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the (, 77) plane which corresponds to L: it will be assumed that L has zero

content. It will be shewn that, if one of the two integrals

f(x, y) d (x, y},

taken over G, and

taken over G, exists as an absolutely convergent improper integral, or as a

proper integral, then the other one exists, and the two have the same value.

Let us assume that I f(x,y)d(x,y) exists: it will then be sufficient, in
J G

order to establish the existence of the other integral, and its equality with the

first, to shew that, for any domain G1} contained in G, and itself containing no

points of L, either in its interior or on its frontier (which frontier is to be

taken to be of zero measure), the condition

I f(x y y}d(x,y}\ F (, 77) j

J
\

d (, 77) &amp;lt;rj

J G J-^

is satisfied, provided that m (G)
- m (GJ be less than some fixed finite number

dependent on rj.

A domain g, interior to G, and containing, in its interior and on its frontier,

no points of L, can be found such that

f
r

i

f(x,y)d(xy y)- I f(x,y}d(x,y)\&amp;lt;.
J G J

&amp;lt;j

If h be any domain contained in g, such that in (g) m (h) is sufficiently

small, we have

I f(x&amp;gt;y)d(x,y)-\ f(x,y)d(x,y) &amp;lt;e;

i J h

f(x, y) d (x, y)- f(x, y} d (x, y) &amp;lt; 2e.and therefore
J G J h

Now let & be a domain interior to G, containing in its interior, and on its

frontier, no points of L, and containing h, then

f(x, y} d (x, y)- f(x, y) d (x, y)
f J k

&amp;lt;2e.

For, let p denote the domain obtained by taking the two domains g and k

together, then

f /O&amp;gt; y} d (x, y)
-

\
f(x, y) d (x, y)JO . p

|

f r

\

f(x,y)d(x,y)- f(x,y)d(x,y)
Up J k

and by combining these inequalities the result follows.
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We have now

505

fJT Jf

where U is the domain formed by taking all points which belong to one or

both of the domains GI and h
;
and V consists of those points which belong

to h but not to GI.

Now If corresponds to a domain in the (x, y) plane which contains h, and

which domain may be taken to be identical with k
;
therefore

fJ
J\d(%,i) differs from f(x,y}d(x,y}

by a number numerically less than 2e. Again

where p is the upper boundary of F (%, rj) J in the domain V, obtained by

removing from h those points which belong to GI.

We thus have

f(x,y}d(x,y}- 2e + /* m G-

Now let e be so fixed that it is
&amp;lt;\rj,

then h is fixed, so that
yu,

cannot

exceed a fixed finite number fil . If then GI be so chosen that

the inequality

J
f(x,y}d(x,y}-

will be satisfied. Therefore it follows that

/,

exists, and is equal to

I f(x&amp;gt;y)d(x,y).
J a

375. This method of transformation may be extended to the case in which

one of the domains G, G is infinite, or to the case in which both are infinite.

It can be shewn that, if either of the integrals

f f(x,y\d(x,y\ t F(t,i)\J\d(&i)
JG J&

exists, the definition of 366 being applied when G or G is infinite, then the
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other integral also exists, and the two integrals are equal. The proof can be

given by slightly modifying the procedure of 372.

There may be a set of points of zero content, in the domain of G, such

that the corresponding values of f, 77 are infinite, or such that one of them is

infinite. This set now takes the place of the set L. Whether G be finite or

infinite, the finite, or infinite, domain A, contained in G, may be so fixed as to

exclude all points which correspond to infinite values of or
77.

The domain

k including A, and containing no points which correspond to infinite values of

and 77, may then be fixed as before, and will satisfy the condition

f /*

/(*. y) d (x, y}
-

f(x, y) d (x, y)
J G J k

it being assumed that the integral of f(x, y) over G exists.

The finite domain A contains all points of G of which the distance
.
from

the origin is less than some number R depending on the domain G h, which

contains in its interior all points (x, y} that correspond to infinite values of

or 77, or of both. The same statement holds for k, which contains A. When

the finite domain G^ is such that the condition

Jf
is satisfied (and, in order that this may be the case, Gt must certainly contain

all points of G whose distance from the origin is less than some fixed number

R1 R), we have as before

f(*,y)d(*,y)-j
F(&v)\J d&rt

and as 77 is an arbitrarily fixed number, we thus see that

I F(S,r,)\J\d(?,i,)
J G

exists, and is equal to

I f(x,y)d(a;,y).
J G

THE RIEMANN-STIELTJES INTEGRAL.

376. The notion of the integral of a bounded function /(#), defined in the

linear interval (a, 6), with respect to another function &amp;lt; (x), defined in the

same interval, is a generalization of the integral of a function f (x), with

respect to the variable x, that was first introduced* into Analysis by Stieltjes

in connection with the theory of continued fractions. This integral, in a

generalized form, has recently become of considerable importance ;
and con

sequently, an account of it, so far as it can be regarded as a generalization of

the 72-integral, will be given here.

* See Annales de la Faculte den Sciences de Toulouse, vol. vm, p. 71.

&amp;lt;rj;
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If (a, ?!, x2 ,
... xm^, b) be a net, fitted on to (a, b), and of which the

oreadth of the greatest mesh is d, let us consider the sum

+/()
where /(#), &amp;lt; (#) are the bounded functions, defined in the interval (a, b), and

1, z&amp;gt; m are points, assigned in any manner, which are in the meshes

(a, a?!), O&i, O (*m-i&amp;gt; 6) respectively.

If the functions f(x), &amp;lt;f&amp;gt; (x) be such that Sd converges to a definite number,

as the number m of the meshes is increased indefinitely, subject to the condition

that d converges to zero, and if this limit is independent of the mode of

successive sub-division of the interval by the nets, and of the mode in which

the sets of points j, 2 &amp;gt; %m are assigned, f(x) is said to have a Stieltjes

Integral with respect to
&amp;lt;/&amp;gt;(#).

Such integral is defined to be the limit of S&,

as d^-Q, and it is denoted by

It will here be spoken of as an .R$-integral, or Riemann-Stieltjes integral.

In the case in which f(x) is continuous in (a, 6), and $ (x) is monotone

and bounded in the same interval, the existence of the integral was established

by Stieltjes.

If
&amp;lt;/&amp;gt;

(x) be a function of bounded variation in (a, b), f(x) being continuous,

the integral also exists. For
&amp;lt;f&amp;gt;

(x) is then the difference of two bounded

monotone functions ^ (#), &amp;lt; 2 (x), and it is clear from the definition that

/&quot;*/&amp;lt;*)&amp;lt;**&amp;lt;)

J a

exists, and is the difference

fV&amp;lt;*)^(*)- (*/()&amp;lt;**(&amp;gt;;J a J a

the existence of these latter integrals being assumed.

Further, iff(x), &amp;lt;f&amp;gt;(x)

be any two functions for which

exists, then

exists, and the two integrals satisfy the relation

t
/()&amp;lt;fy(*)+ f &amp;lt;j&amp;gt;(x)df(x)=f(b)&amp;lt;}&amp;gt;(b)-f(a)&amp;lt;l&amp;gt;(a).

J a J a

This is a generalization of the formula for integration by parts.
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* (f) {/ -/()} + 4&amp;gt; (

may be written in the form

K&&amp;gt;-

The points a, , 2 ,
. . . m ,

b form a net with m + 1 meshes, the greatest
breadth of which is 2dm .

The expression on the right-hand side converges, as dm ~ 0, to

by hypothesis.

Therefore the expression

2

converges, and consequently

exists, and the two integrals satisfy the relation given above.

rb

In particular,
&amp;lt;/&amp;gt; (#) d/()

J a

exists, if/(#) is continuous, and
&amp;lt;f&amp;gt; (x) is of bounded variation in (a, 6).

THE UPPER AND LOWER RIEMANN-STIELTJES INTEGRALS.

377. Let f(x) be any function bounded in (a, 6), and let
&amp;lt;j&amp;gt;(x)

be a

bounded monotone non-decreasing function, defined for the same integral.

Let a net a, x1 ,
x2 ,

... a?TO_1} 6 be fitted on to (a, 6), and consider the two

sums

+ 0)- 0(av-0)},

where # =
a, ^m =

6,
&amp;lt;/&amp;gt;

(arm + 0) = &amp;lt;/&amp;gt; (6),

denote the upper and lower boundaries of f(x) in the open interval (#f _i, #)
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U and L denoting respectively the upper and lower boundaries of f (x) in

(a, b), we have
-

&amp;lt;/&amp;gt; ()} = S= L
(&amp;lt;/&amp;gt; (*)- &amp;lt;()}

Therefore, for all such nets, & has a lower boundary, which can be denoted by

\J a

This will be called the upper Riemann-Stieltjes Integral off(x) with respect to

&amp;lt;f) (x), in the interval (a, b). For shortness it will be spoken of as the upper

RS-integral off(x} with respect to
&amp;lt;/&amp;gt;(#).

Similarly, $ has, for all possible nets, an upper boundary which may be

denoted by

and this may be called the lower J2&amp;gt;S

Y

-integral of f (x} with respect to &amp;lt; (x)

in (a, b).

Since IS ^ S, it follows that

f(x)d&amp;lt;f&amp;gt;(x}.

In case of equality of upper and lower .R$-integrals, their common.
value is denoted by

8

f(x) d&amp;lt;f&amp;gt; (x),

and this defines the Riemann-Stieltjes integral, or the .ft^-integral of

f(x), with respect to &amp;lt; (x), in the interval (a, b).

The following theorem will now be established :

Iff(x) be bounded in (a, b), and &amp;lt;f&amp;gt; (x) be of bounded variation in the same

interval, the necessary and sufficient condition* that f(x) should have an RS-

integral with respect to
&amp;lt;f&amp;gt;(x)

is that the variation of $ (x) over the set ofpoints

of discontinuity off(x) should be zero.

It will be observed that the condition cannot be satisfied if f(x), (f&amp;gt; (#) have

any common point of discontinuity.

The upper and lower variations of
&amp;lt;j&amp;gt;

(x), in case it be monotone, over a set

of points in (a, b), have been defined in 252; when the upper variation is zero,
the variation of

&amp;lt;f) (x) over the set of points exists, and is equal to zero.

We may, without loss of generality, assume &amp;lt;f&amp;gt;
(x) to be monotone and non-

* See W. H. Young, Proc. Land. Math. Soc. (2), vol. xui, p. 133.
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diminishing ;
for in the general case

&amp;lt;f&amp;gt; (&) is the difference of two such

functions P(x\ N (x), and the variation of
&amp;lt;/&amp;gt;(#)

over a set of points is the

sum of the variations of P (x), N (x} over the set.

It is easily seen that, if a system of nets be fitted on to (a, b), the sum

does not increase as n is increased.

We have only to shew that Sn does not increase when a mesh is divided

into two. Let x be a point interior to (av_i, x
r) , we have then

and
{&amp;lt;

(av
-

0)
-

&amp;lt;f&amp;gt;
(av_, + 0){

=
{&amp;lt;/&amp;gt;

(arr
-

0)
-

&amp;lt;j&amp;gt; (x + 0)}

+
{&amp;lt;l&amp;gt;(x -0)-&amp;lt;i&amp;gt;(

iKr_l + 0)}

hence ZT, ( /(a?)) {&amp;lt;/&amp;gt;
(*v

-
0)
-

&amp;lt;/ (^ + 0)}

from which the result follows. We now see that $n ^ Sn+1 ;
and thus &amp;gt;Sn has

a lower boundary *S. Similarly it may be shewn that Sn has an upper

boundary S.

It has been shewn in 334 that, if be a prescribed positive number, the

interval (a, 6) can be covered by a finite set of overlapping intervals, each ^
&quot;,

and such that, in each interval, the fluctuation of f(x} is &amp;lt; o () + e, where

is a definite point interior to the interval, and &&amp;gt; () is the saltus at . The

end-points of this finite set of intervals divide (a, 6) into a finite number of

parts ;
let 77 be the length of the least of these parts. Any interval whatever,

8, in (a, b), of length &amp;lt; 77,
is interior to one of the intervals of the finite set.

Hence, in 8, the fluctuation of /(#) is &amp;lt; e + CD (), where is some point in

an interval of length &amp;lt;
,
which contains B in its interior.

Let (T,, be the closed set of points at which &&amp;gt; (x) = e
;
with centre x, any

point of 6re ,
an interval of length 2p can be taken; all such intervals, or the

parts of them in (a, 6), coalesce into a non-overlapping finite set A
e&amp;gt;p

,
of which

Cr6 is the inner limiting set, as p~0. Assuming that the variation of
&amp;lt;/&amp;gt; (x) over

6re is zero, p can be so chosen that the upper variation of
&amp;lt;/&amp;gt;

(x) over A
)P is

&amp;lt; ,
an arbitrarily chosen positive number. In any interval of the set

A
e&amp;gt;p

,
there is no point of Cre of which the distance from either end-point

is &amp;lt; p.
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We can suppose f, and consequently rj,
to be so small that, if 8 be not

interior to an interval of A
e&amp;gt;p

,
there is no point of 6re in the interval 8.

It will now be proved that S = S, if the condition that the variation of

&amp;lt;(#)
over the set of discontinuities of/(#) is satisfied. We have

~
n -Sn = 2

{ U*j-+ l (/(*))
-
L*;-+ l (/(*))} fo (*,

-
0)
- (*^ + 0)}.

The number n being taken so large that every mesh Dn is &amp;lt; 77, we then

find that
&quot;

n -Sn &amp;lt; 2e
[&amp;lt;/&amp;gt; (6)

-
(a)] + f ( Z7 -

),

where the first term on the right-hand side arises from those meshes that are

not interior to an interval of A
eiP ,

and in each such mesh the fluctuation

is therefore &amp;lt; 2e
;
the second term arises from the remaining meshes. Since

e and % can be made to converge to zero, as n ~ co
,
we see that S = S.

To shew that the condition that the variation of $ (#) over the set of

points of discontinuity is necessary, in order that $ = S, we observe that

8n - Sn is

^ ieS fa (xr
-

0)
-

&amp;lt;/&amp;gt;
(*,_! + 0)},

where the summation is taken for those meshes of Dn which contain points
of Cr within them, or at an end-point. For if a point of G, be a common

end-point of two meshes, in one at least of these meshes the fluctuation is

= |e. Unless the variation
&amp;lt;f&amp;gt;(&)

over Gf is zero, the sum

remains greater than some positive number, however large n may be, and in

that case Sn Sn cannot converge to zero.

It will now be shewn that S, the common value of S and S, is independent
of the particular system of nets. If possible, let the values Sw , S, of S, for

two systems of nets, be such that Sw &amp;gt;S^. There must then exist a net Dt

of the second system, for which $ (1)
&amp;gt; $t

(2)
- Let s be the number of meshes in

Dt ,
and let us consider the nets Dn of the first system. Suppose Dn and D

t

superimposed. Of the meshes of Dn , at most sl will be altered by super

imposing D^.

The meshes of Dn consist (1), of those that are interior to an interval of

A
g&amp;gt;p

,
and (2), of those that are not interior to any such interval. Also some of

the end-points of the meshes of Dn may be points of Of . We take n, as before,
so large that all the meshes of Dn are of length &amp;lt; TJ. The diminution in the

value of $n (1
&amp;gt;

produced by superimposing on Dn the net D
t is less than

The numbers e,

&quot;

can be chosen so small that the sum S, for the new net
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DnDt, is &amp;gt; SJ*, But, in DnD t ,
the sum S is ^

~
(
(2

&amp;gt;,

and therefore the

assumption
(1

&amp;gt;

&amp;gt; S (2
&amp;gt; has led to a contradiction. Thus it follows that 8 is

independent of the system of nets.

It should be observed that the condition that
(f&amp;gt;

(x) has variation zero over

the set of points of discontinuity of f(x} may be satisfied even when the

measure of the set is &amp;gt; 0.

For example, if
&amp;lt; (x)

= x, at the points of a closed set E, of positive

measure, and if &amp;lt; (x) is constant over each contiguous interval of E, whilst

all the discontinuities of / (x) are in these contiguous intervals,

[*/(&amp;gt; 4* ()1 a

rb

exists, although I / (x) dx may not exist.
J a

In case
&amp;lt;f&amp;gt; (x) is continuous, the expressions for &quot;Sn ,

Sn become

It can be shewn that these sums may be replaced by
r=m n

^ ^ (/())
/* = 1

*

without affecting the values of the upper and lower integrals. The proof is

as in the case (x) = x
;
the only difference is that, instead of

, we have the

difference of the values of
&amp;lt;/&amp;gt;

(x) over the end-points of a mesh. But, on
account of the uniformity of convergence of

&amp;lt;/&amp;gt; (x), this difference is less than

an arbitrarily small number, when m is so great that the meshes of Dn+m are

of sufficiently small breadth
;
thus 8 is replaced by a number that converges

to zero, as

378. It was pointed out in 252 that the variation of a monotone function

&amp;lt;/&amp;gt;
O), over any set of points in (a, &), is the measure of the corresponding set of

points (= (f&amp;gt; O)) in the linear integral of
, provided the closed interval

ftfo-O), &amp;lt;/&amp;gt;(*!
+ 0)}

be taken to correspond, on the f-segment, to a point aslt on the ^-segment, at

which (x} is discontinuous.

If F () be defined on the ^-segment as equal to the value of f(x) at the
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point x which corresponds to
, the function F () is discontinuous, at the

point , corresponding to a point x at which f(x) is discontinuous, and
&amp;lt;f&amp;gt; (x}

continuous; but if
&amp;lt;/&amp;gt;

(x) is discontinuous, F() is constant in the interval

corresponding to x.

The condition in the theorem of 377, that
(f&amp;gt;(x)

should have variation

zero over the set of points of discontinuity of f(x), is equivalent to the

condition that the points on the ^-segment at which F () is discontinuous

should have measure zero. When the .R$-integral exists, f(x) and
&amp;lt;f&amp;gt;(x)

cannot be discontinuous at the same point.
rb

It has thus been shewn that it is a necessary condition that I f(x) d&amp;lt;f&amp;gt; (x)

F(%)dl~ should exist as an R-
X

integral ; where a =
&amp;lt;f&amp;gt; (a), ft

=
&amp;lt;f&amp;gt; (6).

The Tt-integral in the ^-segment may however exist when the _R$-integral
does not exist, as is seen by considering the case in which f(x) and

&amp;lt;/&amp;gt; (x) are

both discontinuous only at a single point xl .

379. A fundamental property of the .RS-integral is that

f &quot;/(x) d&amp;lt;j&amp;gt; (x)
=

j

C

f(x) d&amp;lt;)&amp;gt; (x) + ^ f(x) d^ (x).
J a J a Jo

First, let c be a point of discontinuity of f(x), then
&amp;lt;/&amp;gt; (x) is continuous

at c. We consider a system of nets such that c is an end-point of meshes of

each net Dn .

The part of the sum S which involves the meshes of Dn of which c is an

end-point is

*C+ o &amp;lt;/(*)){0(c) -&amp;lt;K*v
+ o)}+ u%$- (/(* {&amp;lt;t&amp;gt; (^ -o)-4&amp;gt; (c)},

where (xr , c), (c, xr+l } are the two meshes.

In the corresponding sums for the two integrals over (a, c), (c, b) the

corresponding terms are

^Co (/(*)) (&amp;lt;/&amp;gt; () -*&amp;lt;r+ 0)}, U?+j
~

(f(x}} {0 (av+1
-

0)
-

&amp;lt;/&amp;gt; (c)}.

Hence we have 8n = ~Sn
(1) + ^ (2)

,

and similarly we have n = Snw + $n (2)
.

Thus SB -S = (Snu - Sn ) -f (Sn
- Snv) ;

and if tfn
- Sn &amp;lt; e, both^ - &amp;lt; and 13,

- n &amp;lt;

2 are &amp;lt; e.

It follows that both the integrals in (a, c), (c, b) exist, if that in (a, 6)

exists, and their sum is equal to the latter integral.

Next, let c be a point of discontinuity of &amp;lt; (x), and therefore a point of

continuity of /(#).

H. 33
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The parts of the three suras to be considered are

) f* (c
-

0)
-

(xr + 0)} + U*
e$- (/(*)) {&amp;lt;/&amp;gt;

(av+ i
- 0)

- * (c + 0)}

,
(/(*)) {&amp;lt;

(c
-

0)
-

c/, (ar + 0)} +/(c) {&amp;lt; (c)
-

&amp;lt;/&amp;gt;
(c
-

0)}

/(c) {&amp;lt;/&amp;gt;
(c + 0)

-
&amp;lt; (c)} + t^

-
(/(*)) {&amp;lt;

(*r+i
-

0)
-

(c + 0)} ;

hence, as before, the first sum is equal to the second and third taken together ;

whence the result follows.

We find, from the above theorem,

rx+h rx fx+h
I /(a?) d(f) (x)

-
f(x) d&amp;lt;f&amp;gt; (x)

=
I f(x) d&amp;lt;f&amp;gt; (x) ;

J a *&amp;lt;*
J x

the integral on the right-hand side is

M
\ d6(x
Jx

where M is between U and L. It follows that

f*/()**(*)
J a

is continuous at a point of continuity of/(#), since

rx+h

d(f) (x) = (f&amp;gt; (x + h) &amp;lt; (x).
J x

In case/(#) is continuous at x, we have

lim I f(^)d(f)(x}l{(f)(x + h)&amp;lt;p(x)}=f(x),
h~Q J x

which is a generalization of the theorem to which it reduces when
&amp;lt;/&amp;gt; (x)

= x,

that rx

I f (x) dx
J a

has a differential coefficient equal to /(#), at any point x, at which f(x) is

continuous.

380. The following property of the JRS-integral, which is an extension of

the property of the jR-integral, will be established :

Iffi (x), f2 (x) both have RS-integrals with respect to the monotone function

(f&amp;gt; (x), then /j (x) + f2 (x) is integrable (RS), with respect to $ (x), and

f
b

[
b

f [
b

-f

J a Jo, &amp;gt; a

Since the variation of (x) is zero over the sets of discontinuities of/i (#)

and/2 (#), the variation is also zero over the set of discontinuities of

/iO)+/2 (O-

Therefore the latter US-integral exists.
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In any interval, if IT, Z be the upper and lower boundaries of

Ult L l
offi(x), and U2 ,

L2 of f2 (x), we have

Ui+Uttlttttk+.X*
Hence, if Snw ,

Sn ,
Sn be the three sums, for a net Dn ,

which converge to

the three upper integrals; and Sn
(1}

,
Sn ,

Sn the corresponding sums which

converge to the lower integrals, we have

3&amp;gt; + S&amp;gt; ^ &quot;Sn ZSnZ n
w + &amp;lt;*&amp;gt;.

If Snw Sn (1)
, Sn S tl both converge to zero, as n~ oo

,
it follows that

Sn &n converges to zero, and that

lira &nv + lim
S&amp;gt;

= lim &quot;Sn ,

tt~ n~x&amp;gt; w-xoo

whence the result follows.

It is easily seen that, if/i (#), /2 (x), ...fr (x) are functions all of which have

an jRS-integral with respect to $(#), then F(fl ,f2 ,
... fr) also has such an

integral, where F is continuous with respect to (/i,/2 . //) in the whole

interval (a, 6).

381. Let a function f(x, ^ (2)

), defined in a cell (a
(l)

,
a (2

&amp;gt;;

6 (l)
,
6 (2)

),
be

bounded in that cell, and let
&amp;lt;f&amp;gt;

(x
(1
\ a;(2)

) be a function defined in the same cell,

and quasi-monotone in accordance with the definition in 255; thus, employ

ing the notation there introduced, A (

*|I| ^j &amp;lt;f&amp;gt;(x

M
,
x (z)

) &amp;gt;0, provided x (l)^x (1

\

x ^ a.

Let a net be fitted on to the cell in which the functions are defined, and

let 8i,S2 ,
...Sm denote the meshes of the net, and A

r (f)(x
w ,x (2)

) denote

A(S f
)
^ ^ (1) ^ &amp;lt;2&amp;gt;

) where ^M ^ ); ^(1)
&amp;gt; ^ &amp;lt;2)

) is the mesh 8r
&amp;gt; moreover, let

U(8r ), L(8r) denote the upper, and the lower, boundaries of/(#
(1

,
x (- }

) in the

cell Sr .

r=m
The sum S U(Br)^ Sf (j) (x

w
,
# (2)

) has a lower boundary, when all possible
r=\

nets are taken into account; and this lower boundary is said to define

&amp;gt;ro, a)
?/&amp;gt;/&amp;gt;er integral off(x

(l
\ x (- ]

) with respect to
&amp;lt;f&amp;gt;(x

(l}
,
x ( - }

),
in the cell (a

(l)
,

Similarly, the lower integral of f(x
M

,
x (t)

) with respect to &amp;lt; (x
{1
\ x { 2}

) is

r = nt

defined as the upper boundary of 2 L
(t&amp;gt;

r) A Sf &amp;lt;/&amp;gt;
(ic

(l)
,

a;
(2)

), for all possible nets
r=l

fitted on to the fundamental cell, and this lower integral is denoted by
/(few 5 tat)

/O (1)
,
x (

*)d&amp;lt;b(x
M

, tf&amp;lt;).

./(a*
1

,
a 2

&amp;gt;)

332
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In case the upper and lower integrals off(x
([

\ # (2)

) with respect to
&amp;lt;/&amp;gt;

(x
(l
\ # (2)

)

r(6, b&amp;lt;

2
&amp;lt;)

are equal, their common value f(x
M

,
# (2)

) d6 (x
il)

, a?
w
) ts fo&e/? to define

J(a,or
&amp;lt;Ae Riemann-Stieltjes, or RS-integral, off(x

(l

\ # (2)

) with respect to
&amp;lt;/&amp;gt;(#

(l)
,
x (2)

).

In case &amp;lt; (#
(1)

,
# (2)

) is simply the product # (1)
. # (2)

,
we see that A

fir
&amp;lt;

(a-
(l)

,
# (:!)

)

reduces to (/8r
(l) - ar(l)) (/9r

(2) - ar
(2)

),
the measure of the cell 8r ;

the .RS-integral

is then the ^-integral, as denned in 338.

If &amp;lt; (#
ll)

,
ac

{ 2)

) be a function of bounded variation, in accordance with the

definition of Hardy and Krause, given in 254, it is expressible as the differ

ence of two quasi-monotone functions P (x
(l
\ x {2)

), N(xw ,
# (2)

), (see 254, 255),

which are also monotone. The _R$-integral of f(x
(l)

,
a;*

2

),
with respect to

&amp;lt;/&amp;gt;

(1)

,
# (2)

),
is defined by

r(iw, 6&amp;lt;

21
)

f(x (1
\ x (

*)dd&amp;gt;(x,x
(

)

J(aW, a)
J

, &&amp;lt;

2
&amp;gt;)

f&u, (2)

) dP (x (

&amp;gt;\

(2)

)

,aW)
J ^

whenever the two latter integrals exist.

It can be shewn that a continuous function f(x
(l
\ # (2)

) certainly has an

jRS-integral with respect to a function
&amp;lt;/&amp;gt; (#

(1)
,
# (2)

),
of bounded variation.

We need only consider the case in which
&amp;lt;f&amp;gt;
(x

(1
\ x ( i]

} is quasi-monotone. In

case the spans of all the meshes of a net, fitted on to the fundamental cell, are

sufficiently small,
r=m r=m
2 U (Br) A f &amp;lt;/&amp;gt; (x

(1
\ x (

*) exceeds 2 L (Br) A 6r (a, x (

*)
r=l r=l

by less than eA/
(1) ,J ^&amp;gt; (a;

(l)
,
a;

(2)

),
which is an arbitrarily small number.

Consequently the upper and lower integrals of /(#
(l)

,
# (2)

) with respect to

&amp;lt;/&amp;gt;
(x

(l

\ x ( 2)

) have the same value, and the US-integral of f(x
(l

\ # (2)

) there

fore exists.

If f(x
(l
\

(2)

) have discontinuities, the criterion for the existence of the

integral with respect to the function
&amp;lt;/&amp;gt;
(#

(l)
,
x (2)

) is contained in the following

theorem*, which may be established by a modification of the method of 377.

The necessary and sufficient condition that the bounded function f(x
(

*\ # (2)

)

should possess an RS-integral with respect to the function &amp;lt;f&amp;gt; (x
(l

\ # (2)

), of
bounded variation, in accordance with the definition in . 254, is that the variation

of &amp;lt;/&amp;gt;
(x

(l

\ # (2)

) over the set of points of discontinuity off(x
(l

\ #(2

) should be zero.

The variation of a quasi-monotone increasing function
&amp;lt;f&amp;gt;
(x

(1

\ x ( 2]

),
over a set

of points G, is here taken to denote the lower boundary of 2 A ^) &amp;lt;/&amp;gt;
(#

(I)
,
x (2)

),

where the summation is taken for all cells of a set which contain in them all

the points of G, the lower boundary being taken for all such sets. The varia

tion of a function &amp;lt; (x
[l}

,
# &amp;lt;2&amp;gt;

),
of bounded variation, over the set G, is taken to

be the sum of the variations over G of the two monotone increasing functions,

PO (1)
,
o?

(2)

),
&quot;N (x

{l

\ x (2}

),
the difference of which is &amp;lt; (x

(l

\ #(2)

), (see 254).

* See W. H. Young, Proc. Lond. Math. Soc. (2), vol. xvi, p. 281
;
also Proc. Roy. Soc. vol. xciii,

p. 28.



CHAPTER VII

THE LEBESGUE INTEGRAL

382. THE definition of a definite integral which has been introduced into

Analysis by Lebesgue is of much wider scope than the definition of Riemann.

The theory of Lebesgue integration has as its foundation the conception of

the measure of a set of points, in the sense in which the term is employed by

Lebesgue. An account of this theory of measure has been given in Chapter in.

In Riemann integration, the domain over which the integral is taken is divided

into a finite number of intervals, or of cells, and the integral is defined as the

limit of the Riemann sum for this set of intervals, or cells. In Lebesgue

integration, on the other hand, the domain over wliich the integral is taken is

divided into a number of measurable sets of points, having a certain property

relative to the function to be integrated, and the integral is defined as the

limit of a certain sum taken for all these measurable sets of points, as the

number of sets is indefinitely increased. The distinction between the Lebesgue

integral and the Riemann integral rests essentially upon the difference between

the two modes of dividing the domain of integration into sets of points.

MEASURABLE FUNCTIONS.

383. The definition of Lebesgue is applicable to functions belonging to

the family of measurable functions, in one, or more, dimensions. A measurable

function f(x) has already been defined, in 295, as such that the set of points x,

for which f(x) &amp;gt; A, is measurable, whatever real number A may be. This

definition is applicable, whether x denote a point of a linear set, or denote a

point (x
(l

\ x (2)
, . . . x (p]

),
in any number p, of dimensions.

If f(x) be a measurable function, defined at each point of a given domain,

the sets ofpoints for which

A
&amp;lt;f(x)&amp;lt;B;

A *f(x) &amp;lt;B- A ^f(x}^B; f(x}&amp;lt;A; f(x)&A

are all measurable, whatever real numbers A and B may denote, provided A &amp;lt; B.

In the first place, the domain for which f(x} is defined, and for which it

has a definite value at each point, is measurable. For let A have the values

Nl} N2 , ... Nn ,
... successively, of a sequence such that Nn increases in

definitely as w~oo. The set En ,
for which

/(#)&amp;gt;
Nn , is measurable, by

hypothesis, for every value of n. The domain for which f(x) is defined is the

outer limiting set of the sequence [En ],
of measurable sets, and is therefore

itself measurable. The set of points for which f(x} A, being complementary,

relatively to the domain of the function, to the measurable set for which

f(x) &amp;gt; A, is measurable. If {A n }
be a monotone increasing sequence of numbers
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converging to A, all the sets for which f(x} ^ An are measurable, and their

outer -limiting set, for which f(x}&amp;lt;A,
is consequently measurable. As

the sets for which f(x} &amp;lt; A and f(x) ^ A are measurable, it follows that the

set for which f(x) = A is measurable.

The sets for which f(x) &amp;lt; B, and/(#) &amp;lt; A, being measurable, their differ

ence, the set for which A f(x)&amp;lt;B, is also measurable. The other results

in the theorem follow at once.

A function f(x) is measurable if the set ofpoints x is measurable, for which

a.&amp;lt;f(x}&amp;lt;ft, for every pair a, J3, of real numbers which belong to a given

set, everywhere dense in the indefinite interval (00, oo
).

The given set may
be taken to be enumerable.

Let A and B be any pair of real numbers such that A &amp;lt; B. The number

A can be expressed as the upper limit of a sequence {an }
of increasing numbers,

all of which belong to the given everywhere dense set; and the number B
can be expressed as the lower limit of a similar sequence {/3n}

of diminishing

numbers. The set en for which an &amp;lt;f(x)&amp;lt;^n is measurable, for each value

of n; the inner limiting set {en },
of the sequence, is the set for which

A f(x) B; and this set is consequently measurable. Since this is the

case whatever values A and B may have, it is seen, as before, that f(x) is

measurable.

A function f(x} is said to be measurable (B), if the set of points for which

f(x) &amp;gt; A is measurable (B), whatever valve A may have.

The proofs given above shew that the sets for which

A&amp;lt;f(x)&amp;lt;B- A&f(x)&amp;lt;B\ A^f(x)*B;f(x}&amp;lt;A,f(x}^A

are all measurable (B).

384. If fa, fa, (f&amp;gt;
n be a finite set of functions that are measurable in a

measurable domain G, linear, or of higher dimensions, and if F($ l ,
&amp;lt; 2 ,

... n)

be a function that is continuous relatively to (01} &amp;lt; 2 ,
...

&amp;lt;/&amp;gt;), for all values of

0u 2 ,
... n ,

then
F((j&amp;gt;l , 2 &amp;gt;

&amp;lt;/v)
is measurable in the given domain.

First, let us assume that all the functions
&amp;lt;,,

&amp;lt;f&amp;gt;

2 , ...
&amp;lt;f&amp;gt;

n are bounded in

the given domain for which they are denned; suppose their values all to be

in the interval ( N, N). Let a net (c , GI, ... cm ) be fitted on to the linear

interval ( N, N), where c = N, cm = N, and suppose the breadth cr cr^
of each mesh to be less than the positive number 77. Let the function

i/rg
be

defined, corresponding to each function
&amp;lt;j&amp;gt;

s (s l, 2, 3, ... n), by the conditions

tys CT-\ at every point at which cr_! ^
&amp;lt;f&amp;gt;

s &amp;lt; cr+l ,
for r= 1, 2, 3, ... m 1, and

tys
= cm where = cm . We have then ^

&amp;lt;f&amp;gt;

s ^&amp;lt; rj, and the function
i/rg

taking only the values in the finite set c , Cj, ... cm , this function is measurable

in the given domain.
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Since F(fa, fa, ...
&amp;lt;f&amp;gt;

n) is continuous in the closed domain,

we have \F(fa, fa, ... fa)
-
F(fa, fa, ... fa) |

&amp;lt; e,

provided ?; be taken sufficiently small; the number e being arbitrarily chosen.

The function F (fa ,fa,... i|rn) has only a finite set of values, and is measurable.

If U and L are its upper and lower boundaries, we have

L-e&amp;lt;F(fa, fa,...fa)&amp;lt; U+e
in the whole domain. Let A and B be any two numbers in the interval (L, U\
then the set of points for which A

&amp;lt;F(fa, ^ 2 &amp;gt; ^n) &amp;lt; B is measurable.

Now let e have successively the values in a sequence {et }
which converges

to zero, then there exists a corresponding sequence {r)t },
of values of 77,

which

converges to zero.

The set of points Et ,
for which A &amp;lt; F(fa, fa, ... fa) &amp;lt; B, is measurable,

for each value of r) t ,
in

\r) t }.
Each point of the set for which

A&amp;lt;F(fa,fa,...fa)&amp;lt;B

belongs to all the measurable sets Et ,
from and after some particular value of

t, and therefore, by a theorem established in 131, the set is measurable.

It has thus been shewn that F (fa, fa, ... fa) is measurable in the domain for

which the functions are defined.

Next, let the functions fa, fa, ... fa be unbounded. Let fa^ be defined

by the conditions
fa^&amp;gt;

=
fa, when N^fa^-N; fa

(N) =N, when fa&amp;gt;N\

and fa
(y)=N, when

fa&amp;lt;
N. From what has been proved above, we see

that the function F(fa
(N

\ fa
(If)

,
. . .

&amp;lt;/&amp;gt;

n
( &quot;v)

) is measurable. Let iVhave successively

the values in a divergent, sequence [Nt] of increasing numbers. Each point

of the set for which A &amp;lt; F(fa, fa, ... fa] &amp;lt; B belongs to all the measurable

sets for which A &amp;lt; F(fa(
x

t\ fa^, ...
&amp;lt;J&amp;gt;

n(Nt)
)&amp;lt; B, from and after some par

ticular value of t. It thus follows that the set is measurable. Therefore the

theorem holds when fa, fa, ... fa are unbounded.

In particular we have the theorem that :

The sum, or the product, of any finite number of measurable functions, defined

in a measurable domain of any number of dimensions, is a measurable function.

If all the functions fa, fa, ... fa are measurable (B), the function

F(fa,fa,...fa} is measurable (B). For the sets employed in the above

proof are all measurable (B).

THE LEBESGUE INTEGRAL OF A MEASURABLE FUNCTION.

385. Let us consider a measurable set e, and let the function f(x) = 1

at all points of e. The measure m (e), of the set e, is said to define the integral

f(x)dx, of the function f(x), over the set e.

. (e)
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If c be any positive, or negative, number, and f(x) = c at all points of e,

\ f(x) dx is defined to be the number cm (e). The values of f(x) at points
J (e)

that do not belong to e are irrelevant. Next, let elf e2,...en be a finite

number of measurable sets, no two of which have a point in common.

Let f(x) = cr at the points of e
r&amp;gt;

for r = 1, 2, 3, ... n; where clt c2 , ... cn

are assigned numbers. Then, if E denote the set e1 + e2 + . . . + en ,
the integral

r rn
f(x) dx, of/(#), over the set E, is defined as the sum 2 cr m(er).

J(E) r= l

Next, let f(x) be a measurable function, defined for the points of a

measurable set E, and bounded in that set. Let U, L denote respectively

the upper, and the lower, boundary of f(x) in E.

Let the interval (Z, U} be divided into parts (a 0&amp;gt; a^, (alt a2),
... (an-i&amp;gt; #&amp;lt;n) ;

where a = L, an = U, and such that the greatest of these parts a,. ,._! ,
for

r = 1, 2, 3, . . . n, is &amp;lt; r}.

Let er be that measurable part of E, for all points of which

ar_l ^f(x)&amp;lt;a r , ^
where r= 1, 2, 3, ... n 1

;
and let en be that part of f(x) for the points of

which an_j ^f(x)^ U.

Let
&amp;lt;j&amp;gt; n (x) be the function which has the value ar_l} at all points of er ,

for r = 1, 2, 3, ... n; and let ^ (#) be the function which has the value a,., at

all points of er ,
for r = 1, 2, 3, ... n.

We have then, in accordance with the above definition,

/,

L

r = n

&amp;lt;f) n (x) dx = 2 ar_jm (ef),
(.E) r=l

ar m
r=l

r r

and therefore 0^1
-fy^ (x) dx &amp;lt;, (x) dx &amp;lt; 77

m (E).
J(E) J (E)

If there be assigned to 77, successively, the values in a sequence {i)m}&amp;gt;
of

diminishing numbers, for which ijm ~ 0, as m * oo
,

it is seen that

r r
^JOT (A)^ does not diminish, and that I

^fr r,m (x) dx does not increase, as
J (E) J (E)

m ~ oo . These two sets of numbers consequently converge to a common

r r
limit. This limit lim

&amp;lt;f)
r
,m (x) dx = lim i/r^ (x) dx is defined to be the

MI ~ oo J (E) m ~ x J (E)

value of the Lebesgue integral I f(x)dx, of f(x), taken over the measur-
&quot; (-^)

able set E.

In order to justify this definition, it is necessary to prove that the number
so defined is independent of the particular mode in which the interval

(L, U) has been successively sub-divided.
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Let 0, (x), -v/r,, (x) be the functions which correspond, in a second mode of

sub-division, to
&amp;lt;, (x), ^ (x) defined above. It is easily seen that there is no

loss of generality in taking the sequence {?;} to be the same in the two cases.

Suppose the two sub-divisions of (L, U), corresponding to r)m ,
to be super

imposed, and let
(f&amp;gt;J)m (x) be the function corresponding to

(j&amp;gt;nm (x) and
&amp;lt;j)nm (x).

We have then

S
&amp;lt;/&amp;gt;,

(x) dx - (j) n (x) dx&amp;lt;Tjmm (E),
J (E) J (E)

(E) J(E)

and therefore
(E) J(E)

A.S m ~ oo
, 2r)m m (E) ~ ;

and therefore

Thus the number by which the Lebesgue integral is defined is indepen
dent of the mode of sub-division of the set E.

Accordingly, the definition may be stated as follows :

r

The Lebesgue integral I f(x) dx of the bounded measurable functionf (x),

taken over the measurable set E, is defined as the limit to which either

r-n rn
2 ar_! m (er), or 2 ar m (er), tends, as the greatest of the numbers ar ar_t

r-l r-1

converges to zero; where (L, U) is divided into n parts (ar_i, ar), for
r = 1, 2, 3, ... n ; and aQ

= L, an = U ; and where er is that set of points of E,

for all of which ar_ t f(x)&amp;lt;ar ; r=\, 2, 3, ... n 1; and en is that set

for which an_j f(x) an . U and L denote the upper and lower boundaries

off(x)in E.

In case the set E is a set in j9-dimensional space, f(x) is used to denote

(x
w

,
a;&amp;lt;

2

,
.

If the set E consists of the points of a finite interval (a, 6), or of a cell

fb

(a, b), the integral over E is denoted by I f (x) dx,
J a

/(&&amp;lt; &amp;gt;,

6&amp;lt;

3
&amp;gt;,...&&amp;lt;P&amp;gt;)

or f(xw , xM,.
J

(a&amp;lt;
&amp;gt;,a&amp;lt;

2
&amp;gt;,...a&amp;lt;P&amp;gt;)

y

It will be observed that the function
&amp;lt;, (x) is a function which takes only

a finite number of values, for all values of x in the set E
;
and that it is such

that f(x)
-

&amp;lt;/&amp;gt;,
(x) &amp;lt; r).
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The integral f(x} dx is then defined as the limit of the non-
hm

diminishing sequence of numbers

I

&amp;lt; (x) dx,
\ ^ (x) dx,... $,m (x) dx,...,

J (E) J (E) J (E)

where 77^ 772, ... i)m ,
... is a sequence of diminishing numbers that converges

to zero, as m * oo .

4

386. Next, let the measurable function f(x) be unbounded in the measur

able set E, and such that f(x} ^ 0, in E.

Let/jy(#) be defined as a bounded function in E, by the specifications,

fN (x)=f(x), where f(x)^N,

fN (X )
= y, where /(a?) &amp;gt; N.

The number N is any assigned positive number.

If there be assigned to N the values in an increasing sequence Nl} N2 ,
...

without upper limit, the integral I fN (x)dx is a number which does not

diminish as N has successively the values in the sequence. It follows that

I /N (%} ax either converges to a definite upper limit, or that it increases
J (E)

indefinitely as N does so.

When lim fN (x) dx exists as a definite number the integi al I f(%) dx
N~ OD . (E) J (E]

is defined by that number.

The value of the integral is easily seen to be independent of the par

ticular sequence of values of N. Thus

/ (x) dx = lim I fN (x) dx.
J (E) N~&amp;gt;J (E)

r
t

f

If f(x) be^O, in E, I f (x) dx is similarly defined as lim I f_N (x)dx,
J (E) N~aoJ(E)

where f-N (x)=f(x), for points x at which f(x) = N, and f_N(x)=N,
when f(x) &amp;lt; N.

Lastly, let the unbounded function f(x\ defined in E, have both positive

and negative values.

Let f(x) =/+ O) - /- 0), where /+ (x)
=
/(#), when f(x) ^ 0, and

f+ (a;)
= 0, when f(x} &amp;lt; ;

with a similar definition for /~ (x). Both the

functions /+ (x), f~ (x) are measurable.

The integral I f(x) dx is defined as the difference,
J (E)

f f+(x}dx-\ f~(x)dx,
J (Ei J (E)

provided both of the latter integrals exist as finite numbers.
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When a measurable function f(x), of one or more variables, is such that

f(x) dx exists as a finite number, f(x) is said to be summable in the set E.
I,(E)

A measurable function is always summable if it be bounded, but not

necessarily so if it be unbounded.

A function f(x) that is summable in E is also said to be integrable (L)

in E, and the integral f(x)dx is termed the Lebesgue integral, or shortly
J(Ei

the L-integral of f(x) in E.

387. It will be observed that, in accordance with the above definition, in

order that a measurable function f(x), defined for the measurable set of

points E, maybe summable in E, it is necessary that each of the two functions

f+ (x), f~ (x) should be summable, that is, each one of them must be integrable

(L) in E. Thus the two limits lira I f+(x)dx, lim I f~(.x)dx must be
N~x&amp;gt;J(E) N~*&amp;gt;J(E)

both finite.

The definition may accordingly be stated in the following form, which is

a generalization of a definition* due to de la Vallee Poussin, originally

applicable to the case in which f^(x), f^(x) are restricted to be integrable

(R) in a cell or interval (a, 6).

If the unbounded measurable function f(x) be defined in a measurable set

E, and JV and N denote two positive numbers, let fx,y(x) be such that

fN&amp;lt; N , (x) =f(x), at points such that N f(x) ^ N ; andfNi N , (x)
=N at points

such thatf(x) &amp;gt; N ; andfN N,(x)
= N

,
whenf (x} &amp;lt; N ; then f(x) dx

J (E)
r

is defined as the double limit of fN N &amp;gt; (x) dx, as N and N diverge, inde-

pendently of one another, to &amp;lt;x&amp;gt;

,
whenever this double limit exists as a definite

number.

In accordance with this definition, whenf(x) is summable, so also is \f(x) \
;

r

for \f(it) | =f^(x) +f^(x), and therefore \f(x) \-dx is the sum of

r r

lim I f^(x)dx and lim f^(x)dx,

each of which is finite.

Since the existence of I f(x)dx involves that of I \f(x)\dx, the L-
J (E) J (E)

integral I f(x) dx is said to be an absolutely convergent integral, thus :

J(E)
* Liouville s Journal (4), vol. vui, p. 427.
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The L-integral of an unbounded summable function is an absolutely con

vergent integral.

It is easily seen that I f(x)dx\ f(x) dx; for the absolute value
J (E) J (E)

of the integral on the left-hand side is S /+
(x) dx + I f~(x) dx.

J(E) J(E)

If / (1)

(x) ^/&amp;lt;

2
&amp;gt;

(x) ^ 0, the functionfw (x] being summable in E, then the

function f ( 2)

(x), assumed to be measurable in E, is also summable. For we

see that / (x) dx ^
/&amp;lt; (x) dx, hence

[ /gl (x} dx ^ \ /$ (x) dx, and it then

r r
follows that I f (- ]

(x)dx exists, and is ^ I f w
(x}dx.

J (E) J (E]

388. The above definition of the Z-integral, when/(#) ^ 0, in E, and the

function f(x) is unbounded, may be replaced by another definition which we

proceed to obtain.

Let a
, a-i, a2 ,

... an ,
... be an increasing sequence of numbers, such that

an has no upper boundary, as n ~ oc
,
and where a = 0. Also let ar ar_x ^ 77,

for every value of r.

00 00

Consider the limiting sums cr = S ar_1m(er), cr = S arm(er); where, as
r-l 1

before, er is the measurable set of points at which ar_x =f (x) &amp;lt; ar . The
00

difference of the two sums a-, cr is 2 (ar ar_i) TO (er ), which is not greater
r = l

than ym(E}. It follows that
&amp;lt;r,

&amp;lt;/ are both finite, or both infinite. Now let

a
, alt a2 ,

... be the end-points of the meshes of a net, fitted on to the infinite

linear interval (0, oo
) ;

and consider a system of such nets, for which 77 has the

values in a sequence {r)n } ,
of diminishing numbers, that converges to zero. If

it be assumed that cr, or are finite, it is clear that cr has the values in a non-

diminishing sequence, and that cr has the values in a non-increasing sequence,

as the successive nets of the system are taken. It follows that a and cr have

definite limits, as n ~ oo
,
and these limits must be identical, since cr cr ~ 0,

as n ~* oo .

It can be shewn that this limit is independent of the particular system of

nets employed. For, if o-1 , cr/ refer to one system [D], of nets, and cr2 ,
o-2 to a

second system [D \,
we may take nets D, D of the two systems such that, for

D, cr/ &amp;lt;rl 7/ra (E), and for D
,

&amp;lt;r2 cr2 ^ ijm (E). Now consider the net

(D, D ) obtained by superimposing the two nets, and let a be the corresponding
value of cr

,
then a is ^ cr/, and ^ a2 ;

therefore cr o-j
s rjm (E), and a &amp;lt;rz

is r)m(E\ and moreover a crlf a cr2 are both =0. It follows that

|
o-j cr2 ^ijm (E) ;

and thus the limits of o^ and cr2 ,
as 77

~ 0, are the same.
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CD

The limit as n~cc,of 2 ar_1m(er ), luhich is identical with the limit of
r=l J

oo r

2 arm (er\ for the nets of a system [Dn], defines the value of \ f(x) dx,fcr=1 J(E)
or an

v^;

unbounded non-negative function f(x), measurable in the measurable set E,
whenever this limit exists.

It will be shewn that this definition is completely equivalent to that given
in 386.

Let us suppose that as
= N,a, fixed positive number ;

then if a- be convergent,
r=s r=s

we have &amp;lt;r
= 2 ar^m (Er) + Rs ,

&amp;lt;/
= 2 arm (Er) + Rs , where N can be chosen

r=\ r=l

so large that Rs and R8 are both less than e.

Assuming that
J

f(x) dx is the limit of 2 arm (Er) + Rs , for the system

of nets, the integer s so varying that as
= N, we see that f fN (x) dx is the

(E)r=s
limit of 2 arm (Er) + Rs &quot;,

where Rs

&quot;

&amp;lt; Rs &amp;lt; e.

Since Rs , Rs

&quot;

differ from one another by less than e, it follows that

f /&quot;

f(x)dx, I fN (x)dx differ from one another by not more than e the
. (E) J (E)

number N having been chosen sufficiently large. It follows that

lim
/ fN (x)dx=l f(x)dx.

N~*J(E) J(E)

Conversely, let
J ^

f(x} dx be defined to be lim
J /v (a?) dx, then

[ f(x} dx

is defined as the repeated limit

{=*

oc
)

2 ar_,m (Er) + N 2 m (Er) \ ,

r=l r=s+l

n denoting the order of the net (a ,
aly a.2) ...), and s denoting the integer,

dependent on n, for which as
= N.

Both 2 ar_lm(Er) and N 2 m(Er) are non-diminishing as n increases,

and as s increases, hence the repeated limit lim lim &quot;^ ar_lm(Er) must exist,

as a finite number. Denoting 2 ar^m (Er) by cny ,
we see that cny is such that

CU N ^ cay ,
if n i n, N ^ N. If we write f = 1/n, 77

= 1/tf, we may regard CHA, as
a function ^(f, 77) of the two variables f T; ;

and the function is monotone (see
307). In accordance with the theorem proved in 307, the repeated limits

17), as ~0, 7~0, have one and the same finite, or infinite, value.
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That F(%, 77) is defined only when
, 77 are the reciprocals of positive integers

makes no difference as regards the validity of the theorem. We now see that,

if eilher of the repeated limits lim lim cnN ,
lim Km cnN exists, as a finite

n~-f. AT~oo A?~ M~OO

number, the other exists, and has the same value as the former.

r=s

We thus see that lim lim 2 ar_lm(Er) has a finite value. It follows that
n~ r. _ZV~oc r=l

oo oo r=
2 ar^m (Er) is convergent, and that lim 2 ar^m (Er)

= lim lim 2 ar_-jn (Er).
r-\ ~oo r=l A ~oo w~oo r=l

00 00

Now N 2 m (Er) &amp;lt; 2 ar-i w*
(-&amp;gt;) ; hence, if N be sufficiently large,

r=s+l r=s+l
00 00

.2V 2 m(Er) becomes arbitrarily small, and lim N 2 m(Er)
= 0. We thus

r=s+l AT~oo r=s+l

have, since this limit is independent of n,

(E) [r~s

oo

2 ar_l m(Er) lim 2 ar_1m(Er ),
r=l J n~x&amp;gt; r=l

f
oo

which proves that the definition of I f(x)dx, as lim 2 ar^ lm(Er\ is equiva-
J (E) n~x&amp;gt; r = \

lent to the definition as lim fN (x)dx.
N~*J (E)

The following theorem has been proved in the course of the above proof:

If f(x) be a summable function which is = 0, in the set E, then

&quot;V

where E (N] is that part of E in which f(x) ^ N,

When f(x) is not restricted to be ^0 in E, we see from the definition of

f(x)dx as I f+
(x)dx f~(x)dx, that the integral may be dejined*

J (E) J(E) (E)
00 00

as the limit of either of the expressions 2 ar^ 1m(Er), 2 arm(Er),for a system
- 00 30

of nets (. . . a_2 , a_j, a , a1} a 2 ,
. . .} fitted on to the indefinite interval (00,00).

We have also the following theorem :

If f(x) be summable in the measurable set E, and E (y&amp;gt; denote that part of

Efor which \f(x) \

^ N, then lim Nm (E
(N)

)
= 0.

AT
oo

OTHER DEFINITIONS OF AN INTEGRAL.

389. A general theory of integration has been developed by W. H. Young.

independently f of the work of Lebesgue, in two memoirs. In the second of

these memoirs, the theory there developed is brought into relation with the

work of Lebesgue. The definition of W. H. Young is a generalization of that

* This is the definition given by Lebesgue; see his memoir &quot;Integrale, Longeur, A
ire,&quot; Annali

di Mat. (in
a
), vol. vn, p. 258.

f See the paper
&quot; On upper and lower integration,&quot; Proc. Land. Math. Soc. (2), vol. n, and

also &quot; On the general theory of integration,&quot; Phil. Trans., vol. cciv, p. 221.
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of the upper, and the lower, ^-integrals, in which the domain is divided into

a number of parts, of a special kind. W. H. Young defines the generalized

upper and lower integrals of a function by means of a division of the measurable

domain of the independent variable into sets of measurable parts. This de

finition may be formulated as follows :

Let the measurable set E, which is the domain of integration, be divided into

a finite, or enumerably infinite, set ofmeasurable components, and let the measure

of each component be multiplied by the upper boundary of the function in that

component, and the sums of all such products be formed. The generalized upper

integral is defined to be the lower limit of that sum, for all possible modes of
division ofE into components, as above described. The generalized lower integral

is defined in a similar manner, by employing the lower boundary of the function
in each component. If the generalized upper, and lower, integrals both exist,

and have the same finite value, that value is said to be the value of the integral

of the function over E.

This definition can be applied, not only to bounded functions, but also to

unbounded functions. In the latter case, such* sets only are employed as

have finite upper and lower boundaries of the function. It can be shewn that

this definition is equivalent to that of Lebesgue.

The definition of an integral has been further generalized by Pierpont, so

as to apply to the case in which the set E is non-measurable.

A set If is said to be measurable relatively to E (which may be non-

measurable) if there exists a measurable set such that H=D (G, E). Thus
H is that part of E which E has in common with a measurable set.

Pierpont s definitionf is obtained from that of W. H. Young by considering
those systems of sub-division of E into components which are such that each

component is measurable relatively to E. In forming the expression, of which

the lower boundary is the upper integral, we employ the exterior measure of

each component of E, and the same in forming the expression of which the

upper boundary is the lower integral. With these changes in the statement

of the definition of W. H. Young, we obtain the definition of Pierpont.

Other modes of defining an integral have been developed by W. H. Young.
As these depend upon the theory of sequences of functions, they will be referred

to in Vol. n, in that connection.

Another definition of an integral has been given by BorelJ.

* See Hidebrandt, Bulletin Amer. Math. Soc., vol. xxiv, pp. 120 123.

t Theory of Functions of Real Variables, vol. n, pp. 343 et seq.

Journal de Math. (6), vol. vin, pp. 199 205; also Lemons sur la Theorie des Fonctions,

2nd ed., pp. 217256 ;
see also Hahn, Monatshefte fur Math. u. Physik, vol. xxvi, p. 3. For a

criticism of this definition see Lebesgue, Annales de Vecole normale (3), vol. xxxv. See also Borel,
ibid. (3), vol. xxxvi.
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THE ^-INTEGRAL AS THE MEASURE OF A SET OF POINTS.

390. It has been shewn, in 336, that the .R-integral of a function

expresses the measure of a set of points that is measurable (J). We proceed

to shew that the Z-integral has a similar relation to a measurable set of

points. This relation may be expressed in the following theorem :

If the summable function f(x\ defined for the measurable set of points E,

be such thatf(a) ^ 0, in E, then the set ofpoints defined byO^y ^f(x), x in E,

has for its measure, plane, or (p + 1) dimensional, according as E is a linear,

or a p-dimensional, set, the value of I f(x} dx.

J(E)

The theorem will first be established for the case in which f(x) = c, over

the set E.

In that case the two, or (p + 1) dimensional, measure of the set of points for

which x is in E, and ^ y ^ c, is cm (E). For the sets E,C(E) can be enclosed

in sets of intervals, or cells, such that the measure of the set common to the

two sets of intervals is &amp;lt; 77. The set, x in E, ^ y ^ c, and the complementary

set, x in C (E), 0^ y ^ c, can consequently be enclosed in sets of rectangles,

or (p + l)-dimensional cells, such that the measure of the set common to the

two sets is &amp;lt; cr). As TJ converges to zero, the measure of the set of intervals,

or cells, enclosing E, converges to m(E), and the measure of the set of rect

angles, or cells, enclosing the set (x in E, ^ y ^ c), converges to cm (E), which

is thus the measure of the set. Therefore, in this case I f(x) dx is equal to

J(E)

the measure of the set, x in E, = y =/(#).

r=m

Next, if E= 2 er ,
where er denotes a measurable set, and/(#) = cr ,

for
r= l

r = 1, 2, 3, ... m, the measure of the set (x in E, ^ y^f(x}) is the sum of

r=m
the measures of the r sets (x in er ,

^ y cr),
which is 2, crm(er), and is

r=l

therefore equal to I f(x)dx.
(E)

If f(x) is any bounded measurable function (^ 0), the measure of the set

(x in E, ^ y ^f(x)) is between the measures of the two sets

(x in E, ^ y &amp;lt;(#)), (x in E, ^ y ^ fa(x)\

r=n r=n

employed in 385; that is between 2 ar_i/n(er)and 2 arm (er); consequently it

r=l r=l
r

differs from f(x) dx by less than 77 ( U L), which converges to 0, as 77
does

J(E)

so. Therefore the measure of the set is equal to I f(x) dx.
J (E)
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H f(x) be a bounded measurable function which has, in E, values of both

signs, we see that

where Elt E2 are the parts of E in which f(x) is positive and negative re

spectively.

It follows that / f(x) dx is the excess of the measure of the set
J (E)

J

(**J^,0*y */()),
over that of the set (x in E2,0^y -/()).

The value of the Z-integral / f(x) dx, wheref(x} is a measurable function
I a

^ 0, representing the measure of the set of points (a ^ x b, -S. y S/(ar)), maybe regarded as representing what is, in geometrical language, called the area
bounded by the curve y =/(), the ordinates at a and 6, and the .r-axis

Q- -, ,
,

similarly J^aW)
/(* x^d(x&quot;, x) may be regarded as representing the

volume bounded by the surface y =/(*, *), the plane y = and the planes= a, *&amp;lt;
= fca,

&amp;gt;

^ =
oM&amp;gt;

^2) =
fcw&amp;gt; Accordingly, such a measure of an area,

or of a volume, may exist, in accordance with the definition of Lebesgue in
cases in which it does not exist in accordance with the definition of Jordan,
because a set of points which is measurable is not necessarily measurable (J).

The Z-integral
jj(x)dx,

when f(x] has both signs, may be regarded as

expressing the excess of the area above the ar-axis over the area below it. If

/() ^ 0, m (a, b), and is summable, but unbounded in the interval, the i-integral
is the limit, as N~cc, of the area defined by a^x^b, 0^y&amp;lt;fN (x), the
function fy (x} being defined as in 386.

THE .R-INTEGRAL AS AN Z-INTEGRAL.

391. It will be shewn that an .R-integral is also an X-integral, although
the converse does not in general hold.

Let /( be integrable (R), in an interval, or cell, (a, b). If E denote the
set of points at which f(x) &amp;gt; A, any point of E which is a point of continuity
of f(x) must be an interior point of E: for such a point has a neighbourhood
in which, at every point,/^) &amp;gt; A. A point of E, at which/(*) is discontinuous,
need not be an interior point of E, but all such points belong to a set of zero

measure, since f(x) is integrable (R). Therefore E consists in general of an
open set together with a set of measure zero

; and, since both these parts of
E are measurable, it follows that E is measurable. Since A is arbitrary, it

has thus been shewn that f(x) is a measurable function. Since it is bounded

34



530 The Lebesgue integral [en. vn

in (a, b), it is therefore summable
;
and thus has an Z-integral. The measure

(/) of a set is identical with its measure, when both exist
;
and therefore the

.R-integral off(%) has the same value as the Z-integral.

If f(x) is measurable, and bounded, but not integrable (R), it is easily

~rb rb fb
seen that f(x}dx^\ f(x) dx f(x) dx. For, in any mesh B of a net,

J a J a a

the Z-integral off(x) lies between BU (8) and SL(8).

THE LEBESGUE INTEGRAL AS A FUNCTION OF A SET OF POINTS.

392. It has been pointed out in 208 that, if a class of sets of points E
be assigned, and if by any rule, or set of rules, a definite number is given,

corresponding to each set E of the given class, the set of all such numbers

may be regarded as denning a function of E which has these numbers for its

values.

Let the sets of points E be all measurable sets, and let us assume, for the

present, that the class E consists of all measurable sets contained in a measurable

domain K. Let a function f(x) be defined for all points of that domain, and

let it be taken to be summable in K, whether the function be bounded, or not.

It is easily seen that f(x~) is summable in any one of the sets E. For \f(x) \

is summable in K, and the function
&amp;lt;f&amp;gt;

E (x) which is equal to \f(x) \

in E, and

to 0, in G (E), the complement of E relatively to K, is such that its integral

over K is less than that of \f(x}\, and is therefore finite. The integral of

&amp;lt;j)
E (x) over K is the same as over E

;
therefore (/(#) |

is summable in E, and

consequentlyf(x) is also summable in E.

The value of I f(%) dx may be regarded as defining a function $(E) of
J (E)

the measurable set E. In the particular case in which /(#) = !, at all points

of K, the X-integral is m (E), which, as has been shewn in 130, is a completely

additive function.

The function (f&amp;gt;
(E) = I f(%) dx converges to zero, as m (E) ~ 0, uniformly

J(E)

for all sets E in the fundamental domain K.

Let N be an arbitrarily chosen positive number, and let Ks be that part

of the fundamental domain K in which \f(oc) \

&amp;gt; N. Let

a
,
a1} a2 ,

... N, as+l ,
as+2 , ...,

where a = Q, as
= N, be a sequence of numbers increasing indefinitely, such

that an+1 an &amp;lt; e, for all values of n. The numbers e, N can be so chosen that
00 00

2 arm(er), 2 ar+1m(er) both converge to values less than 17, where er is the
r=s r=s

set of points for which a r ^\f(x) &amp;lt;ar+l . The integral I |/(#) \dx, which

lies between the two sums, is therefore also less than r/.
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f f fNow \f(x)\dx-\ !/(#) dx +
\ \f((K) dx; where KNE

E K JE-K)(E-KNE )

denotes the set of points D (E, KN),
common to E and KN ;

that this is the

case follows from the definition in 385.

We see that I |/(#) \dx ^ |/(#) I

dx &amp;lt; 77 ;
hence

\f(x) dx &amp;lt; v] + Nm (E-KNjs) &amp;lt; T] +Nm (E) &amp;lt; 2?? ;

provided m(E}&amp;lt; y/N ;
whatever set E be taken that satisfies this condition.

r

Since 77 is arbitrary, it follows that lim |/(#) \dx = Q; and that this con-
m(E)~OJ (E)

vergence is uniform with respect to E.

Since
- (E)

f(x) dx \f(x)\dx, we see that f(x}dx converges
(E) . (E)

to 0, as m (E) ~ 0, uniformly for all sets E.

393. Since, in accordance with 390, (E) is, iff(x) = 0, the measure of a

two-dimensional set, or a (p + 1 )-dimensional set, according as E is a linear set,

or a ^-dimensional set, it follows from the theorem (130) that the measure

of a set is completely additive, that, in the case in which f(x) ^ 0, in K, the

function
&amp;lt;f&amp;gt; (E) is completely additive. In the general case in which f(x) is

the difference f +
(x)f~(x), of two summable functions, each of which is

= 0, by applying the result to each of these functions, we obtain the following
theorem :

The function (f&amp;gt; (E) defined as the value of f(%) dx, where E is a
J (E)

measurable set contained in the fundamental interval, or cell, in which f(x} is

summable, is a completely additive function of E.

In particular we have

f f

f(x) dx = I f(x) dx+ I f (x) dx.
J I f!.} J I 7?.\(E,)

A special case of this theorem isi^hat, if B1} 82 ,
... Bn ,

... be a finite, or an

enumerable, sequence of non-overlapping intervals, or cells, contained in the

fundamental interval, or cell, and A denote their sum, or limiting sum, then

(A)

oo r

f(x)dx= ^
n = lJ (8 n )

342
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EQUIVALENT i-INTEGRALS.

394. If the values of a function f(x), that is summable over a set E, be

altered at points of E belonging to a part E ,
for which m (E )

= 0, the value

of f(%) dx is unaltered. For, in the definition of the integral, the measures
- (E)

of all the sets employed will be unaltered. Moreover, the integral of/(#) over

the set E will be the same as over the set E EQ .

Two functions defined for a measurable set E, which have almost every
where in E, equal values, are said to be equivalentfunctions. Thus all summable

and equivalent functions have the same L-integral.

A function that is unbounded in E may be equivalent to a bounded function;

for all the points at which the unbounded function is numerically greater than

a certain fixed number, may form a set of which the measure is zero.

In some cases, especially in the theory of functions defined by series, it is

convenient to admit infinite values of a function at particular points of the

set E. If these points form a set E such that m(Eo) = Q, we can regard

f(x)dx as existing, and equal to I f(x)dx, whenever this latter
. (E) J CE-E,)

integral exists.

Iff(x) be = 0, in the set E, of measure &amp;gt; 0, and such that
\ f (x) dx = 0,
J (E}

thenf (a) is zero almost everywhere in E.

Let Ee be the set of points of E at which f(x) ^ e, then from the definition

of the Z-integral, we should have I f(x) dx &amp;gt; em (Ee) ;
it follows that the

J (E)

integral of f(x) cannot vanish unless m (Ee )
=

;
and this must be the case

for every positive value of e. The set of points at which f(x} &amp;gt; is the outer

limiting set of the sets E
e} , E^ ..., corresponding to a sequence of diminishing

values of e, that converges to zero. It follows ( 131) that the set of points at

which f(x) &amp;gt; 0, has measure zero.

If the summable functionf (x), defined for an interval, or cell, (a, b), be such

that its integral over any interval, or cell, whatever,- contained in (a, 6), is zero,

the functionf(x) must be zero almost everywhere in (a, 6).

Let A denote a set of non-overlappi^fl intervals, or cells, containing the

points of the set Elf that part of (a, 6) for which f(x) ^ 0. We have then

f f(x)dx+! f(x)dx=l f(x)dx = 0.
J (E,) &amp;lt;*-*) Jw

The set A can be so chosen that m (A - E^ is arbitrarily small, and therefore

so that the integral of f(x) over A E is arbitrarily small. It follows that

f(x) dx = 0, and therefore/(#) is zero at almost all points ofE1 . Similarly,I

J

it can be shewn that /(#) is zero at almost all points of the set of points at

which f(x} 0. It follows that f(x) is zero at almost all points of (a, b}.
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PROPERTIES OF THE LEBESGUE INTEGRAL.

395. It has been shewn in 384 that, if /i (x),f2 (x) be functions that are

measurable in the measurable set E, then their sum J\ (x) +fz (x) is also

measurable in E.

It will now be proved that

{ /i 0) 1-/2 0)} dx = /! (x) das + /2 (as) das.

J(E) J(E) J(E)

First, let it be assumed that /i (x), f2 (x) are bounded. If e be an arbitrarily

chosen positive number, let er
(l}

, e,.
( 2) denote the two sets in which

re S/i (x) &amp;lt; (r + I) e
;
re ^/2 (x)&amp;lt;(r+l) e.

r=/3 r=/3

Consider the two sums 2 rei(er
(1)

), z rew(er
(2)

),
where a, /3 are integers

r=a r=a

(positive or negative), such that all the values of /i (#), /2 (a?), in E, are ^ a,

and &amp;lt; ft + 1. If ers denote the set which is common to er
w

,
es

(2}

,
we have

/ = /S s=/3 n=2j3
( )

n = 2&

2 rm(,)+ Zm(,)- S 2we] S m(ergH= 2 n.2em(En),

where En denotes that set of points in which ne -^/j (x)+fz (x} &amp;lt;(n+ 2)e.
*=/3 r=/S

This follows from the fact that er
l) = 2 ers ;

and es
(2) = 2 ers . Making e con-

S= a. r=a
n=2p

verge to zero, we now see that 2 n. 2em (En) converges to

(?)

r r
It thus follows that this integral is the sum of /i (as) dx and

/ /2 (a?) dx.
J (E) J(E

Next, let one, or both, of the functions /i (x), fz (x) be unbounded in E. Let

EN be that set of points in which 2N
&amp;gt;/j (x) +/2 () &amp;gt; 2JV

;
iV

&amp;gt;/j (a;) &amp;gt; N
;

./V
&amp;gt;/a (ar) &amp;gt;

- 2V
;
then m (^^r) ^ ??i (,&), as JV ~ oo . We have then

l/i (*)+/t (*)}&amp;lt;** /i()^+| f2 (x)dx;
] (EN) J(*f} J(Ey)

and since by the theorem of 392, the integrals of /i (a;) + /2 (x), /t (), /2 (a?)

taken over the set E EN ,
all converge to zero, as jV~ oo

,
and m(E EN)

*/ 0,

we see that

dx = (ar) (^ + f /2 (

(E)

396. If {f(x)}
2 be summable in ^, so also is f(x), but the converse is not

necessarily true. For (f(x)}* &amp;gt; \f(x)\, if \f(x) &amp;gt;1
;
and therefore \f(x)\ is

summable over that part of E in each point of which it is &amp;gt; 1, since \f(x)\
2
is

summable over that part. It follows that \f(x)\, and consequently f(x), is

summable over E.
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If [/! (x)]
2
, [/2 (x)]

2 are both summable over E, so also is /j (a?)/2 (#) ;
for

/2(#)| = |[{/](#)}
2 + {/2 (#)}

2

J,
and therefore \fi(x)/2 (x)\ is summable

over E.

or

It can be the case that /i (x)fz (x) is summable over E, but not

Assuming that {/i(X)j
2
, |/2(#)}

2 are both summable over E, we have

l/i (*)/(*) I
&amp;lt;**

(E) (E)

...... (i).
(E)

Also (X /! (a;) I +/* J/^OE) |]

2
is summable over E, as it is the sum of three

summable functions; \, p denoting constants.

Since

X2
! * 2 dx

(K)

is essentially positive, we see that

( r Y \ [ 1

U(JB
2

I 1 (-B)

* 2

)

(2).

The inequalities (1) and (2) are of considerable use in questions connected

with the convergence of series. The inequality (2), being a generalization of

a theorem due to Schwarz, is known as Schwarz s inequality.

397. If /! (x) be summable, but not equivalent to a bounded function, it

is always possible to determine a summable function f2 (a?) so that/! (x)fz (x) is

not summable*.

If alt a2 , ... an ,
... be a set of positive increasing numbers without an

upper limit, and en denote the set of points at which an ^ |/j (a;) |

&amp;lt; an+1 ;
then

??i (en) &amp;gt; 0, for an infinite number of values of n. The series S anm (en) is con-

f 1

vergent, being ^1 \fl (x) dx
;
let \fz (x) = -

-, for all points of en ,
for

. (E) nanm (en )

r i
each value of n. We have then I |/2 (x) \dx = 2 -; and if the numbers an

J (E) nan
be properly chosen (for example an = n), this series is convergent, and f2 (x) is

summable. But the series 2-; -anm(en) being divergent,
nanm (en)

dx
(E)&quot;

has not a finite value, and therefore/2 (x) is a function such as is required.

* See Lebesgue, Annales de Toulouse (3), vol. i, p. 38.
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398. If fn (x) denotes a sequence of measurable functions, defined in the

interval, or cell, (a, b), and such that fn (as) is, for every value of n, and for

every point x, in the interval, or cell, (a, b), less than a fixed positive number A,

then if \fn (x}} converges for each value of x, to the value of the function f(x),
rb rb

that function is summable, and f(x)dx = lim I fn (x)dx.

Since, for any fixed value of x, \f(x) -/ (x) \

&amp;lt; e, provided n be sufficiently

great, we see that \f(x) \

&amp;lt; \fn (x) \

+ e &amp;lt; A + e; and therefore since e is

arbitrary, \f(x}\^A. Therefore the function f(x) is bounded. Let en

denote that measurable set of points of (a, b) at which fn (x) &amp;gt; c ;
then the

set e, of points at which f(x) &amp;gt; c, is such that each point of e belongs to all

the sets {en },
from and after some value of n dependent on x, and therefore,

employing a theorem given in 131, the set e is measurable. It follows that

f(x) is a measurable function, as c can be arbitrarily chosen
;
and since f(x)

is bounded, it is summable in (a, b).

Let gn denote the set of points x, at which f(x) fn (x}\&amp;gt; e\ the set gn

is measurable, and lim m (gn}
= 0. For if this is not the case, there are an

ft~oo

indefinitely great number of values of n for which m (gn) is greater than

some fixed positive number a. In accordance with the theorem of 136,

there exists a set of points, of measure ^ a, such that each point belongs to an

infinite number of the sets gn . This is inconsistent with the condition that

fn (x) converges to f(x), for each value of x. It has thus been shewn that

m (gn )
~ 0, as n ~ oo .

Now

-/ (*)) dx= {/(or) -/ (x)} dx + \f(x) -fn (x}} dx.
J On J C(gn )

The first integral on the right-hand side is numerically less than 2Am (gn\
and the second integral is numerically less than el, where / is the measure of

the fundamental cell. The integral on the left-hand side is arbitrarily small,

for all sufficiently large values of n
;
and thus the theorem is established.

It may be observed that, in case there is an exceptional set of points, of

measure zero, at which the sequence {/ (x)} does not converge, the above

theorem still holds. For, in the above proof, we can disregard this set
;
the

integrations being all taken over the complements of this set, the measures of

the sets over which they are taken are unaffected.

399. The following theorem is concerned with the //-integral of a function

which is, at almost every point of its domain, the limit of a monotone

sequence of measurable functions.

Let [fn (x)\ be a sequence of non-negative bounded functions, summable in

the measurable set of points E, in any number of dimensions, and let it be
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assumed that, foreach value ofx, in E, thesequence is monotoneand non-diminishing.

Let it be further assumed that Km / (x) dx has a definite value. Then,
w~o&amp;gt; (E)

(1) the points of E at which the sequence {/()} does not converge to a definite

number form a set of points of measure zero ; and (2), if f(x) denote the

limit of the sequence [fn (x}}, the integral I f(x)dx exists, and has the value
J (E)

Km fn (w)dx; those points of E at which f (as) is undefined being disre-
n~x&amp;gt; J (E)

f

garded. Conversely (3), if f(x)dx exists as a definite number, then
J (E)

Km fn (x) dx exists, and has the same value as the integral.
n~ao J (E)

The first two parts of this theorem were given* substantially by Vitali,

and byf B. Levi; the proof here given was published^ by Hobson. Let k

denote a positive number, and let the functions fn (k}
(x) be denned by

fn (k}
(#) =fn (#) f r values of x for which / (x) ^ k, and by fn

(k]

(x) k, for

values of x for which fn (x)&amp;gt;k.
Let f ik&amp;gt;

(x) be a function such that

/*(#)=/(#), wnen
/(#)=&&amp;gt;

and f (k&amp;gt;

(x}
= k, when

f(x)&amp;gt;k.
For each

value of x, fn (k}
(x) defines a monotone double sequence, that is a monotone

function of n and k, if n have the values 1, 2, 3, ...
,
and k have the values in

any monotone increasing sequence of numbers without an upper limit. It is

clear that fn (k}
(x) dx, regarded as dependent on n and k, defines a monotone

J(E)

double sequence of non-diminishing numbers. From a property of such double

sequences (see 388), we infer that the two repeated limits

Km Km I fn (k]
(x}dx, Km Km / fn (k)

(x)dx
k~x n~x J (E) n~x&amp;gt; k~o J (E)

are such as to have the same finite value, if either of them is finite.

Sincefn (k}

(x) is bounded, for all values of A; and x, we have (see 398),

Km I fn (k}
(x) dx = I fn (x) dx,

k~J(E) J (E)

f /&quot;

and therefore Km Km fn (k)
(x) dx = Km I fn (x) dx, provided that one of

?i~o&amp;gt; t~o&amp;gt; J (E) n~x J (E)

these two limits is assumed to exist.

Also, we have Km fn (k)
(x) dx = I f (k)

(x) dx, since fn (k)
(x) is bounded

w~oo. CE) J (E)

for all values of n and x. Therefore

Km Km f fn^(x)dx= Km f f^(x}dx,
k~nn~&amp;gt;J(E) k~ J (E)

provided one of these two limits exists.

* Rend, di Circ. Mat. di Palermo, vol. xxm, p. 137.

f Rend, dell Istit. Lombardo, (2), vol. xxxix, p. 775.

J Proc. Land. Math. Soc. (2), vol. vin, p. 28.
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Sincefn (k}

(x) is summable, so also is/*
1

(x), and therefore also lim /* (x),

or/(#), is measurable. In case lim I
/&amp;lt;* (x)dx is finite, its value defines

fc~oo J (E)

f(x)dx.
(E)

r

First, let it be assumed that lim fn (x) dx exists. If ek be the set of
n~x J (E)

points for which
/&amp;lt;* (x)

= k, we have

f rkm (ek ~)
&amp;lt; f (k}

(x) dx &amp;lt; lim fn (x) dx.
J (E) ~o&amp;gt; J (E)

The set of points at which f(x) is indefinitely great is contained in all

the sets 6%, hence its measure is

^ m (ek) &amp;lt; j lim I / (x) dx.
K n~nJ (E)

Therefore, since k is arbitrarily great, the measure of the set of points at

which f(x) = oo is zero.

Also f f(x) dx = lim f /&amp;lt;*&amp;gt; (x) dx = lim
f / (x) dx.

J (E) k~&amp;lt;x&amp;gt;J(E) n~&amp;lt;x&amp;gt; J (E)

{ f
Next, if f(x)dx, or lim lim fn (k)

(x) dx, is assumed to be finite, it will

J(E) k~x n~&amp;lt;x J (E)

be seen, from what has been proved above, that lim I fn (x) dx exists, and
~3C J (E)

has the value of
(E)

f(x)dx.

THE LIMITS OF A SEQUENCE OF MEASURABLE FUNCTIONS.

400. Let / (x),f2 (x), ...fn (x), ... be a sequence of measurable functions

defined in an interval (a, b), or in a cell of any number of dimensions. Let

vn (x) denote that function which, for each value of x, has for its value the

greatest of the numbers f\ (x),f2 (x), ... fn (x). The function vn (x) is measur

able
;
for the set of points at which A &amp;lt; vn (x) is that set each point of which

belongs to one or more of the measurable sets for which

A
&amp;lt;/, O), A&amp;lt;ft (x), ...A&amp;lt;fn (x).

The functions v
l (x), v2 (x), ... vn (x}, . . . form a sequence which, for any

value of x, gives a monotone non-decreasing set of numbers
;
let Wj (x) denote

its limit. The value of ivl (x) is finite, or infinite, for each value of x. Let

the function wn (x) be formed in the same manner from the sequence
vn (x), vn+l (x), ..., obtained by leaving out the first n 1 functions in the

sequence v
l (x), v.2 (x), The sets u\ (x), w2 (x), . . . are all measurable

;
for
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the set of points x at which w^ (x) &amp;gt; A is the set of points which belong to an

infinite number of the measurable sets for which

vl (x) &amp;gt; A, v2 (x) &amp;gt; A, . . . vn (x) &amp;gt; A, . . .
;

hence iul (x) is a measurable set, and similarly wn (x} is measurable for each

value of n. The functions wl (x}, w.2 (x), . . . define a monotone non-increasing

sequence of numbers for each value of x. The limit of this sequence is f{x),

where f(x} denotes lim fn (x). As before, this function f(x\ being the limit
n~&amp;lt;*&amp;gt;

of a monotone sequence of measurable functions, is itself measurable. In a

similar manner it can be shewn that f(x)
= lim fn (x) is measurable. It has

M~00
thus been shewn that :

V fi (
x

}&amp;gt; f*(x )&amp;gt;

be a sequence of measurable functions of one or more

variables, defined in an interval, or a cell, (a, b), the functions f(x), f(x) are

measurable, where f(x), f (x) denote, for each value of x, the upper and lower

limits (finite or infinite) of the sequence of numbers [fn (x)}.

If, instead of the upper and lower limits of {/(#)}, their upper and lower

boundaries are taken, we have the corresponding theorem :

If \fn (x}} is a sequence of measurable functions of one or more variables,

the functions U (x), L (x) are measurable ; where U (x), L (x} denote, for each

value of x, the upper and the lower boundaries of the numbers {/ (as)}.

The set of points for which U (x) &amp;gt; A, is that set which consists of the

points that belong to one or more of the sets for whichf1 (x)&amp;gt;
A

,/2 (x} &amp;gt; A
,

It follows that the set is measurable, and consequently that U (x) is a

measurable function. Similarly it can be shewn that L (x) is a measurable

function.

THE DERIVATIVES OF A FUNCTION.

401. If (f) (x) be continuous in the linear interval (a, b), the four derivatives

D+
&amp;lt;/&amp;gt; (x}, D+

(f&amp;gt;
(x), D~ $ (x}, D_&amp;lt;j) (x) (finite or infinite] are measurable functions

of x. In particular, if &amp;lt;/&amp;gt;
(x) have almost everywhere a differential coefficient

(f) (x), then
(f) (x) is a measurable function of x.

We shall consider the case of D+
&amp;lt;/&amp;gt; (x) and D+ &amp;lt;f&amp;gt; (x) ;

the case of the other

functions being then deducible.

D+
(f) (x) is the upper limit lim / (x. x + h), when h &amp;gt; 0, and I (x, x -\- h}

h~0

denotes the incrementary ratio,
[&amp;lt; (x + h) &amp;lt; (ai)}/h. It will be shewn that a

sequence of positive values of h, converging steadily to zero, can be deter

mined, such that the upper and lower limits of I (x, x + h), when h has

successively the values in the sequence, are for every value of x the same as

when h is not restricted to have such values. Let h^, hz ,
... hn ,

... be a

sequence of diminishing positive numbers, converging to zero, and let
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e1( e2 ,
... en ,

... be another such sequence. Since I (x, x + h) is continuous

with respect to (x, h), for all values of x in (a, b), and for all values of h that

are &amp;gt; 0, it follows from the uniformity of convergence of I (x, x + h), when h

is confined to the interval (h n+1 ,
h n ),

that this interval can be divided into a

definite number rn of parts, such that \I (x, x + h} I (x, h }
\

&amp;lt; en ,
for every

value of x, provided h and h both lie in one and the same part of the interval

(h n+l ,
h n ). Let this sub-division of (h n+1 ,

h n ) be made for each value of n,

and let hlt h 2 ,
h 3 ,

... denote the end-points of all the parts of all the intervals.

The sequence /?,, f&amp;gt; 2 ,
h.A ,

... converges to zero, and it is a sequence such as

satisfies the required condition; for we have I (x, x + hm) I(x, h)\&amp;lt; g ,

provided hm = h = hm^ ;
the integer s being determinate, corresponding to

each value of m. It follows that the upper and lower limits of the sequence
/ (x, x + h^, I (x, x + h,2), ... I (x, x + hm),

. . . are identical with those of any other

sequence / (x, x + /?./),
/ (x, x + h.2 ), ... I (x, x + hm ), ..., when

ft,
2 V*i&amp;gt; AS &*-*&amp;gt;?.;

and generally hm = hm = h m+l ;
arid this is the case for every value of x in

(a, b). Therefore the sequence {hn }
has the required property.

If we identify the functions fn (x), of 400, with the functions / (x, x + hn),

where the sequence hn is formed as indicated above, we see that the two

derivatives D+
(f&amp;gt;(x),

D+ &amp;lt;j&amp;gt;(x)

are measurable functions, since the functions

{(/&amp;gt; (x + hn)
(f&amp;gt; (x)}/hn are measurable for each value of n.

402. If E be a set of points in the interval (a, b), at which Df(x), one of
the derivatives of a function f(x), continuous in (a, b), has a fixed sign (and is

not zero), the set E, when it exists, is unenumerable, and contains a perfect set.

It will be sufficient to consider the set of points E, at which D+
f(x) &amp;lt;

;

the other cases may be treated in a similar manner.

If a be a point of E, another point ft (&amp;gt; a) can be determined such that

f(ft) f(o.) has a negative value X.

Let ?; be a fixed positive number such that
r/ (ft a)

= Xj &amp;lt; X, and let k be

a positive number such that \ + k &amp;lt; X
;
we shall consider the continuous

function &amp;lt; (x) =f(x) /(a) + 1] (x a) + k, in the interval
(or, ft), of x. Since

$ (a) is positive, and
&amp;lt;/&amp;gt;

(ft) is negative, &amp;lt;/&amp;gt; (x) must have the value at one or

more points within (a, ft) ;
let % be the point nearest to ft at which this is

the case. Since
&amp;lt;/&amp;gt;
() = 0, and

&amp;lt;/&amp;gt; (ft) is negative, &amp;lt;f&amp;gt;
(x) is negative for all

values of x such that &amp;lt; x ft. Since
&amp;lt;f&amp;gt;(x) &amp;lt;f&amp;gt; () is negative, it follows

that D+
&amp;lt;/&amp;gt;()

^ 0, whence we have -D~V() = r) &amp;lt; 0, and therefore belongs
to E.

The number Xj being kept fixed, k may vary continuously within the

interval (0, X Xj ; and, to each such value of k, there corresponds a single
value of f, which belongs to E. It follows that the set E contains a single
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point corresponding to each value of k within the interval (0, X - \). There
fore E contains an unenumerable set of points, of the cardinal number of the

continuum, and thus contains a perfect set. Accordingly the theorem* has
been established.

403. Iff(x] be a function defined in the interval (a, b), and E be the set of
points at which one of the derivatives Df(x] has a fixed sign (and is not zero],

then, if Df(x) is finite (bounded or unbounded) at every point of E, the exterior

measure ofE is greater than zero.

It will be sufficient to consider the case in which E is the set of points at

which D+
f(x) &amp;lt;

;
it being assumed that, at no point of E, is D+

f(x) = - x .

Let it be assumed, if possible, that me (E) = 0. Let En be that part of E, in

the points of which n - 1 ^ - D+
f(x) &amp;lt; n, then me (En)

= 0. The set En may
be enclosed in a set An ,

of non-overlapping intervals, of total measure en ;
and

this may be done for all the sets En (n=l, 2, 3, ...). The numbers en can be
so chosen that 2 nen converges to a value which is less than an arbitrarily

T = l

chosen number e. Let An (x) denote that part of A n which is in the interval

(a, x), and let $(x) = m {A: (x}} + 2m |A2 (#)}+... + nm {Aw (} +...; the

function $ (#) being consequently &amp;lt; e, for all values of x.

Consider the function ty (x) =f(x) +&amp;lt;f&amp;gt;(x).
Since

&amp;lt;/&amp;gt;(

is monotone and

non-diminishing, we have D+
-^r (x)

&amp;gt;

D+f(x), at all points of C (E). At every

point x, of E, if x belongs to En ,
the increment $ (x + h)

-
&amp;lt; (x), for sufficiently

small values of h, is at least nh
;
hence D+^r (x) ^ n + D+

&amp;lt;j) (x) &amp;gt; 0. It has

thus been shewn that fy (x) is monotone and non-diminishing in (a, b) ;
thus

x/r (/3) i/r (a) ^ 0, for any two points , /3, when @ &amp;gt;a. Since &amp;lt; (/3) &amp;lt; (a) &amp;lt; e,

it follows that /(/3) -/(a) &amp;gt;

- e. But if a is a point of E, a point ft can be so

chosen that /(/3) /(a) is negative, and has a value k; and thus &&amp;lt;e.

Since e can be so chosen as to be less than k, the hypothesis that me (E) =
has been shewn to lead to contradiction. It has therefore been shewn that

me (E) &amp;gt; 0. In case /(#) is continuous, since E is then certainly measurable,
its measure must be &amp;gt; 0.

INDEFINITE INTEGRALS.

404. If/(#) be summable, whether bounded or not, in the linear interval

(a, 6), it is also summable in the interval (a, x), where a x ^ b. The integral
f

\ f(x) dx may be regarded either as a function of the upper limit, or as a
J a

function of the set of points which constitute the interval (a, x).

* See de la Vallee Poussin s Conrs d Analyse, 2nd ed., vol. i, p. 80. The proof there given

corresponds to the case 17
=

; but the conclusion there drawn that D+
&amp;lt;j&amp;gt; () &amp;lt; 0, is incorrect. This is

remedied above by the introduction of the positive number 17.
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If F(x) be a function defined in (a, x), and such that

F(x)-F(a) = {

X

f(x}dx,

541

it is called the indefinite integral of f(x), and is determinate, when f(x) is

defined, except for an additive constant.

An indefinite integral is continuous, and of bounded total variation, in the
interval for which it its defined.

Since F(x + h}-F(x)=

F (x}-F(x-h} =
x-h

f(x)dx,

f(x) dx,

and since the integrals on the right-hand side converge, in accordance with
the theorem of 392, to zero, as h ~ 0, it follows that F(x) is continuous at

every point x, of (a, b). Again, if (a, b) be divided into any number n of

parts (av_]f
xr\ where x = a, xn = b, we have

r=l r=l

r=n
=

r l

r

f(x}dx

Since this inequality holds for every possible set of sub-division of (a, b)
into parts, it follows that F(x) is of bounded total variation. This may also
be proved by utilizing the fact that a summable function /(ar) is the difference
of two non-negative summable functions / (x), f2 (x). Then F (x) is the
difference-of the two monotone functions, F, (x), F2 (x), which are the indefinite

integrals off, (x),f2 (x). Then by the theorem of 244, it follows that F(x) is

of bounded total variation.

405. The indefinite integral F(x) has a finite differential coefficient almost

everywhere in (a, b).

Since F(x) is of bounded variation, it is expressible as the difference of
two monotone functions, and in accordance with the theorem of 298, it con

sequently has a finite differential coefficient almost everywhere in (a, 6).

This theorem is included in the following more general theorem*:

If F (x) be the indefinite integral of a summable function f(x\ defined in

(a,b), F(x) has, almost everywhere in (a,b), a differential coefficient equal to

/(*&amp;gt;

The theorem will first be proved in the case in which/( is bounded in (a, b).

* See Lebesgue, Lemons sur V integration, p. 124.
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It has been shewn in 140 that, if e be any measurable set of points
in (a, b), the metric density of e is 1, almost everywhere in (a, b), and is 0,

almost everywhere in C (e). Let e (x) denote that part of e which is in the

interval (a, x), where x is any point in (a, b). It follows from the property of

e just quoted that ^ e (x} exists, and has the value 1, at almost all points of e,
(,1 JC

and that it has the value 0, at almost all points of C (e).

If L, U denote the lower and upper boundaries of f(x) in (a, b), let

(L, U) be divided into parts (a fl ,
a

x ), (a1} a2 ),
. . . (an_j ,

an ), where a = L, an = U,

and where ar ar_^ &amp;lt; e, for all values of r. Let er be the set of points at which

a r_i ^f(x} &amp;lt; a r , except that en is the set at which an_ 2 ^f(x) an \
and let

er (x) be the part of er in (a, x}. Let fa(x)
= a r-i, at every point of er ,

for all

values of r, and let
&amp;lt;/&amp;gt;

2 (x) a r ,
at each point of er ,

for all values of r.

fx rx

Also let F
l (x}

=
fa (x) dx, F2 (x)

=
fa (x} dx ;

J a J a

then
F1 (x) = a me1 (x} + a 1 me2 (x) + ... + an^ men (x),

F2 (x)
=

a-! me l (x) -f a,2 m es (x) + ... + an men (x).

The function Fv (x) has a differential coefficient equal to (^ (x) almost

everywhere in (a, b). For m [er (x}} has a differential coefficient almost every
where equal to 1, or 0, according as x belongs, or does not belong, to er .

Similarly Fz (x) has a differential coefficient equal to fa (x) almost everywhere.

Also

Fi(x) F(x + h)-F(x) F2 (x + h)
- Fz (x)

h h h

for positive and for negative values of x, since Fl (x) cannot increase more

than F (x), and F (x) cannot increase more than F2 (x), as x increases.

Therefore the four derivatives of F(x) all lie between fa(x), fa(x) inclu

sively, at each point x which does not belong to that set, of measure zero, at

which FI (x), F.2 (x} do not have differential coefficients equal to fa (x), fa (x)

respectively. Now fa (x), fa (x) differ from each other, and from f(x), by less

than e; therefore, almost everywhere, the four derivatives of F(x) differ from

one another by less than e. Taking a sequence of values of e, which converges
to zero, we see that F (x) has a differential coefficient equal tof(x), almost

everywhere in (a, b).

The theorem has now been established for the case of the indefinite in

tegral of a bounded function.

In order to prove the theorem for the case in which f (x) is unbounded,
the following Lemma* will be required:

* See de la Vallee Poussin, Cows d Analyse, 2nd ed., vol. i, p. 206.
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If (}&amp;gt;(x)
be a continuous monotone non-diminishing function, &amp;lt; (x) is sum

mable in (a, b), and
rb

I & (x) dx ^ (b (b) d&amp;gt; (a).
J a

The fact that &amp;lt; (x) does not exist, or is not finite, at points of a set of

measure zero, has no effect on the integral, which is taken over that set of

points at which &amp;lt; (x) exists, and is finite.

Let XN(X} &amp;lt;

(#)&amp;gt;
for values of x such that

&amp;lt;/&amp;gt; (x) N, and xx(x) -N,

when
(f&amp;gt; (x) &amp;gt; N. In accordance with the result obtained in 401,

(f&amp;gt;
(x) and

t

Xir\&) are measurable functions. The function I x* (x) dx, being an indefi-
J a

nite integral of a bounded function, has a differential coefficient, equal to

X\ (x), almost everywhere in (a, b). At all points of (a, b) its derivatives are
rb

all ^ N. Let the points of the set G, at which I v̂ (x) dx does not possess
J a

a differential coefficient equal to XN(%), be enclosed in a set of intervals A, of

measure ejN, and let A^ be the part of A in the segment (a, x).

We shall consider the function
tf&amp;gt; (x) + Nm (A^)

=
ty (x). In G, we have

D-^(x)^N; and at points not in G, Dty (x) ^ D(f) (x} ^ %jv(), where D
denotes any one of the four derivatives. The increase of the function

i/r (x),
rx

with ic, is not less than that of I yy(x) dx; therefore
J a

rb

&amp;lt;b (b) (t&amp;gt; (a) + e 2: Yv(#) dx.
. a

rb

It follows that
I XN (x) dx is bounded, for all values of N, and it is also

. a

greater than Nm(HN\ where HN is that set of points at which D$(x)&amp;gt;N.

We infer that lim m (HN}
= 0. If EN is the set complementary to HN , we

have

[

If N~ cc
,
we see that D(j}(x) dx is finite, and ^ (6)

-
&amp;lt; (a).

. a

From this Lemma we deduce that:

If 4&amp;gt; (%) be a continuous function, of bounded variation in (a, b), then
Dcf&amp;gt; (x)

is summable, when taken over the set ofpoints of (a, b) at which it is finite; D(f) (x)

denoting any one of the four derivatives of &amp;lt;/&amp;gt; (x). The integral of D
&amp;lt;/&amp;gt;

(x) has
the same value for all the four derivatives.

For (x) is the difference of two monotone non-diminishing functions

$1 (#), $2 (#) Since $/ (x),
&amp;lt;/&amp;gt;

2 (x) exist almost everywhere in (a, b), and are

summable over the set of points at which they exist, we see that
&amp;lt;/&amp;gt;

(x) exists
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almost everywhere, and is summable. The theorem follows from the fact that

D&amp;lt;f&amp;gt;(x}

= $ (x), almost everywhere in (a, 6); thus

b rb

&amp;lt; (x) dx = I

D&amp;lt;f&amp;gt; (x) dx.
&amp;gt; -a

We are now in a position to prove the general theorem, when f(x) is

unbounded.

Consider the function fx(x) which =
f(x), when /(#) = N, and is equal

to N, wheny(#) &amp;gt;N; it being assumed that/(/e) is a non-negative function.

Since / (x) dx and fa (x) dx are monotone functions, they both have
. a J a

rx

finite differential coefficients almost everywhere, and that of I fa (x) dx
J a

[
x

clearly does not exceed that of I f(x)dx. Since fa(x) is bounded, the
J a

f
x

differential coefficient of I fa(x)dx is fa(x), almost everywhere; therefore

fa (x) F (x), almost everywhere. Since N is arbitrarily great, it follows that

f(x) ^ F (x), almost everywhere.

[b fb

Now I f(x) dx = F (b) F (a) ^ I F (x) dx, as is seen by employing the
J a J a

Lemma proved above; but since f(x) ^ F (x), we have

F (x)dx.

rb

It follows that [F
f

(x) -f(x)] dx = 0; and since F (x) -f(x) ^ 0, it then
J a

follows that F (x)=f(x), almost everywhere. The theorem has therefore been

established for a non-negative unbounded function.

Since every summable function is the difference of two non-negative sum

mable functions, the theorem is completely established.

It is easily seen that, at every point of continuity of the function f(x),

[
x

I f(x) dx has a differential coefficient equal to f(x). For at such a point, if

a

I, u be the lower and upper boundaries of the function in (x h, x + h),

F(x -1- h)
- F(x) and F(x)-F(x- A)

are between Ih and uh inclusively, and since I and u both converge to f(x),

as h ~ 0, it follows that F(x) has as its differential coefficient f(x}. The set

of points at which F(x) has/(#) for its differential coefficient consequently

includes all points of continuity off(x\ when such points exist.

The important theorem here established, which is due to Lebesgue, throws

light on one of the fundamental questions which arise as to the reversibility
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of the two processes of integration and differentiation; as it asserts that the

process of integration of any summable function can be reversed by differentia

tion, at almost all points of the interval for which the function is defined, and

certainly at every point of continuity of the function.

406. The necessary and sufficient condition that a function, defined for an
interval, may be an indefinite integral is that it should be absolutely continuous
in the interval.

To shew that the condition stated in the theorem is necessary, consider

If A be any set of non-overlapping intervals such that m (A) &amp;lt; 77, we also

have m (Aj) &amp;lt;

77, m (A2) &amp;lt; 77, where A, consists of those intervals of A for which
the variation of/(a?) is positive, and A 2 those for which it is negative.

The integral f(x)dx is the sum of those variations of F(x] that are
MA,)

positive, and I f(x} dx the sum of those that are negative.
- ( A ,

f

Since I f(x) dx !

&amp;lt; e, provided m (E) &amp;lt; 77, where
77 is determined when

J (E)

e is given, we see that the sums of the positive and of the negative variations
in the intervals of A are &amp;lt; e, for all sets of intervals A, such that m (A) &amp;lt; 77.

The condition of absolute continuity (see 218) of F (x) is therefore satisfied.

To prove that the condition stated is sufficient, let us assume that it is

satisfied by F (x); we shall first prove that F (as) is of bounded variation in

(a, b).

If the function F (x) is not of bounded variation over (a, 6), a system of
nets can be fitted on to (a, b) such that the sum of the absolute variations of

F(x) in the meshes of Dn increases indefinitely with n. There must be at

least one mesh of Dlt say dlt such that the total variation over dl is indefinitely

great. Further, d
l must contain at least one mesh d2 ,

of D2 ,
which has the

same property; and so on. For a large enough value of n, dn is less than an

arbitrarily chosen positive number. In dn there is a set of intervals of total

measure &amp;lt; 77, for which the sum of the absolute variations of F (x) is greater
than an arbitrarily chosen positive number A. Hence a set of non-overlapping
intervals of total measure arbitrarily small exists such that the sum of the
absolute values of the differences of F (x) at the end-points of an interval is

greater than A, and this is contrary to the hypothesis that F (x) is absolutely
continuous. Therefore / (a?) must be of bounded variation in (a, b). Hence
F (x) has a finite differential coefficient f(x) almost everywhere. It follows
from the Lemma in 405 that, F(as) being the difference of two monotone

&quot; 35
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functions, its differential coefficient f(x) is summable in (a, b). Also

I f(x)dx, which has thus been shewn to exist, has a differential coefficient
J a

rx

f(x), almost everywhere. Therefore F(x) I f(x) dx = (f&amp;gt;
(x) has a differential

J a

coefficient equal to zero, except in a set G, of measure zero. Enclose G in

non-overlapping intervals of a set A, where m(A) &amp;lt; e. Each point a, at which

&amp;lt;/&amp;gt;
(x) exists, and has the value 0, is such that, if x is in a sufficiently small

neighbourhood of a,
\ $ (x) (a) \

&amp;lt; e
j

x a
j.
A Lebesgue chain (see 78)

may be defined as follows, so as to reach from a to b. To a point a, of G, attach

the part of that interval ofA that is on the right of a; to a point a, not belonging

to G, attach an interval
(or, c^) such that

| $ (x)
&amp;lt;/&amp;gt;

(a) &amp;lt; e (x a), if a &amp;lt; x &amp;lt; o^.

This interval may be defined uniquely, by taking (a, Oj) to be the maximum of

all the intervals which satisfy the condition. There is one and only one chain

from a to x(^ b) composed of the intervals so defined for every point a such

that a ^ a. &amp;lt; x.

Now &amp;lt; (x) &amp;lt;/&amp;gt; (a) |

cannot exceed the sum of the absolute values of the

differences of the functional values at the ends of an interval of the chain

from a to x. To this sum those of the intervals that are parts of the intervals

of A contribute a part that is &amp;lt; 77, dependent on e, since &amp;lt; (x) is absolutely

continuous. The other intervals of the chain contribute a part &amp;lt; e (b a).

Hence &amp;lt; (x) $ (a)
\

&amp;lt; rj + e (b a); and since e is arbitrarily small and 77,
e

converge together to zero, we have
&amp;lt;j&amp;gt;

(x}
=

&amp;lt;j&amp;gt;
(a).

rx

Therefore F(x) = F(a) -M f(x)dx; and thus F(x) is an indefinite integral.
J a

The following theorem has been proved:
(
x

If F (x) be an indefinite integral in (a, b), then F(x} F(a)=\ F (x) dx;
. a

the set of points at which F (x) may not exist being ignored.

407. The necessary and sufficient conditions that F (x) should be an in

definite integral have been stated by Lebesgue in another form:

The necessary and sufficient conditions that F (x) should be an indefinite

integral in (a, b) are that, (1) it shoidd be of bounded total variation, and (2),

the total variation over any set of points of measure zero shoidd be zero.

By the total variation of a continuous function F(x) over any set E is

meant the limit of the sum of the absolute variations of F (x} in a set of

non-overlapping intervals A which contains E, as m(&)~m(E), whenever

such limit exists.

It has been shewn that, if the condition of the former theorem is satisfied,

the condition (1) is satisfied. Also the condition of absolute continuity ensures

not only that the condition (2) is satisfied, but also that it is satisfied uniformly
for all sets ofpoints ofmeasure zero. Thus the conditions (1) and (2) are necessary.
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That the conditions are sufficient is shewn by the proof in 406, if we apply
(2) to the set G, in which

&amp;lt;/&amp;gt; (as) has not a differential coefficient equal to zero.

The above theorem may also be stated in the following* form :

If x=f(t), where f(t) is a continuous monotone function of t, and a=f(t \
rt

the necessary and sufficient condition that f(t)-f(t )
= f (t)dt is that, to

Jt

evert/ set of points on the t-interval, of measure zero, there shall correspond a
set ofpoints on the x-interval, of measure zero.

For the total variation of f(t) over any set of points G (t)
,
on the ^-interval,

is the lower limit of the measure of a set of non-overlapping intervals on the
^-interval which encloses the set G (x] of points that corresponds to

?&amp;lt;;
and

this lower limit is me (Gm ). Thus the condition that the total variation of

f(t) over a set G (t)
,
of measure zero, should be zero, is equivalent to the con

dition that m(G {x)
) should be zero.

A continuous function of bounded variation is an indefinite integral, if

both the monotone continuous functions of which it is the difference satisfy
the condition of the above theorem.

It will be observed that the functions which are indefinite integrals form
a sub-class of the class of functions of bounded variation.

A function which is expressible as the sum of an indefinite integral and
of a bounded monotone (not necessarily continuous) function, arid which is

therefore of bounded variation, has been named byf W. H. Young an upper
semi-integral, or a lower semi-integral, according as the monotone function is

non-diminishing or non-increasing.

It has been shewn by W. H. Young that an integral is both an upper, and
a lower, semi-integral. It is accordingly sufficient, in order that a given function
be an indefinite integral, that it be less than some indefinite integral by a
monotone non-diminishing function, and also greater than some indefinite

integral by a monotone non-diminishing function.

It can be shewn that the necessary and sufficient conditions that F (x)
should be an indefinite ^-integral are that it should have bounded derivatives
in (a, b), and that a derivative should be continuous almost everywhere.

408. If Fl (.x), F.2 (x) are indefinite integrals, and
&quot;F(x)

be the function that

is equal to F, (x), for all values of x such that F, (x) F., (x), and to F, (x) when
Fz (x} &amp;gt; F

l (x), then F(x) is an indefinite integral.

The theorem can be at once extended to the case of any finite number of

indefinite integrals F, (x\ Fz (x), ... Fn (x). The function F(x) has at each

point x the value of the greatest of the given functions.

*
See Halm, Monatshcfte der Math. u.Physik,vol. xxm, p. 163.

t Proc. Lond. Math. Soc. (2), vol. ix, p. 294.

352
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To prove the theorem, it will be observed that, in any interval (xl} x2),
the

variation F(x2)-F(x,) is equal to that of F1 (x), if Fl (^) ^ F2 (xj and

Fl (x.,)
&amp;gt; F2 (a;2) ;

it is equal to that of F2 (x) if both the inequalities are reversed,

and to F, (x,}
- Fz (x2) \ ,

or to
]

F
l (#)

- F, (x,} \

,
if only one of the inequalities

is reversed. It is clear that
|
F, (a?,)

- F2 (xz) &amp;lt;
\

Fl (x^
- F, (x2)\, in case

(,) 5^,0*), and F^x,)
-
F,(x,} ^F.^xJ- F,(x2) ,

in case F2 (x2) ^ F^x,)
;

and a similar remark applies to
|

Fl (x2)
- F2 (x,) . Thus the variation of F (x)

in (xlt #2) is in any case not greater than the sum of the separate variations of

Fl (x), F2 (x) in the same interval; hence the sum of the absolute variations

of F(x), in any set of intervals, is not greater than the sum of the absolute

variations of F^ (x), and of F2 (x), in the same set of intervals. It then follows

that, if F1 (x), F2 (x) are absolutely continuous in (a, b), so also is F(x), which

is therefore an indefinite integral.

409. The criterion that a function f(x), defined in the interval (a, b), may

be the indefinite integral of a function of bounded variation has been obtained*

by F. Riesz. It is contained in the following theorem :

The necessary and sufficient condition that the function F(x), defined in the

interval (a, b), may be the indefinite integral of a function of bounded variation

is that the expression
r=m\
2
r=\

F(xr+1 -xr) F(xr}-F(xr_1 )

Xr X*, i

where
(#&amp;gt; #1 .-#*) defines a net fitted on to the interval (a, b), and x = a,xm =b,

should be less than a fixed positive number, independent of the particular net.

That the condition is necessary follows from the fact that

F(xr+l)-F(xr) _J_

where ft. is some number between the upper and lower boundaries of/(a) in

the interval (xr ,
xr+l).

When f(x) is of bounded variation, the expression in

the theorem is seen to be bounded for all possible nets. For the proof of the

sufficiency of the condition, reference may be made to Riesz s memoir.

THE FUNDAMENTAL THEOREM OF THE INTEGRAL CALCULUS FOR A

LEBESGUE INTEGRAL.

410. Let F(x) be a continuous function, defined for the interval (a, b),

and let it be assumed that F(x) has, at every point of (a, b), a differential

coefficient F (x), that is bounded in (a, b). It has been shewn, in 401, that

F (x) is a measurable function; being bounded, it is consequently integrable (L).

Let fn (x)
= F (x+h &quot;)~

LV; where [h n ]
is a sequence of numbers con-

/ n

* Annales de Vecole nonnale (3),
vol. xxvin, p. 36.
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verging to zero; then \fn (x) is bounded, for all values of n and x, as it has

the same boundaries as F (x). By the theorem of 398, we have

lim I / (x) da; -
I

F (x) dx.
w~oo J a, j a

Thus fV (x) dx = lim - i P + *n F (x) dx - !

&quot; +
*&quot; F (x) dx\

J a hn~ohn [J* Ja )

= F(x)-F(a).

The following theorem has been established:

If F(x) be a function which possesses, at every point of the interval (a, b), a

differential coefficient F (x), bounded in that interval, then F (x) possesses an

L-integral in the interval (a, x}, which differs from F(x) by a constant only.

This theorem corresponds to the theorem (B), of 343. For the /^-integral,

the theorem is subject to the condition that F (x) should be integrable (R);

but it has here been shewn that the corresponding theorem holds without

restriction, when Lebesgue s definition of an integral is employed, so long as

the differential coefficient is a bounded function.

411. The following theorem was given* by Lebesgue:

If a function &amp;lt;/&amp;gt;(#), defined in a given interval, be such that one of its

derivatives (say D+ $ (x)) is finite at every point, the necessary and sufficient

condition that the derivative is sunimable in the interval is that the given

function be of bounded variation in the interval.

The indefinite integral of such a summable derivative is the function of
which it is the derivative.

To prove the theorem, we assume that, for each value of x in (a, b), the

derivative D+
&amp;lt;/&amp;gt; (x), of the given continuous function &amp;lt; (x), has a finite value.

Let the unbounded interval
(*&amp;gt;,

oo ) be divided into intervals (c,, cl+1 ),

where the integer i has all positive and negative values, including zero, for

which we assume c = 0; also let cl+1 ct &amp;lt;e,
for all values of i. Let et

denote that set of points x, in (a, b), for which c t &amp;lt; D+
cf&amp;gt; (x) ct+1 ;

and

arrange the sets et
in the order e , elt e_i, e.2 ,

e-2 , &amp;gt; CH, e~n,

Let k
, &u &_i, &2 , &_2 ,

... kn , k_H , ... be a sequence of positive numbers, all

less than 1, so chosen that the limiting sum of

n^o &quot;T* &quot;a I Ci &quot;I&quot;
&quot;

i C_x
j

+ + n&quot;n
|
Cn

j

+ Kn
\

Cn +

is less than e. Let the set e be enclosed within non-overlapping intervals of

a set A
,
and the complementary set (7(e ) within intervals of a set A

,
so

that the measure of that set of intervals which is common to A , A/ does not

*
Lemons sur V integration, p. 123. For a discussion of his proof, and for corrections to its

original form, see Atti dei Lincei, Rendiconti, (o) vol. xv(l); B. Levi, pp. 433, 551, 674; (5) vol. xv

(2), Lebesgue, p. 3, B. Levi, p. 358. Also (5) vol. xvi (1), Lebesgue, p. 92.
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exceed k . Enclose ex in a set of intervals A T ,
and C(e + e^) in a set of

intervals A/; where A1} A/ are both within A
,
and have in common a set of

intervals of measure not exceeding k^. Proceeding in this manner, we enclose

ep , where p is positive or negative, in a set of intervals Ap ,
and

G(e + ej + e_! + ... + ep)

in a set of intervals Ap ,
so that Ap , A^ are both interior to A

9 ,
where q

immediately precedes p, and such that

intervals of measure not exceeding kp .

We have m(Ap) m(ep) ^ kp ,
and Ap has in common with all the other

sets A a set of intervals whose measure is ^ k + /^ + k_ t + ... +kp , say ^ Kp .

A/ have in common a set of

Since 2 \Cp\m (Ap) 2 ra does not exceed 2
{
,
or is &amp;lt; e, we

see that 2 cp |

ra (Ap) and 2 cp \m (ep) are either both divergent, or both
p P

convergent; and in the latter case the difference of their limiting sums is

less than e.

Since e &amp;lt; D+ $ (x) \

&amp;lt;

\

cp \

+ e, in the set ep ,
we have

rb

2
| Cp ra (ep) e (b a) &amp;lt; D+

&amp;lt;/&amp;gt;(#) |

dx &amp;lt; 2 cp \

m (ep) + e (b
-

a).
p J a p

[*&amp;gt;Hence
;
if 2

j

cp m(ep ) is convergent, I D+
&amp;lt; (x) dx is finite

;
and conversely.

p . a

It has now been shewn that the necessary and sufficient condition that

D+(f&amp;gt;(x)
dx

exists, as a finite number, is that 2 cp m (A^,) should be convergent.
p

Any point x, in
{a, b), belongs to one of the sets ep ;

let 8P be that interval,

of the set Ap ,
which contains x. Let (x, x + h) be the longest interval, on the

right of x, contained in Sp ,
of length not greater than e, and satisfying the

condition cp e ^ / (x, x -f- h) ^ cp+l + e. It follows that

h{\cp -2e}&amp;lt; (j&amp;gt; (x + h)
-

(f&amp;gt;
(x) &amp;lt;/t{|cp + 2e}.

A unique Lebesgue chain, reaching from a to b (see 78), may be defined

by means of these intervals (x, x + h). For all left-hand end-points xa ,
of the

chain, that belong to one and the same set ep ,
let B

I}
denote the intervals of

the corresponding part of the chain. Then 2 $ (# + h)
&amp;lt;/&amp;gt;

(xa) \

is between
a

the two numbers cp m(Bp) 2era (Bp); therefore, for the whole chain,

2
&amp;lt;/&amp;gt; (as + h)

-
&amp;lt;f) (x)

is between the two numbers 2
|

cp \

m (Bp} 2e (b
-

a).

Now m (Bp) 2 c

f
6

I \D+ &amp;lt;j)(x)
dx is finite.

J a

m (
Ap ),

and therefore 2 cp j

m (Bp) converges if

p
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It has now been shewn that, if D+
(f&amp;gt; (x) is summable in (a, b),

the total variation of
&amp;lt;j)

(x) over the Lebesgue chain, is less than

2
|

cp |

ra (Bp) -f 2e (6
-

a),

or than ra (ep) + e + 2e (6
-

a),

f*
and this is less than I

j

D+
&amp;lt;j&amp;gt;

(x) \

dx + e + 3e (b a).
J a

We have also
j (f&amp;gt; (b)

-
(a) |

&amp;lt; S
j O -f- /*)

-
&amp;lt; (a?) |,

and therefore

Since D+ &amp;lt; (#) |

is integrable in any interval (a, ft) contained in (a, 6), the

last inequality may be applied to the interval (a, ft). If (a, 6) be divided in

m parts (ar , ftr), where r = 1, 2, 3, ... ra; we have

and since e is arbitrary, we have

r=l

From this we see that
&amp;lt;/&amp;gt; () must be of bounded variation in (a, b), in case

D+ $ (x) dx exists.

Next, let it be assumed that $ (x) has bounded variation in (a, b), then
S

&amp;lt;/&amp;gt;
(# + h)

&amp;lt;fi (x) taken for the intervals of the chain is convergent (see
00

243), and therefore S cp \m (Bp) converges to a finite number.
j-i

Take a fixed value P, of p. All points of Ap that are not in an interval of

Bp necessarily belong to intervals of A
g , where q=p, and their measure does

not exceed Kp \
hence

cp m
P=I

m (Bp) ^

P=
The numbers k can be subjected to the condition S Kp \

cp &amp;lt; e, for every
P=I

P=/ P=P
value of P; we then have 2 |oF |m(Ay)- 2 |c|m(5p).

p=i
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p=P oo

m(Bp )
&amp;lt; 2 cp m(Bp)

00 P=
and therefore, if 2 cp |

m(Bp) is finite, so also is 2 cp m(ep),
and this last

sum is bounded for all values of P; it therefore follows that /
j D+&amp;lt;j&amp;gt;(x)

dx
J a

exists. It has thus been shewn that it is a sufficient condition for the exist

ence of
[
D+

&amp;lt;/&amp;gt;
(at) dx, that $ (x) should be of bounded variation in (a, 6).

In any interval of the chain, we have

h (cp
-

e) ^
&amp;lt;/&amp;gt;

(x + h)
-

&amp;lt; O) = ^ (cp+1 + e);

therefore, for that part of the chain for which p= P,

P
2
P

Cpm (Bp)
- e (b

-
a) ^ I

{&amp;lt;
(x + h)

-
&amp;lt; (a?)}

^ ^ cpm (5,) + e (b
-

a).

P=I P=I

p
It now follows that 2

{(j&amp;gt; (x + h)
-

(f&amp;gt; (x)\ lies between the numbers

P=P
2 cpm (ep) (b a + 1) e.

p-i

P=P x

Now P may be so chosen that 2 cp m(ep ) differs from 2 ^m (ep) by less

P=I P=I

than e; then 2
{&amp;lt;f&amp;gt;(x

+ K) (&amp;lt;)}&amp;gt;

for the whole chain, is between the two
00

numbers 2 cpm (ep) (b-a + 2)e. Therefore
(j&amp;gt; (b)

-
&amp;lt;f&amp;gt;

(a) is between
p-i

D+&amp;lt;f&amp;gt;(x)das(b-a

and since e is arbitrary, we have

and in general

f

X

D+
&amp;lt;f&amp;gt;

(x) dx = $ (x)
-

(a),
J a

if x is in (a, b).

The theorem may be proved for the case in which any one of the other

derivatives is employed, in a precisely similar manner. We have then the

following theorem:

If (f&amp;gt; (x) be of bounded variation, and have its four derivatives finite at each

point, we have

fb fb
~b fb

&amp;lt;j) (6) -&amp;lt;/&amp;gt;()=
D+

&amp;lt;f&amp;gt;(x)dx=
D+ &amp;lt;j&amp;gt;(x)dx=

D~
&amp;lt;/&amp;gt;

(x) dx = D_
&amp;lt;f&amp;gt;

(x) dx.

J a J a -a * a
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This holds for every interval (a, /3) contained in (a, b); in every such interval

ff

{D+ &amp;lt;f&amp;gt;
(x) -D+

&amp;lt;f) (x)} dx=0; hence (see 394) we have D+ (as)
= D+

&amp;lt;j&amp;gt;
(x),

J a

almost everywhere. Similarly, by taking the other derivatives in pairs, we
see that, almost everywhere, all four derivatives are equal, and thus a finite

differential coefficient exists. This is a particular case of the theorem, estab

lished in 298, that any function of bounded variation has, almost every

where, a finite differential coefficient.

We have, further, the following theorem:

If&amp;lt;ft(x)
be of bounded variation, and one of its derivatives

D&amp;lt;f&amp;gt; (x) is finite

at every point of the interval (a, b), then

the integral being taken over the set ofpoints at which $ (x) exists, and is finite.

In particular, the theorem holds if &amp;lt;fi (x) exists at every point, and is finite.

412. The theorem of 411 may be applied* to obtain a proof of the

theorem already established, in 298, that a function of bounded variation,

and in particular, any monotone function, has a finite differential coefficient

almost everywhere.

As any function of bounded variation is the difference of two monotone

non-diminishing functions, it is sufficient to consider the case of a monotone

non-diminishing function f(x). All the derivatives of f(x) are ^ 0, hence

those of f(x) + kx~
&amp;lt;f&amp;gt; (x) are all ^ k, where k is any chosen positive number.

It will be sufficient to prove the theorem for &amp;lt; (x). Let
&amp;lt;f&amp;gt; (x)

=
,
and consider

the inverse function x = F(%), regarded as defined on the ^-segment (&amp;lt;j&amp;gt;(a)&amp;gt;

&amp;lt;f) (b)), which is also monotone non-diminishing. Whether &amp;lt; (x) is continuous

or not, F() is a continuous function of . All the derivatives of F (%) are in

the interval (0, &-1) ;
and thus, as these are all finite, F (%) has a differential

coefficient for almost all values of . If K be any fixed number &amp;gt; k~l

,
we have

A# &amp;lt; Kk%, and thus we have SA#
&amp;lt; /ifAf . From this it follows that, to any

set of points of measure zero on the ^-segment, there corresponds a set of

points on the ^-segment, of measure zero. Therefore x = F(%) has a differ

ential coefficient F (), for almost every value of x; and thus
&amp;lt;f&amp;gt;(x)

has a

differential coefficient almost everywhere. Each point on the ^-segment at

which F () = can be enclosed in an interval A|, such that Aa; &amp;lt; eA, where
e is arbitrarily chosen. It follows that, if E be the measure of the set of

points on the ^-segment at which F () = 0, the measure of the corresponding
set on the ^-segment is &amp;lt; e {m (E) + rj},

where 77 is arbitrarily small
;
and since

e is arbitrary, it is zero. Thus the points on the a-axis, for which F () = 0,

and consequently &amp;lt;/&amp;gt; (x) = + oc
,
form a set of measure zero. Therefore &amp;lt; (x)

exists, and is finite, almost everywhere in (a, b).

* See W. H. Young, Quarterly Journal of Math., vol. XLII, p. 79.
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413. There remains for consideration the case in which a continuous

function &amp;lt; (x), of bounded variation, is such that one of its derivatives, say
D+

(f&amp;gt; (x), is not everywhere finite.

If $ (x) is continuous, and
D(f&amp;gt; (x) is finite, except at the points of a

reducible set G, and if

D(j) (x) dx
. a

exists as an //-integral, then

fm

Dcf) (as) dx = d&amp;gt; (x) &amp;lt;h (a).
- a

Consider the closed enumerable set G . If (a , x) be interior to an

interval contiguous to G, then

P
&amp;lt;/&amp;gt; (x)

&amp;lt;$&amp;gt;
(a )

= I D(f) (x} dx ;

J a

and therefore

P l

a

&amp;lt;f&amp;gt; (x} J)(f) (x) dx=(j) (a) I Dfi (x) dx.
J a J a

It follows that the continuous function

is constant in each interval contiguous to G, and therefore, since G is

enumerable, it is constant in the whole interval (a, 6), and equal to &amp;lt; (a). We
have therefore the following theorem :

// &amp;lt;j) (x) be a continuous function, and if one of its derivatives D$ (x) be

infinite only at the points of a reducible set in (a, b), and is summable in (a, b\
when those points at which it is infinite are ignored, then

rx

I
D(f&amp;gt; (x) dx

(f&amp;gt; (x) (j) (a), in (a, b).
J a

The condition that
D&amp;lt;f&amp;gt; (x) is summable may be replaced by the condition that

&amp;lt;f&amp;gt; (x) should be of bounded variation.

If the set G were irreducible, but non-dense in (a, b), the set G would
contain a perfect component H. The reasoning given above would shew that

x) dx

is constant in each interval contiguous to H, but it would not follow that it

would be constant in (a, b). In fact it may be a continuous function with an

everywhere dense set of lines of invariability (see 269). In this case the

relation

D(f) (x) dx = &amp;lt;j&amp;gt; (x)
&amp;lt;/&amp;gt;

(a)

does not in general hold good ;
but we have the following theorem :
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If (f&amp;gt; (x) be a continuous function, with one of its derivatives
D&amp;lt;j&amp;gt;(x) infinite

at the points of a non-dense set G, such that G consists of a perfect set H and

an enumerable set (which may be absent), and if D(f) (x) possesses an L-integral
in (a, b), then

I D(f&amp;gt; (x) dx = &amp;lt;f&amp;gt; (x)
-

(f) (a) + U(x)- U(a),
&amp;gt; a

where U (x) is a continuous function with an everywhere dense set of lines of

invariability. The condition that D(j) (x) is summable may be replaced by the

condition that
(/&amp;gt;

(x) should be of bounded variation.

It has already been shewn, in 405, that, if &amp;lt; (x) be continuous, and of

bounded variation, Dcf)(x) is summable, when taken over the set of points

(necessarily of measure equal to that of the whole interval) at which it is

finite.

414. It has been shewn in 405, that, for a function /(#), that is con

tinuous, and of bounded variation, f (x) is summable in the interval for which
fx

f(x) is defined. The indefinite integral I / (x) dx is however not necessarily
J a

equal to/(#)/(), unless f(x) satisfies the further condition that it should

be an indefinite integral. In accordance with 407, this condition may be

expressed in the form that the total variation of f(x) over any set of points
of measure zero should be zero.

In the general case of a continuous function of bounded variation which

is not subject to this last condition, the relation of the function to the

indefinite integral of / (x) is expressed by the following theorem, due* to

de la Vallee Poussin :

If f(x) be a continuous function, of bounded variation in the interval

(a, b), then

f(x) -/(a) =
X

f (x) dx + V, (x)
-T2 (x),

where Vl (x) is the total variation of the monotone continuous function fi (x) over

the set of points in (a, x), at which one of its derivatives .D/j (x) is not finite, and

V z (x) is similarly defined, relatively to /2 (x); and /i (x), /2 (#) are two con

tinuous monotone non-diminishing functions whose difference is f(x).

It will be sufficient to assume that/(#) is monotone, either non-increasing
or non-diminishing ;

the result will be obtained by considering the difference

of two such functions.

Let
&amp;lt;^vO)

=
I Df(x)\, at all points at which Df(x) \

&amp;gt; N, and ^N (x) = 0,

when
| Df(x) \^N; thus $N (x)

- Df(x) -N. Let the set of points E, at

which Df(x) is not finite, be enclosed in a set A, of non-overlapping intervals
;

* See the Cours d Analyse, 2nd ed., vol. i, p. 269.
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the set A can be divided into a finite set A1? and an infinite set A 2 ,
such

that the sum of the variations, S {/(#,.) -f(xr_^)}, taken for the intervals

(#,._,, %r) of A2 is &amp;lt; e
;
this variation is taken with its proper sign.

Let FI (x) be the sum of the variations, each with its proper sign, of the

function

c
x

T ( T* i J / / / i nr\ &amp;lt;\\ T i T1
1 1 fi nn

I \tAj I \J-SI V 1*- / T^TV V /) ^&quot;^ ?

Ja

for the intervals of A! that lie in (a, #); and let F2 (x) be the sum of the varia

tions of/(#), taken positively, for the intervals of A2 that lie in (a, x) ;
we thus

have F2 (x} F2 (b) &amp;lt; e. If x is within an interval of A : ,
or of A 2 , the variation

in the part of that interval on the left of x is counted in V
l (x), or F2 (x).

Let us consider the function

-
&amp;lt;* ()) da? - F

2 (a;) + F2 (x}.

In an interval of the set Aj , Fj (a;) and

both increase by the same amount, or both diminish by the same amount, and

F2 (x) does not vary ;
thus such an interval is one of invariability of x (x )-

In a finite interval complementary to A 1; F, (x) does not vary, and
rx

&amp;lt;t&amp;gt;N (x) dx F2 (x)
J a

do not diminish. The function

f(x)-\
X

Df(x}dx
J a

has a derivative which is equal to zero, for almost all values of x; and it

follows that the points where the derivative of x (x) is negative form a set of

measure zero, in case there are any such points.

Moreover, DX (#) has nowhere the value oo
,
for it is the sum of

[4&amp;gt;
N (x)-Df(x)} dx,

of which the derivative is = N, and of

of which the derivative is finite, except at points in A2 ,
and at such points

cannot be negative, as in any interval (x, x + h) contained in an interval of

A 2 in which f (x~) diminishes, /(#) + F2 (#) does not vary, and also Fi(V) does

not vary. Since, in an interval complementary to A 1; DX(X} has nowhere the

value oo
,
and is certainly

~ almost everywhere, it follows from the

theorem in 403, that it is nowhere negative, and therefore %(#) never

diminishes. It follows that x (x) ig a monotone non-diminishing function
;

thus x (x) = % (a )&amp;gt;

or

f(x) -/(a) ^ I

X

{Df(x}
-

&amp;lt;kv(*)}
dx ~ FI O) + ^O).

J a
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Since this holds for an arbitrary value of e, let e ~ 0, then F2 (x) ~ 0, and

F! (x) converges to the total variation of

over the intervals of A, each variation having its proper sign. Now let

N~ oo
,
then

*x

&amp;lt;f&amp;gt;x (x) dx %&amp;gt; 0,
. a

and Fj (x) converges to the variation of

f(x)-
rX

Df(x)dx in A;
. a

this may be denoted by FA (x). Now let m (A) ~ 0, then the variation of

f*

I Df (x} dx, in A, converges to zero, and PA (a?) converges to V (x\ the total
* a

variation of/(a?) over the set .Z?. We then have

f(x)-f(d) ^
f

X

Df(x) dx + FO) ;

a,

we can now change /(#) into /(#), when F(#) changes to V(x)\ we

then find that

/(*)-/(a)S Df(x)dx + V(x).
J a

From the two inequalities, we have

f(x}-f(a) =
X

Df(x) dx + V(x} = \

X

f (x) dx + V(x\
a J a

\\
7

henf(x) is monotone.

When f(x) is of bounded variation, and the difference of two monotone

non-diminishing functions, we have

f(x) -/(a) =
f&quot;f (x)

dx + F, (x)
- V, (x).

J a

THE TOTAL VARIATION OF AN INDEFINITE INTEGRAL.

415. It has been shewn in 404 that the indefinite integral F (x) of a

function /(a;), summable in (a, 6), has its total variation

rb

V F(x} ^ i I f( A\ dra* V*V \J V*V I

**
. a

It can however be proved that

V*F(x)= {/(x) dx.
- a

Let the set Elt of points at which f(x) ^ 0, be enclosed in a set of intervals

Aj, of which the measure exceeds that of E
l by an arbitrarily small amount;

a finite set Aj of these intervals can then be chosen such that the difference

of m (Aj) and m (E^) is arbitrarily small. Similarly the set E,, of points at
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which f(x) &amp;lt; 0, can be enclosed in a finite set A2 , of intervals, so that ra(A2)

and m (Ez) differ by an arbitrarily small number. Further, A 1( A2 can be so

chosen that the measure of the common part of Aj, A 2 is arbitrarily small.

We have/(X) =f+(x) /-(#), wheref+(x) = 0, over E2 , and/~(#) = 0, over

El . Remove from Al5 and from A 2 ,
the intervals of the set -Z)(A 1; A2 ),

which

they have in common; there remains then a finite set of intervals A, consisting

of the remaining parts of the intervals of Aj and A2 . The sum of the absolute

variations of F (ac) over the intervals A differs from the sums, added together,

of the absolute variations in A 1; A 2 , by not more than

21 _ \f(x) dx;
J D (A; , AJ)

and this is arbitrarily small. The sum of the absolute variations over the in

tervals of Aj and A 2 is

(6,)

f(x) dx f(x} dx

where A 1
= =

{82};
and this differs by an arbitrarily small number from

(A,)

f+
(x) dx+ _ f~(x) dx,

(A2)

which differs by an arbitrarily small amount from \f(x) \

dx. Therefore a
J a

set of intervals A can be determined such that the sum of the absolute varia

tions of F (x) over them differs by an arbitrarily small amount from

f- \f(x)\dx;

consequently this integral is, in accordance with the definition of 243, the

total variation of F (x) over (a, 6), since that total variation cannot exceed

the integral. We have further

dx,

and thus -f V*F(x}
(LOG

exists, and is equal almost everywhere to f(x) |.

The variation of F(x), over any set E, has been defined (see 252) as the

lower boundary of the sum of the variations of P (x} and N (x) ;
P (x) and

N (x) denoting the positive, and the negative, total variations of F (x) in

(a, x\ taken for a set of intervals (ern , /3n) which enclose the points of E,

when all possible such sets of intervals are taken into account.

We can shew that the variation of F (x} over E is equal to

\f(x)\das.

For the integral of f(x) \
over (an , /3n) is the sum of the variations of P (x)

and N(x).
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The above theorem holds also * in the case of functions of two, or more,
variables, denned in a rectangle, or cell. In the two-dimensional case, the
total variation of F(xM , x) over a measurable set E is the lower boundary of

where the rectangles enclosing E are denoted by
(a. (1) a (2) B (1) fi ^\\M &amp;gt;

un j Hn
&amp;gt; Pn )

THE GENERALIZED INDEFINITE INTEGRAL.

416. If /( be measurable in a fundamental interval, or cell, in which it

is denned, and E denote any measurable set of points in that interval, or cell,

I /O) dx =
&amp;lt;/&amp;gt; (E) may be called the generalized indefinite integral of f(x\J (/) / \ /

It has been shewn in 392 to be a function of E which converges to zero,
as m (E) does so, uniformly for all such sets

;
and it has been shewn to be a

completely additive function.

Let E + 8E be a measurable set which contains E, and let E 8E be one
which is contained in E. A function

&amp;lt;f&amp;gt; (E) is said to be continuous, for the

particular set E, if
&amp;lt;f&amp;gt;(E+SE),

&amp;lt;j&amp;gt;

(E - BE) converge to
&amp;lt;j&amp;gt;(E\

as m(SE) con

verges to zero. This is the case if, for every positive number e,

&amp;lt; (E BE) - 4, (E) |

&amp;lt; 6,

provided m (SE) &amp;lt;

?; e ;
where 77, depends upon e, and converges to zero as e

does so.

If, for every value of e, a value of 17, can be so chosen as to be the same for

all measurable sets E in the given domain, the function
&amp;lt;j&amp;gt;(E)

is said to be

uniformly continuous in the given domain.

We obtain now the theorem that :

If /(#) be a summable function, defined in a fundamental cell, or interval,

I
f(x) dx is a uniformly continuous function of E.

- (-B)

For

[ / 0) dx-l f (x) dx =
j /&amp;lt;

dx
J (Z+&E) J (E) J (SE)

and
[ f(x) dx-l f(x) dx=\ f(x) dx

;

J(m J(E-S, J(SE }

and the integral on the right-hand side is numerically &amp;lt; e, for all sets SE, of
which the measure is less than a number 77,, dependent only on e.

rx r(
(1&amp;gt;

, x&amp;lt;

21
)

That
/(*)&amp;lt;&,

l%/(
a&amp;gt;.*)4( n,ft) are absolutely continuous

J a J (a
1

, a 121
)

with respect to x, or (x
(l

\ x), are particular cases of this theorem.
*
Lebesgue, Annuleg de I ecole normale (3), vol. xxvn, p. 383.
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417. The following theorem is the analogue of the property of a continuous

function of a single variable, given in 214, that the function takes every

value between its upper and lower limits in the interval for which it is defined:

If $ (e) denote the generalized indefinite integral f (x} dx, for all
J (e)

measurable sets e, contained in a given bounded measurable set E,for which the

summable function f(x} is defined, e can be so determined that
(f&amp;gt;(e)

has a pre
scribed value lying between the upper and lower boundaries of &amp;lt; (e) for all

sets e, in E.

In the first place we see that, if E is a measurable set, in any number of

dimensions, a component F, of E, can be so determined that m (F) has any

prescribed value between and m (E). For if x (1 ! be one of the coordinates

which determine the position of a point in space, the section E(^), of E, between

a plane x (1) =
,
and a fixed plane x (l} =

a, where those points of E for which

xw &amp;lt; a form a set which has a measure less than the prescribed number, is such

that its measure mE () is a continuous function of f,
and thus the theorem

follows from the theorem of 214.

f f f

We have now7 f(x)dx= \ f(x}dx+ I f (x) dx, where e l
is a com-

J (e) J (e,) J ()*

ponent of Ely that part of E in which f(x) is positive, and where e2 is a com

ponent of E2 ,
that part of E in which f(x) is negative. The upper and lower

r r r

limits of f(x) dx, in E, are clearly f(x) dx, and / f(x) dx, which may
J (e)

J (E,) J (E,}

be denoted by m(G1 ) and w(6r2 ), respectively, where G1} G2 are sets whose

dimensions exceed that of E by unity. Any number G between these two can

be expressed by A B, where A &amp;lt; m(G l ), B&amp;gt;m(G\ The set ex can be so

r

determined that /(& ) dx = A, and e.2 can be so determined that
J (e,}

f(x) dx = B
,

r

then if e = ex + e2 ,
we have f(x) dx = C. It should be observed that 6rx

and

G2 are unbounded in case f(x) is unbounded in E, but they have finite measures.

THE INDEFINITE INTEGRAL OF A FUNCTION OF TWO VARIABLES.

418. It should be observed that the indefinite integral

J (a D, &amp;lt;-

)

can be expressed as the difference of two monotone non-diminishing functions,

which are also quasi-monotone (see 255).

M
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For, let / (1)

,
# (2

&amp;gt;) =/0 (1)
,

#&amp;lt;

2)

), at the points at which the function / is

0, and let /2
(&amp;gt;

(1)

,
# (2)

)
= -/O (1)

,
# (2

)&amp;gt;

at the points at which / is negative ;

thus
/(&amp;gt;&amp;lt;&quot;, x) =/, (a;fl&amp;gt;,

a;&amp;lt;

2
&amp;gt;) -/2 (#&amp;gt;, a&amp;gt;w),

and

where ^ and 2̂ are the indefinite integrals of/j and/2 respectively.

The two functions F^x, x), F2 (x^, x) are both monotone and non-

diminishing, in accordance with the definition of 253. Again, with the nota
tion of 254,

with a similar result for F2 . It follows that the functions F1} F2 are quasi-

monotone, in accordance with the definition of 255.

419. If the function f(x^, x{2)

) be summable in the cell (a
(1)

, a(2)

;
b(l

\ b{2)

)

it has been shewn* by Fubini and Torelli that the indefinite integral

2 F
denoted by F (x

(l

\ x (2}

),
has the property that

(1) (2)
exists, and has the value

#(2)

),
at almost all points of the cell

;
and thus that

r (2)\

almost everywhere in the cell. This result has been however deducedf by
W. H. Young from the more general theorem which he established, that any
function F(x (l

\ a (2)

) that is of bounded variation in the cell, in accordance with
?)- W

the definition in 254, has the property that
(2) (1)

exists almost everywhere

in the cell. This property we proceed to establish.

It is sufficient to consider the case of a quasi-monotone function F(x (l
\ x (2)

).

ajBi
Since F is monotone with respect to xw

, ^-^ exists, for each fixed value of

x {2}
, for all values of x (l

\ with the exception of those belonging to a set S(Xw)
of linear measure zero. Let x (2) have all rational values in the interval (a

(2)
,
6 (2)

),

then all the linear sets S(x &amp;lt;)

taken together form a set S, of linear measure
1 Jf

zero. For every value of x (l] that does not belong to 8, ^- }̂

exists for all
OOC

rational values of x (2)
.

Consider any value of xm that does not belong to S, then

F (x
( + h, x) - F

(x&quot;\ as&amp;lt;*&amp;gt;)

h
*
Rend, del Circ. Mat. di Palermo, vol. XL, p. 295.

t Comptes Eendus, Paris, vol. CLXIV, 1917, p. 622.

H - 36
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is monotone non-diminishing with respect to x (2
\ and the two functions

&quot;DF (x
(l
\ x (2)

), DF(x (1
\ # (2)

) which denote the greatest and least extreme de

rivatives of F(x (l
\ # (2)

),
with respect to x (l

\ are also monotone non-diminishing

with respect to x (2)
. Consequently, for the fixed value of x (1)

, they are both

continuous functions of x (2)
, except for an enumerable set of values of x (2

\ For

a value of x (2} for which they are both continuous, each of them is the limit of

a sequence obtained by giving x (2} rational values only. But when # (2) is

O
fil

rational, DF (x
(l
\ # (2)

) and DF(x (l
\ x {2)

) are equal, since ^ exists at such

points. Hence, for any value of x (2}
,
not belonging to the enumerable set, the

two functions DF, DJ? are equal, as they are the limits of one and the same

dF
sequence of numbers ;.

and therefore ^ ^ exists. It thus appears that, for each

dF
value of x (l

\ not belonging to a set 8 of linear measure zero, x ^ exists, for all

values of x (2
\ except those of an enumerable set.

When xw has a fixed value not belonging to S, the two functions

FF(xw ,
# (2

&amp;gt;), DF(x (l
\ tf

(2)

),

being monotone functions of x (2
\ have differential coefficients with respect to

x {2
\ for almost all values of x {2)

;
thus

x (2) + k}-~DF(x^, x (2)
) DF(x (l

\ x (2) + k)
- DF (~

*

.
k

both have definite limits, as k ~
0, if # (2) does not belong to a certain set of

measure zero. A sequence of values of k, converging to zero, may be so chosen

that none of the values of x (2) + k belong to the exceptional set, which consists

r)F
of the enumerable set for which ,T &amp;gt; does not exist, and of the set of measure

zero at which the limits are not definite. For this sequence of values of k,

T)(x
w

,
#&amp;lt;

2
&amp;gt; + k}

=
D_(x

(l

\ x ( + k); and also T)F(x
(l
\ x (

^)
= DF(x (l

\ x (2)

),
if x

does not belong to the exceptional set
;
hence the two sequences are identical,

--... ,. . .
,

, .
,

j / j
,

j ,

and their common limit is also hm -H - ^7^ ---^ 7^
--

\\ and
k^o k

( dx (l &amp;gt; dx (l]

}

d 2F
therefore

--&&amp;gt; ~ ,,\ exists. When all values of x (1) are considered, the exceptionalw(l}

sets all belong to a set of plane measure zero. The following theorem has

now been established :

If F(x
(1
\ &i(2)

) be a quasi-monotone function, defined in a given cell,

,
a;

(2)

) 82FQ (1)
,

a-
2

)

both exist, almost everywhere in the cell.
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If F(x {1
\ x (2)

) be an indefinite integral, it may be expressed (see 386) as

the difference of two functions F1 (x
(l

\ x (2)

),
Fz (x

(l
\ x (2)

) which are the indefinite

integrals of two non-negative functions/ (x
(l
\ x (2)

),f2 (x
(l
\ # (2)

)&amp;gt;

whose difference

is the function f(x
(l

\ x (2)

),
of which F(x^\ x} is the indefinite integral.

Consider the quasi-monotone function

/z&quot;) rdv
F

l (tf
(1

&amp;gt;,

x (

V} si
j (2)

y; (x
(l
\ #&amp;lt;

2

&amp;gt;)

dxw . dx&\ (see 255).

7\1? r-r(2)

For a fixed value of x (2
\^ exists, and is equal to I / (a;

1

,
# (2

&amp;gt;)

dx (2
\ for

OX J #(2)

almost all values of x (l]
;
and when this exists, its differential coefficient with

respect to x (2]

exists, and is equal to/i (x
w

,
x (2)

),
for almost all values of x {2)

. It

rftF
thus follows from the proof of the foregoing theorem, that x .,. *-,n exists and

ox (2 dxw

is equal to / (x
w

,
x (2)

) almost everywhere in the cell. As the corresponding
result holds for the function /2 ,

we have the theorem that :

/(X (D
5 ,5(2))

// F (x&quot;, x^) =
j

f(x\ x^) d (x\ x^\ wheref(x\ x^} is summable

in the cell (a
(l}

, a (2}
; 6 (1)

,
6 (2)

), then, almost everywhere in the cell,

(2)

This is the analogue of the theorem for an integral of a function of a single

variable, given in 405.

INTEGRATION BY PARTS FOR THE Z-INTEGRAL.

ex rx
420: Let the two ^-integrals I U (x) dx, I V(x)dx be denoted by u(x),

J a J a

v (x) respectively. The functions u (x), v (x) are absolutely continuous, and of

bounded variation in (a, 6). In accordance with the theorem established in

405, u(x) and v (x) have differential coefficients equal to U (x), V (x) re

spectively, almost everywhere in (a, b). Let E denote the set of points at

which this is the case
; then, since - - are summable in E. u~ v aredx dx dx dx

also summable in E, since u and v are bounded. We now have

[ d (uv) , f du .
[ dv ,

3 dx = I v -7- dx + u-j-dx:
J (E) dx J (E) dx J (E) dx

and since m (E) = b a, we may write this equation
^ f^ fill rb rlii

[-,
UUi , (IV ,

uv\
= v 37 dx + I u

-j-
dx

;

a . a Q&quot;E J a ^^
and this is equivalent to

[ U(x}\ \

X

V(x)dx\dx= !

b

U(x)dx!
b

V(x)dx- I V(*){ F U (x}dx\dx
J * I J a J a J a J a (J a )

which is the general form for the integration by parts, for Z-integrals.

362
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MEAN VALUE THEOREMS.

421. It is frequently of importance to be able to assign upper and lower

limits between which the value of a definite integral lies, in cases where the

exact determination of the value is not required. Such estimates of the value

of a definite integral may frequently be made by the employment of theorems

known as mean value theorems ;
the most important of these will be here

investigated.

If f(x) be a bounded function, summable in the measurable set of points

E, we have, denoting by U and L the upper, and the lower, boundary of f(x)

in E,

Lm (E) ! f(x) dx ^ Urn (E) ;

J(H)

and therefore I f(x) dx =Mm (E), where M is some number which satisfies

J(E)

the condition U^M^L.
This holds good whatever be the number of dimensions of the set E.

In case/(#) is a continuous function in the linear interval (a, b), there must

be some point in (a, 6) at which f(x)
= M. If that point be denoted by

a + (b a), we obtain the following theorem :

be continuous in the linear interval (a, b), then

f(x) dx = (b a)f{a + 0(b a)},

where 6 is some number such that ^ 6 ^ 1.

Next, let/(#) and &amp;lt;jj (x) be summable in the measurable set E, and suppose

f(x) is bounded in E, and
&amp;lt;f&amp;gt; (x) everywhere ^ in E. We find immediately

from the definition of the integral off(x) &amp;lt;/&amp;gt; (x) in E, that

f f f
.L I &amp;lt; (#) cfo? 5; I /(#) &amp;lt;/&amp;gt; () dx U I

(f&amp;gt; (x) dx,
J(E) J(E) J (E)

where U and L are the upper, and the lower, boundary off(x) in E.

It follows at once that

f f

f(x) &amp;lt;/&amp;gt; () rfa; = M! I &amp;lt;f&amp;gt; (x) dx,
J (E) J (J?)

where MI is a number such that U^Ml ^L.

In case /(#) be a function that is continuous in the linear interval (a, b),

we obtain the following theorem :

If f(x) be continuous in the linear interval (a, b), and &amp;lt;f&amp;gt;
(x) be a summable

function that is = 0,

rb
fb

f(x) (f) (x) dx=f{a + Bl (b a)} (j&amp;gt; (x) dx,
J a -a

where O l is some number such that ^
:
2i 1.
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This theorem, including also the more general case in which the integration
is over any measurable set E in which f(x) is continuous, is known as the

First Mean Value Theorem of the Integral Calculus.

An extension to the case in which &amp;lt; (x) is not necessarily everywhere of

the same sign, but has a finite lower boundary, is obtained by applying the

theorem to
&amp;lt;f&amp;gt; (x) + C, where C is such that

&amp;lt;j&amp;gt;
(as) + C ^ in (a, b), or in the

set E.

For the case of a function of two variables, where f(x (l}

,
# (2)

) is continuous

in the cell (a
(1

, a&amp;lt;

2
&amp;gt;

;
6 (1)

,
6&amp;lt;

2

), and
&amp;lt;f&amp;gt; (X

M
,
x {2)

) is summable, and ^ 0, in that cell,

the theorem may be written in the form

r

J ((am, a

/(fed) 6&amp;lt;2))

0x (&&quot;&amp;gt;

- a 1

),
a 2 + 6&amp;gt;2 (6&amp;lt;

2
&amp;gt; - a*2

*)}
J (a

1
, a(2))

where X , 2 satisfy the conditions ^
1 ^ 1, ^ #2 ^ 1.

422. // ^/te bounded function f(x) be monotone and non-increasing in the

linear interval (a, b), and everywhere ^ 0, and if &amp;lt;/&amp;gt;
(a?) 6e summable (whether

bounded or not} in (a, b), then

f F&quot;

I f(x) (ft (x) dx =/() &amp;lt; (as) dx,
a J a

where is some number such that a^%^b.

Also, iff(x) be monotone and non-diminishing in (a, b), and everywhere = 0,

then t f(x) &amp;lt;/&amp;gt; (x) dx =f(b) !
&amp;lt;f&amp;gt; (x) dx,

J a J f

where is some number such that a ~ = b.

This theorem was first given* by Bonnet, for the case in which
&amp;lt;f&amp;gt;(x)

has
an E-integral, and was applied by him to the theory of Fourier s series.

Another form of the theorem was obtained by Weierstrass, and also by
Du Bois Reymondf, for the case in which

&amp;lt;f&amp;gt;(x)

has an ^-integral, and it is

generally known as the Second Mean Value Theorem. When generalized, so

that
(f&amp;gt; (x) is only restricted to be summable in (a, b), the theorem may be

stated as follows :

Iff(x) be monotone and bounded in the linear interval (a, b), and if $ (x) be

summable (bounded or unbounded) in that interval, then

/
&amp;gt;

f(x)&amp;lt;f&amp;gt;(x)dx=f(a)

where is some point in (a, b).

* M6m. Acad. Belg., vol. xxni (1850), p. 8 ; also Liouville s Journal, vol. xiv (1849), p. 249.

t Crelle s Journal, vol. LXIX (18G9), p. 81.
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The theorem in this form is deducible immediately from Bonnet s theorem,

by writing f(x) f(b), or f(x) f(a), in the two cases, instead off(x). Bonnet s

theorem is however not immediately deducible* from the second theorem.

rb

It is clear that, since the value of f(%) &amp;lt;j&amp;gt; (a?)
dx is unaltered by changing

the values of f(a) and f(b), we may, in the above statement, take, instead of

f(a),f(b), any two numbers^ A, B which are such that the function ^r(x),

defined by ty (a)
= A, ty (b)

= B,ty (x) =/(#), for a &amp;lt; x &amp;lt; b, is monotone. We
have thus the generalized form of the theorem :

where A =f(a + 0), B =f(b 0), iff(x) is non-diminishing, and A ~f(a + 0),

B^f(b 0), iff(x) is non-increasing.

The value of
f? depends in general upon the chosen values of A and B. In

this generalized form, the theorem includes Bonnet s theorem as a particular

case. For we may take A = 0, B =f(b), iff(x) is positive and non-diminishing;
or A =f(a), B = Q, in case f(x) is positive and non-increasing.

Various proofs^; of the theorem of Weierstrass and Du Bois Reymond
have been published. In these proofs the function

&amp;lt;(#)
has usually been

restricted to change its sign only a finite number of times, and sometimes to

be differentiable
;
but a proof free from the former restriction was given by

Du Bois Reymond. A proof has been given by Pringsheim|| in which
&amp;lt;j&amp;gt;(x)

is not restricted to be a bounded function, but may be any function such as

possesses an absolutely convergent integral, or in certain cases it may have an

integral that is not absolutely convergent.

423. The following proof of the second mean value theorem, in its general

form, in which the only restriction imposed upon the function $ (x} is that it

is to be summable, whether bounded or unbounded, was given IT by Hobson.

Let
&amp;lt;/&amp;gt;

(x} be a function which, whether it be bounded or not, is summable

in the interval (a, b). Let/(#) be monotone and non-increasing in the interval,

and suppose it to have no negative values.

Let er be an arbitrarily chosen positive number,less than f(a + 0) f(b 0);

and let the functionfr (x) be defined for the interval (a, 6) as follows :

* This was pointed out by Pringsheim, Miinch. Ber., vol. xxx, where an account of various

proofs of the theorem is given.

t Du Bois Reymond, Schlomilch s Zeitschr., vol. xx; Hist. Lit. Abtg., p. 126.

J For example, by Hankel, Schttmilch s Zeitschr., vol. xiv
; by Meyer, Math. Annalen, vol. vi

;

by C.Neumann, Kreis- Kugel- und Cylinderfunctionen, Leipzig, 1881, p. 28; by Holder, Gottinger

Anzeiger, 1894, p. 519; by Netto, Schlomilch s Zeitschr., vol. xi; by Kowalewski, Math. Annalen,

Vol. LI.

Crelle s Journal, vol. LXXIX (1875), p. 42. See also Kronecker s Vorlesungen, vol. I.

||
Miinch. Ber., vol. xxx. IT Proc. Lond. Math. Soc. (2), vol. vir, p. 14.
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An interval (a, #j) can be so determined that f(a + 0) f(x) &amp;lt; er ,
for

a^x&amp;lt; x-i, and so that f(a + 0) /(X) = er . In case xl is a point of continuity
of f(x), we shall have f(a + 0) f(x1 )

= er ,
but this will not be the case if #1

is a point of discontinuity. Next, an interval (#i,#j) can be so determined

that /(#! + 0) f(x) &amp;lt; er ,
for xl

^ x &amp;lt; x2 ,
and that f(xl + 0) f(x2) = er . Pro

ceeding in this manner to determine intervals (x2 ,
x3), (#3 ,

#4), . .., for some

finite value of n, not exceeding {/(a + 0) f(b 0)}/er , we must have

/(n_i + 0) -/(a?) &amp;lt; er ,
for ^^ ^ a? &amp;lt; b

;

we then take #n to coincide with b.

Let/r (a?) =/(a + 0), for a x &amp;lt; xl ;
letfr (x) =f(xl + 0), for x

1 x &amp;lt; x2 ;
and

in general letfr (x) =f(xs + 0), for x g ^ x &amp;lt; xs+l . The function fr (x}, so defined,

has only a finite number of values in the interval (a, b) ;
it is monotone and

non-increasing, and is ^ 0. Moreover, we have ^fr (x)f(x) &amp;lt; e, for every
value of x except for the values a, xlt x2 ,

. . . xn^, b, at which it is not necessarily
the case.

We have now
b

&amp;lt;f&amp;gt; (x) dxL
rb

+/&amp;lt;&amp;gt;_! +0) &amp;lt;f&amp;gt;(x)dx.

J *-!

[*
Denoting I (x) dx by F (x), we have

J a

fr (x)
&amp;lt;/&amp;gt; (x) dx ={f(a + 0) -f(Xl + 0)}FM + {/(x, + 0) -f(x, + 0)} F(x2)

+ ... + [f(xn_, + 0) -f(xn_, + 0)} F(xn_l } +f(xn_, + 0) F(b).

Since /(a + 0) -f(x, + 0), /(^ + 0) -f(xz + 0), . . .
, f(xn^ + 0) are all &amp;gt;

0,

the expression on the right-hand side will be unaltered in value if F(xl },

F(x2),
...... F(xn_i}, F(b) be all replaced by a definite number N which lies

between the greatest and the least of these numbers. The expression then

becomes Nf(a + 0). Moreover, since F(x) is continuous in the interval (a, b),

some value r ,
of #, exists such that N=F(%r\ It has therefore been proved that

where
|&amp;gt;

is some point in the interval (a, b).

fb
rb rb

Also : I fr (x) $ (x) dx -
I f(x} (f&amp;gt;(x)dx &amp;lt; er

| &amp;lt;f&amp;gt;
(x) dx.

J a .a J a

It follows that

&amp;lt;*

[ f(x) tj&amp;gt; (x) dx -f(a + 0) I

fr

&amp;lt;f&amp;gt;
(x) dx

J a j a
rb

where 77,
= er I

| &amp;lt;f&amp;gt; (x) \

dx.
J a
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Let r = 1, 2, 3, . . .
,
where e1; e2 , e3 ,

. . . is a sequence which converges to zero;

then also ^,^,^3,... is a sequence which converges to zero. The set of points

& 2, &, has at least one limiting point; and it is clear that the sequence

fer } may be so chosen by neglecting, if necessary, a part, that the sequence

{|&amp;gt;}

has a single limiting point f .

We have then

&amp;lt;7?r +/(a +f(x) &amp;lt; (x) dx -f(a + 0) \

(f&amp;gt; 0) dx
. a

If be an arbitrarily chosen positive number, a value rlt of r, may be so

chosen that tjr &amp;lt; J, and /(a + 0)
|

/
&amp;lt;f&amp;gt;(x)dx

&amp;lt; J, provided r^r^ Then
j t)

we have
6

fi

4&amp;gt; (x) dx -f(a + 0)
J a

and therefore, since f is arbitrarily small, we must have

f /(*)$(*) &amp;lt;fc-/(+0)1
Ja /

(l).

In a precisely similar manner, when f(x) is non-diminishing in (a, b), and

is never negative, it may be shewn that

6

&amp;lt;h (x) dx (2),

where rj is some point in (a, b).

In case /(a) =/(a + 0), /(&) =/(&
-

0), these results are equivalent to

Bonnet s form of the second mean value theorem.

Next, let f(x) be only restricted to be bounded and monotone in (a, b),

but to be unrestricted as regards sign. In case f(x) is non-increasing, we may

apply the theorem (1) to the function /(a;) -/(&
-

0), and we thus have

f

*

/&amp;lt; 4 0) dx =f(a + 0) I 6 (x} dx + f (b
-

0)
[

&amp;lt;j&amp;gt; (x) dx.
J a * * I

In case f(x} is non-diminishing in (a, b), we may apply the theorem (2) to

the function f(x) f(a + 0), and we then have

f f(x) (f&amp;gt;
(x} dx =f(a + 0) I

c/&amp;gt; (as)
dx +f(b

-
0) I

&amp;lt;j&amp;gt;
(x) dx.

J a -a -li)

It has thus been shewn that, if f(x) be bounded and monotone in (a, b),

and
&amp;lt;/&amp;gt;

(x) be summable in the same interval,

f

6

f(x) &amp;lt;/&amp;gt;
0) dx =f(a + 0) &amp;lt;f&amp;gt; (x) dx +f(b -0)/ ;

f (a?) da?,

J -a / ^

where X is some point in the interval (a, b).
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In order to obtain the more general form of this theorem, let A and B be

numbers such that A ^ /(a + 0), B &amp;lt; f(b
-

0), when f(x) is non-increasing ;

or else let A =/( + 0), B =f(b 0), when/(#) is non-diminishing.

Consider an interval (a
-

A,, 6 + X) which contains (a, b) in its interior, and

let f(x)
= A, for a \^x&amp;lt;a; and f(x)

= B, for b &amp;lt; x ^ b + X
;
the function

f(x) being already defined for a ^ x ^ b. Let
&amp;lt;/&amp;gt; (x)

= 0, for a X ^ x &amp;lt; a, and

for b &amp;lt; x ^ b + X, where
&amp;lt;j&amp;gt;

(x) has already been defined for a ^ x ^ b. Now apply

the theorem above established, for the interval (a X, b + X), for which

f(a _ x + 0)
= A, and f(b + X -

0) = B. We then have

rb rx rb

f(x) &amp;lt;/&amp;gt; (x) dx = A &amp;lt;j&amp;gt;
(x) dx + B /

&amp;lt;/&amp;gt; (*) das,
J a &amp;gt; a J X

where X is some point in (a X, b + X), and which clearly lies in (a, b).

The general form of the second mean value theorem may now be stated

as follows :

Iff(x) be bounded and monotone in the interval (a, b), and if &amp;lt;/&amp;gt; {x}, whether

bounded or not, be summable in (a, b), then, if A, B be members such that

or A.

according as f(x) is non-increasing, or non-diminishing, in (a, b),

rb rx rb

J a J a J X

where X is some number in (a, b). The number X will depend upon the values

ofA and B. In particular,we may have A =f(a), B =f(b), or also A =f(a + 0),

*-/(&- 0).

In case the function f(x) is never negative in (a, b), we may take 5 = 0,

iff(x) is a non-increasing function
;
and we may take A = 0, iff(x) is a non-

diminishing function. We obtain thus the following generalized form of

Bonnet s theorem :

Iff(x} be a bounded monotone function, never negative in (a, b), and if &amp;lt;j&amp;gt;
(x)

be any function summable in (a, b), then

1

f
x

f(x) (f&amp;gt; (x) dx A I
&amp;lt;f&amp;gt;(x)

dx
J a

where A is any number ~f(a + 0), and X is some number, dependent on A, in

the interval (a, b), provided f(x) is non-increasing. Iff(x) is non -diminishing,
we have

rb rb

f(x} &amp;lt;j)
(x) dx = B I

(j&amp;gt;(x)
dx

Ja J x

where B is any number ^ f(b 0), and X is some number in (a, b), dependent
on the value of B. . In particular, we may take A =/(), B =/(&), in the two

cases.
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424. If the function / (x) be of bounded variation in the linear interval

r/s

(a, b), and M be the upper boundary of I
&amp;lt;f&amp;gt; (x) dx ,

for all pairs of values of
I

J a

a, /3 in the interval (a, b), we may make use of the fact that

f(x}=P(x}-N(x\
where P (x), N (x) are monotone non-diminishing functions.

We have

{P (x)
- P (a)} &amp;lt; (x) dx = {P (b)

- P (a)} I V (x) dx

with a similar equation for Q (x). By subtraction, we have

/O) -/} &amp;lt;t&amp;gt; 0) dx = {P (6)
- P (a)} !

(j) (x) dx
*

rt

J
I d&amp;gt; (x) dx.
Jf

Hence we have* the following result:

1 r
6

(
b

f(x) (j) (x) dx f(a) I
(f&amp;gt; (x) dx

J a J a

Va f() denoting the total variation in (a, b); where f (x) is of bounded
ff

variation in (a, b), and M is the upper boundary of
J

&amp;lt;/&amp;gt; (x) dx , for all in-
. a

tervals (a, ft) contained in (a, b).

This result is of considerable use in estimating the value of the integral of

the product of a function of a bounded variation and a summable function.

425. Let
(f) (x) denote a function of any number of variables, that is sum

mable in a bounded measurable set E; and let f(x) denote a function that

is bounded and summable in E, and is everywhere ^ 0. If U and L denote
the upper, and the lower, boundary of/(V), in E, let a

, al5 a2 ,
... an be a set of

decreasing numbers, where a^ = A t
a number ^ U, and L ^ an ^ 0. Let

&amp;lt;?,.-i

denote that set of points for which a,.^ =f(x) &amp;gt; ar ,
for r = 1, 2, 3, ... n.

Let/ (m)
(x)

= ar_1 ,
in the set er-lt for each value of r; we have then

I f(m]
(#) (#) dx = aA $ (x) dx + a

:
&amp;lt;b (x) dx + . . . + an_, | &amp;lt;/&amp;gt; (#) dx

CB) J(e ) . ./(,) J(en-,)

= (a - a,) I (x) dx + (a,
- a.2) I

&amp;lt;/&amp;gt; (x) dx
*fo) (eo-fci)

+ . . . + (an_2 an_i) I
&amp;lt; (#) dx

&amp;lt;f&amp;gt; (x) dx ,

and therefore
(E)

+ an-i

f(m)
(x)&amp;lt;f&amp;gt;(x)dx=

See Lebesgue, Annales de Toulouse, (3), vol. i, p. 37.

, where Mm is some numberbetween the
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greatest and the least of the numbers / &amp;lt; (x) dx; Es denoting
J(Es)

&0 i~ &1 &amp;lt; ^S1 &amp;gt;

for s = 1, 2, . . . n. The set Es is that set for which
Z7&amp;gt;/

(m)
(x) &amp;gt; a,.

The numbers a
,
a

l ,
a2 ,

... an can be so chosen that the greatest of the

differences of the successive numbers is &amp;lt; em ,
where

{ m }
is a sequence of

decreasing numbers converging to zero. We have now

1

f / &amp;lt;

m
&amp;gt; 0) d) (x) dx - f f (x) d&amp;gt; (x} dx &amp;lt; em f (f&amp;gt;(x)\ dx,

J(E) J (E) J(E)

which converges to zero, as m ~ oo . The numbers AMm consequently con-
r r

verge to
/(#)&amp;lt; (x) dx, as m ~ oo

;
and thus I

f(x)4&amp;gt; (x) dx = AM, where
J (E) J (E)

M is between the greatest arid least of the numbers I
&amp;lt;/&amp;gt;

(x) dx, and e belongs
J(e]

to a family of sets such that in any one of them/(#) exceeds a certain number

between A and zero. By the theorem of 417, there exists a set El
of the

family, for which 6 (x) dx = M.
(E,)

The following theorem* has thus been established:

If E be a set ofpoints which is measurable and bounded, and in any number

of dimensions, (f&amp;gt;(x),f(x)
are summable in E,f(x) being bounded therein, and

^ 0, then

[ I

f(x) (f&amp;gt; (x) dx = A I
&amp;lt;/&amp;gt;

(x) dx,
J(E) J (Ei)

where A is any assigned number = the upper boundary off (x) in E, and E is

a part of E dependent on the value of A, and belonging to a family of sets of

increasing measure, such that for any one of them f(x) is greater than some

fixed number.

This theorem may be regarded as the complete generalization of Bonnet s

theorem, for any number of dimensions, and for integration through any
measurable and bounded set of points.

If/ (x) be no longer restricted to be ^ 0, we may apply the above theorem

to the function f(x) B, where B is any number ^ L, the lower boundary of

/(a?), in E.

The theorem then takes the form:

r r
r

f (x) &amp;lt;f&amp;gt; (x) dx = A (b(x)dx + B 6(x)dx,
J(E) J(E t ) . (-,)

where A and B are such that A U, B ^ L
; U, L being the upper, and the

lower, boundary off(x) in E, and E
1
is a part of E such that f(x) is therein

greater than some number dependent on A and B .

* See Lebesgue, Annales de Vecole normale, (3), vol. xxvn, p. 443.
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If we take the set E to consist of the points of a linear interval (a, b), and

f (x) to be monotone, non-increasing, and = 0, the set El will be the set of

ft

points of some interval (a, ),
and thus M = I

&amp;lt; (x} dx, for some value of in
J a

(a, b). Similarly, iff(x) be ^ 0, and monotone, non-decreasing, we must take

for E
l
some interval ( , b). Thus the first theorem given above reduces to

Bonnet s theorem.

426. In case the [set E is the plane rectangle (a
(])

,
a (2)

;
b (l

\ 6 (2)

),
and the

functionf(x
(l
\ # (2)

) is monotone, and non-increasing (see 253), and ^ 0, the set

El may be replaced by the set of points in a rectangle (a
(l)

,
a (2)

;

(1)
,

(2)
), where

((i) ; (2))
is some point in E\ we thus have

I f(x (1\x (z}

./(ad) a&amp;lt;r

/((!&amp;gt; f (2))

I

&amp;lt;o)

(#
(1

&amp;gt;,

a (2
&amp;gt;)

d (1)
,
tf (2)

) . . . (1),

(ad),

= J.
&amp;lt;o)

where A S/(a (l) + 0, a (2) + 0).

In case the monotone function is non-diminishing, and ^ 0, we find

similarly that

(a&amp;gt;, aC*&amp;gt;y

/(&(!) 6(2))= B\ 6 (x
(l

\ x (z]

} d (x
(l

\ # (2)

) . . . (2),
J (&amp;lt;, &amp;lt;2&amp;gt;)

T

where B^f(b^- 0, 6 (2) -
0).

These theorems are the extension of Bonnet s theorem to the case of

functions of two variables.

In case f(x
(l

\ # (2)

) is a quasi-monotone function = 0, in the rectangle

(a
(1)

,
a (2)

;
b (l)

,
6 (2)

) the form of the theorem depends upon the type of the

function (see 255).

If f(x
(l
\ x ( 2]

) is monotone non-increasing with respect both to x (l] and

to # (2)
, the theorem takes the form (1).

If the function be monotone non-diminishing with respect both to x (l) and

to x (

-\ the theorem takes the form (2).

If the function be monotone non-increasing with respect to x (l

\ and

monotone non-decreasing with respect to # (2)
, the theorem * takes the form

r(6(
i

&amp;gt;, 6&amp;lt;2))

!) x (2)\ $ fx (l) x (l)\

* See W. H. Young, Proc. Lond. Math. Soc. (2), vol. xvi, p. 273, where the case of quasi-

monotone functions of any number of variables is treated.
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where C^f(a (l} + 0, b {2)

0). When the function is monotone non-decreasing

with respect to x (l]

,
and monotone non-increasing with respect to # (2)

,
the

theorem takes the form

W, 6(2 )

/O (1)
,
# (2)

) d&amp;gt; O (1)
,

(6 D, | (2))= D\ d&amp;gt; ( &amp;lt;,
tf

(2)

) d (x
(1

\ a (2)

) . . . (4),

where D ^f(b
M

0, a (2) + 0).

It is easy to obtain the formulae which correspond to the general form of

the second mean value theorem, whenf(x
(1

\ # (2)

) is no longer restricted to be

non-negative.

REPEATED LEBESGUE INTEGRALS.

427. The Z-integral of a function of any number of variables has been

defined as the limit of a sequence of simple sums; but it is convenient to

represent such an integral as a set of repeated limits of sums with respect to

the separate variables, and thus to express the integral as a repeated integral

with respect to the separate variables, taken in any order. As an Z-integral

with a non-negative integrand is the measure of a set of points in space of

dimensions one greater than the dimensions of the space in which the function

is defined, we first shew that the measure of a set of points, measurable in

p + 1 dimensions, can be exhibited as the single .//-integral of the measure

of the ^-dimensional section of the set by planes perpendicular to one of

the coordinate axes, or more generally as the Z-integral of the ^-dimensional

section by a (p (^-dimensional section of the set.

Let E denote a measurable and bounded set of points, in the p-dimen-
sional space between the two planes as

M = a (l

\ a?
(l) = 6 (l)

, perpendicular to the

x (l -axis. Denote by E(x
(l}

) the jj-dimensional set which is the section of E by
the plane corresponding to any fixed value of # (l) in the interval (a

(l)
, 6 (l)

).

The set E is contained in a set of closed cells A, of measure &amp;lt; m (E) + e,

where e is an arbitrarily small positive number (see 127). Giving to e the

values in a sequence of decreasing numbers that converges to zero, we have

a sequence {A,}, of sets of closed cells; and the sequence may be so chosen

that each set contains the next. The inner limiting set of {A,} is a set El

which contains E, and is such that m(El )
= m(E).

Let A tl ,
A

15! ,
... A, n be the cells of the set A t ;

we have then

\

b

tYt ( /\ &quot;\

&quot;^ I ftl i/\ I JI?W II /7 0&quot;^)
ii&amp;lt; \ -*i) *- I IH&amp;gt;

I -^in \&amp;lt;^ f^WS 5

n =1 J a

where A, n (#
(1)

) is the section of the cell A, n by a plane perpendicular to the

# (1)

-axis, and the measure m {A tn (#
(1)

)} is the ^-dimensional measure of

A,n (#
(1)

).
Since an .//-integral is completely additive, we have

m (A,) =fm{A t
(*&amp;lt;&amp;gt;&amp;gt;)}

J a
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In virtue of the theorem of 398, we now have

m (E) = m (EJ = lim m (A t)
=

(
m {El O (1)

)}
i~oo . a

since lim m {A t (x}} = m {E1

Again, the set El E, which is of measure zero, is contained in each set

of a sequence of sets of cells {A/}, where A/ can be so determined as to be

contained in the set A t . This sequence of cells has an inner limiting set E2

which contains El E.

We have now, as before

and therefore, taking the limit of both sides of the equation, we have

rb

m [E2O (l)

)}
dxM = lim m (A/) = 0.

J a i~oo

It follows that, for almost all values of x (l

\ m [E2 (x
(l)

)}
= 0; and since

E2 (x
(1)

) contains the section of El E, m {E(x
(}]

)} exists, for almost all values

of x (l}
,
and is equal to m [El (x

(l)

)}, which exists everywhere, as El (x
(l)

) is the

limit of a sequence of measurable sets.

We have now

m (E)=f m [ElO (l)

)} dx
(l) = I m {E(x

M
}}
dx (l)

.

la J a

The following theorem has now been established :

If E be a bounded measurable set of points in (p + l)-dimensional space, its

section E (x) is measurable, as a p-dimensional set, for almost all values of x.

The function m{E(x)}, of x, defined for almost all values of x, is linearly

measurable, and its L-integral with respect to x is equal to m (E). The coordi

nate x may be any one of the p + 1 coordinates which determine the points of E.

Instead of taking x to be one of the coordinates x (l)
,
x (2

\ . . . x (v+l)
,
it may

be taken to be typical of a group (x
(l)

,
x (2

\ ... x (i ]

),
of these coordinates, where

q has any value &amp;lt; p + 1. The section E(x) will then denote that (p + l q}-

dimensional set which is the section of the set E obtained by giving

fixed values. This will then entail no essential modification in the above proof

of the theorem; and accordingly we obtain the following more general result:

If E be a bounded measurable set of points in (p + l)-dimensional space, its

section E (x
(l
\ x ( 2)

,
. . . x (

$), where q &amp;lt; p + 1, is measurable as a set in (p + 1 q)-

dimensional space, for almost all points (x
(l
\ x (2}

,
... x (

^). The function

m (/? //.(!) -r*2 -r- fl Mlit/
j
A-/ V** f ** * /I

is measurable as a q-dimensional set, and its L-integral with respect to (x
(1)

, x^\ . . .

x (

tf} is equal to m (E). Instead of x
(l]

,
x (2}

,
. . . x (

i\ we may take any q of thep+l
coordinates x (l}

, x, ... x (p+1)
.
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428. Let f(x
M

,
x (

*\ ... x (v }

) be any bounded function, defined in the cell

(tt
(l)

,
a (2)

,
... a (P ]

;
6 (1)

,
6 (2)

,
... b^), and measurable in that cell. We first assume

that the function is at all points = 0. The integral of the function may be

regarded as the measure of a ( p + l)-dimensional set, defined in a (p + 1)-

dimensional cell (a
(l)
,a

(2)
,
... a (^+1)

;
b (l\b (2

\...b
(P+1}

), where a&amp;gt;
+1) is any number

less than the lower boundary of the function in the cell, and b (p+1) is any
number greater than its upper boundary.

We may suppose the function to be defined to have the value zero at any

point of the (p+ l)-dimensional cell, for which it was not originally defined.

We now have, from the foregoing theorem,

, ac, ...
#(P&amp;gt;)

d (x t x, ...
ar(P&amp;gt;)

...6&amp;lt;9)) f rMta+u, 6&amp;lt;9+2), _ .

/(*,,...***)
J (ad), a I2

*,... a (9)) ( J (
a (9+D, a (9+2), ...a&amp;lt;J)

for every value of
5- (&amp;lt; ja).

If we take ? = 1, we have

f(x)dx=&amp;gt;/

/(&)

By repeated use of this result, we express I f(x) dx as a repeated integral,
J (a)

taken successively with respect to each coordinate; and it is clear that the

order in which the integrations are taken is immaterial.

In particular, we see that

_rj/Jo* (J ad)

If the funotionf(x
(l)

,
... x^) is no longer restricted to be non-negative, it

can be expressed as the difference of two measurable non-negative functions,

and the general theorem may be applied to each of these functions. We have

then the following result.

!f/0 (1)
&amp;gt;

^ (2)
) be defined in the cell (o

(1
&amp;gt;, a&amp;lt;&quot;;

6 (1
&amp;gt;,

6 (2)
), and be bounded and

measurable, the two repeated integrals

/(&), 6(2))
both exist, and are equal to f (# (l)

, # (2)
) d (x (l)

,

J (a(D, a))
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The form
j j (2)

/(^(l)
,
# (2)

) cfcc
(1)

. cfo (2) is employed to denote the repeated

/&&amp;lt;!&amp;gt; r / 6(2
)

integral
J j J (2)

/0 (l)
,
# (2)

) ^ (2)

[
dx, in which the integration is taken,

first with respect to # (2)
,
and then with respect to x (l]

.

It has been shewn that f(x (l\x^) dx has a definite value for almost
. a&amp;lt;

2
^

all values of x (l\

More generally we have the theorem that:

The L-integral ofafunction ofp variables, defined in a cell (a,b), and bounded

and measurable in that cell, is equivalent to the repeated integral obtained by

integrating the function successively with regard to the p-coordinates, taken in

any order.

429. In order to extend the results of 428 to the case of an unbounded

function, it will be sufficient to consider the case in which the function is non-

negative, since any summable function can be treated as the difference of two

such functions.

In the two-dimensional case, let f(x (l
\ # (2)

) be a non-negative function,

summable over the measurable set E. Let {kn }
be a monotone sequence of

positive numbers without upper limit, and let/n (#
(l)

,
# (2)

) =f(x^
l

\ # (2
&amp;gt;),

when

f(x, x} ^ kn ,
and let/(a;W | x^) = kn , when/O^ x^) &amp;gt; kn .

We have then, from 428,

(E)

jIf I /O (l)
, x) d (x^, x} exists, it is defined as

Jem

lim
n~oo . (E)

which is equal to

lim f
n~ao J

Denoting I fn (x
(l\ # (2)

) dx (z]

by sn (x
w

),
we see that {sn (x

w
}} is a monotone

non-decreasing sequence, for each value of # (l)
;
and on the assumption that

I f(x
(l}

, x (^}d(x (l
\ x (2)

) exists, we conclude that lim I sn (
(l)

) dx (i)
exists,

J (E) n~&amp;lt;*&amp;gt;J

and has the same value as the integral.

Applying the theorem of 399, we see that [sn (x
w

)} converges for almost

all points x (l
\ and also that

Is
(#&&amp;gt;)

dx =
I

J J(

where s (
(l)

)
= lim sn (x

(l)
)
= lim I/,

n~oo n~oJ

(E)



428,429] Repeated Lebesgue integrals 577

Applying again the theorem of 399, we see that, for each value of arW for

which lim (fn (as, *&amp;lt;*)&* is finite,

= lim

Therefore
f
dx (/O

(1)
, x)

J J

exists, and is equal to

(E)

The complete result may be stated as follows:

If/O (l)
,
# (2)

) be any function, bounded or unbounded, that is summable in

the measurable and bounded set E, then the repeated integrals

both exist, and have the same value as the L-integral function over E.

It is clear that this statement includes the case of a function of any
number of variables, as x (1) and x may each be regarded as typical of a set

of variables. The first proof of this result was given by Fubini *, who de
duced the theorem from a definition due to Lebesgue, of the superior and
inferior integrals of a function, which are not identical with Darboux s upper
and lower integrals, defined in 331. The above proof of the theoremf was

given by Hobson, who also gave the following extension:

Iff(x(l\ x(2} ) be summable in the measurable and bounded set E, and if

has a definite value, then f(x (l
\ x) d(x t

a,
i(2)

) exists, and is consequently
J (E)

equal to the repeated integrals off(x
(l\ x}.

Let us consider the function \f(x
M

, x) \,
and apply the last part of the

theorem of 399. Thus, if Is (x^)dx^ exists, it follows that lim ! sn (W) dx^
J n ~x&amp;gt; J

exists, and is equal to \s(x
{l))dx (l)

.

Also

where sn (x^) denotes
J
|/n (&amp;lt;, x) \

dx.

* Rend. del. Real. Accad. dei Lincei, vol. xvi.

t Proc. LondMatii. Soc. (2), vol. vui, p. 22.

&quot; 37
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If we assume that I dx I \f(x
(- l

\ # (2)
) j

dx^ exists, we see that

which is defined as

lim
f fn (a;W, x^d (x, x), or as lim I sn (a?W) dx,

n~&amp;lt;x&amp;gt; J (E) n~o J

r r r

exists, and is equal to ls(#
(l)

) dx {l
\ or dx \f(x

(l)
, # (2)

) dec.
J J J

It then follows that/(#
(l)

,
# (2)

) is summable in E.

In the case in which f(x (l
\ # (2)

) is bounded in E, the theorem is an imme

diate corollary from the preceding theorem.

It may happen that the repeated integrals of f(x (i]
,
# (2)

) exist, but that

r r

I dx (l)
I l/(Wf 0W)|fe does not exist. In that case the ^-integral of

f (x
(l
\ # (2)

) does not exist, and the two repeated integrals of f(x (l
\ # (2)

) may
have unequal values.

ri ri y& ,3,2
ri ri %% ^

For example/ /

j-^ ^^dady,l I

j ^dydx both exist, but have

unequal values, the function
j -^-z

not being summable in the square

(0, 0; 1, 1).

A FUNDAMENTAL APPROXIMATION THEOREM.

430. The following theorem affords the means of relating the i-integral

of a summable function with a sequence of integrals of continuous functions,

in such a way that various properties of the Z-integral may be obtained

by considering the special case in which the integrand is a continuous

function :

If* f(x) be summable in a given interval, or cell, (a, b), a continuous

function (j) (x) can be constructed which satisfies the condition that

f /(*)-
J a

dx

is less than an arbitrarily prescribed positive number. Moreover, in case

f(x) ^ 0, in (a, b), the function (f&amp;gt;
(x) can be so determined that

&amp;lt;/&amp;gt;(#)
=0, in

(a, b).

The proof of this theorem may be exhibited as a process which has several

stages.
* See Hobson, Proc. Lond. Math. Soc. (2), vol. xn, p. 156.
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(1) Consider the case in which f(x) = 1, in the cell, or interval, (a, /3)

contained in (a, b), and is elsewhere zero.

Let the continuous function
&amp;lt;f&amp;gt;(x)

be denned to be equal to 1 in the cell

(a&amp;lt;,
a(

&quot;,...; /3
(l)
,/3

(2
&amp;gt;

-..),

and to be equal to 1 6 on the boundary of the cell

(a
1 -

0e, a(2) -
0e, . . .

; /3
(l) + 0e, /3

(2) + 0e, . .
.),

for each value of such that ^ 1
;
and outside the cell for which =

1,

let $ (x)
= 0. We may disregard all points that are not in the fundamental

cell (a, b).

The function
&amp;lt;/&amp;gt;

(x) has values between and 1 in the set of points between
the two cells (a, /3) and (a

-
e, /3 + e) ;

and it is continuous in (a, b). Since

f(x) -
&amp;lt;f&amp;gt;

(x} vanishes in the cell (a, /3), we see that

is less than Ae, where J. is a fixed number independent of e; and this

is arbitrarily small.

(2) Let/O) = 1, in each cell of a finite set A 1( A2 , ... AB ,
of non-overlapping

cells contained in (a, b), and let f(x) = at all other points of (a, b). Let

&amp;lt;f&amp;gt;

r (x) be the continuous function, defined as in (1), such that, iffr (x) = 1 in
Ar , and everywhere else =0,

6
1

it

also suppose &amp;lt;f&amp;gt;

r (as) defined for ? = 1, 2, 3, ... n. Let

we have then

Cb r = n rb

|/(fc)
-

(f&amp;gt; (x) dx &amp;lt; 2 \fr (x)
- $r (x) dx &amp;lt; e.

a r-l. a

The function
&amp;lt;f&amp;gt; (x) is continuous, and satisfies the condition in the theorem

for the particular function f(x).

(3) Let f(x) = 1 in a measurable set of points e, contained in (a, b) ; and
let/O) = in C(e).

A set of non-overlapping cells A 1; A a ,
... Am ,&quot;...,

of total measure exceed

ing m (e) by less than e, can be so determined that they contain all the points
of e either within them or on their boundaries. An integer n can be so chosen

00

that 2 m (Ar) &amp;lt; e, and that
r-n+l

r-n
&amp;lt; 2 m (Ar)

- m (e) &amp;lt; e.

Let fn (x) be the function that has the value 1 in each of the cells

A,, A2 , ... A
n&amp;gt;

372
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and elsewhere the value zero. In virtue of (2) a continuous function
&amp;lt;/&amp;gt;

(x)

can be so determined that

r
6

I j? / \ I/\I7 1
7&quot;

/ / \ __ xK / rf \
\ fj //&amp;gt; ^^ -*-*?

f
l/n V

1*/ 9 v*v
]

&quot;* &amp;lt; 2 e&amp;gt;

a

rb

We have also !/(#)
~~
fn (x} \

dx &amp;lt; e
;

. a

rb

and therefore
| f(x) -&amp;lt;f&amp;gt;(x)\dx&amp;lt;

e.

a

The continuous function
&amp;lt;/&amp;gt;

(#) satisfies the condition of the theorem for the

particular function / (x).

(4) Let e-i, e2 ,
... em be m measurable sets, no two of which have a point

in common, and all of which are in the cell (a, b). Let numbers c1; c2 , ... cm
be prescribed, and let f(x) be the function that has the value cr in the set er ,

for the values 1, 2, 3, ... m, of r, and has the value zero at points that do not

belong to any of the sets er .

Let
&amp;lt;J&amp;gt;

r (x) be the continuous function determined as in (3), such that, if

fr (sc)= 1, in er ,
and is elsewhere zero,

|/r O)-&amp;lt;/&amp;gt;r(V

and let these functions
&amp;lt;/&amp;gt;

r (#) be constructed for the values r = 1, 2, 3, ... m.

If
&amp;lt;f&amp;gt;

(x)
= c^ (x) + c2

&amp;lt;jE&amp;gt;
2 (#) + + cm &amp;lt; m (#), we have

rb r =m rb

T ( OC )
^~ CD ( CC ) CLOG g j-^r Cv i TV ( ^/ )

~~*
Q^-j&quot; \ w / CLvC ^. t

|^/ \ / / \ / I
^^ if i/*\/ r*\/i

J a r = l ^a

Therefore &amp;lt; () is the continuous function required by the theorem, which

corresponds to the function f(x).

(5) Let f(x) be a bounded and summable function. In accordance with

385, a function f(x) can be determined which is such that

and that/(#) has only a finite number of distinct values, each of which it

takes in a measurable set of points. Let $ (x) be the continuous function,

constructed as in (4), such that

rb _
I /(#) 4&amp;gt; () dx &amp;lt; e.

J a

We now have

rb rb __ r
6

I

\f(x) &amp;lt;j)(x)
dx I \f(x)f(x)\dx+\ \f(x) $(x)\dx

J a J a
* *

&amp;lt; if]in (a, b) + e ;

where m (a, 6) is the measure of the fundamental cell (a, 6).
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Since 77 and e are arbitrarily small, a continuous function $ (x) such as

the theorem requires can be determined, corresponding to any bounded

function that is summable in (a, 6).

(6) Lastly, let f(x) be unbounded, but summable in (a, 6). A bounded

summable function fy (x) can be determined, as in 386, such that

is arbitrarily small, say &amp;lt; |e; then if &amp;lt; (x) be a continuous function, obtained

as in (5), such that

we have
f
b

\f(x)-$(x)\dx-.
J a

This completes the proof of the theorem, for the general case of any
summable function f(x}. It is clear, by examining the successive stages of the

process of construction of
&amp;lt;/&amp;gt; (x), that if f(x) ^ 0, in (a b), then

&amp;lt;/&amp;gt; (x) ^ 0,

in (a, b).

We observe that

rb rb

I {/(X)
~ $ (*)) dx f(x) $ (x) dx &amp;lt; e.

J a -a

If e have successively the values in a diminishing sequence {en }
that

converges to zero, and if
&amp;lt;f&amp;gt;

r (x) be the continuous function that corresponds
to the value er ,

of e, we see that

rb rb
lim $r (x) dx = f(x) dx,
r~*&amp;gt; J a - J a

rb

and also lim / \f(x) &amp;lt;/&amp;gt;

r (x) dx = 0.

j QC J a

431. Various theorems of importance in the theories of integration and

of series can be deduced from the theorem of 430.

Let/(#) be summable in the open linear interval (a, /3), and let (a, b) be

a closed interval contained in (a, /3). Consider

f(x + t}-f(x)\dx,

where t is &amp;lt; ft b, so that the integrand is denned in (a, b). Let
&amp;lt;f&amp;gt; (x) be the

continuous function, determined as in the theorem of 430, so that

f

J a

The integral of \f(x+ t)f(x) over (a, 6) does not exceed the sum of the

integrals of

(x + t)-&amp;lt;f&amp;gt;(x)&amp;gt;,
and

L$(0) -/(*) |
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over the same interval. The first and the third of these integrals are each

&amp;lt; e, and the second integral is also &amp;lt; |-e, provided t is less than a fixed

number S
, dependent on e. Therefore

f
6

\f(x + 1) -/(a?) \dx&amp;lt;e,
J a

if t &amp;lt; 8e ; and since e is arbitrary, it follows that tKe limit of the value of the

integral, as t ~ 0, is zero.

We have thus obtained the following theorem, which has been established

in a different manner* by Lebesgue :

Iff(x) be summable in an open linear interval (a, @), and if (a, b) be a closed

interval interior to (a, /3), then

lim
[ \f(x + t)-f(x) dx = 0.

t~Q Ja

The corresponding theorem holds for a summable function defined in an

open cell (a, /3) of any number of dimensions
; thus, in the case of a function

f(x (l)

,
x {2}

) of two dimensions, we have

rlbw, &&amp;lt;

2
&amp;gt;)

lim xw +tw,xW +t-xw
,
# (2)

I
d &amp;lt;

1(

,
#&amp;lt;

2
&amp;gt; = 0.

No essential change in the proof of the theorem for the linear case is

required to make this extension.

432. The following theorem, also due to Lebesgue f, may be deduced from

the theorem of 430 :

Iff(x] be summable. in a linear interval (a, b), then, for almost all points

x
,
in (a, b), f(x) a is, for x = x

,
the differential coefficient of its indefinite

integral, whatever value the constant a. may have. In particular

\f(x)-f(x )\dx
a

has a differential coefficient at x = %
, equal to zero, for almost all values of x ,

in (a, b).

The integral I \f(x) a\dx

is between the two numbers

I*
\&amp;lt;j&amp;gt;(x)-a\dx

P*
\f(x)-&amp;lt;$&amp;gt;(x)\dx,

J X, . X

where &amp;lt; (x) is a continuous function which we may take to be such that

\

b

\f(x)-&amp;lt;j&amp;gt;(x)\dx?.
J a

* See the Lemons sur les series trigonometriques, p. 15.

t Loc. cit., p. 13.
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It follows from this inequality that the set of points at which

583

has its measure less than e
;
and therefore, if x be any point of a certain set

.ff
e , where m (7/e) &amp;gt; 6 a e, the condition |/(# ) &amp;lt;/&amp;gt; (#) !

&amp;lt; e is satisfied.

Since
&amp;lt;/&amp;gt; (x) a

\

is a continuous function,

1 rxo+h1 rx
lim r I

7i~0 hJxo
dx

exists, and is equal to
&amp;lt;j&amp;gt; (x ) a

,
for all points x interior to (a, b).

For almost all values of x
,

1 rxo+h
lim I /(*)-.$(*)
A~0 &quot;

. x

exists, and is equal to
| /(#) &amp;lt; (#) \,

since [/(#) &amp;lt;j&amp;gt; (x) is a summable

function (see 405).

We now see that _ 1 rxo+h
lim r /(*) a

is between the numbers

for almost all values of XQ , whatever value a may have. In a set Kf ,
such that

f)
= m (H ) &amp;gt;b a e.

it follows that
1

I/O)- a\dx

|

2e.is between the numbers \j

Let e have the values in a sequence which converges to zero, then m
converges to b a

,
we see then that, for almost all values of #

,

&quot;*!/(*)- dxlim r

exists, and is equal to i/(#o) |&amp;gt;

whatever value a may have. The theorem has now been established.

433. Let /j (ac)
be a function which is summable, and is ^ 0, in a cell, or

interval, (a, b); let us further assume that {/i (#)}
2

is summable in (a, b).

A continuous function fa (x), at every point = 0, can be so determined that

is less than e/4 We have, for every value of x,

ww-kwr *\{/itor-
and it follows that

rb
\ i ( fir* ^~ QJ \x if cLx ^. /yt(

Ja



584 The Lebesgue integral [CH. vn

Next, let ./(a;) be no longer restricted to be SO, in (a, b), but let

be summable in that cell, or interval
; f(x) can then be expressed as the

difference /j () /2 (x) of two functions, each of which is ^ 0, in (a, b), and
such that the square of each of them is summable in (a, b).

Let fa(x) be a continuous function, corresponding to/2 (#), such that

&amp;lt;/&amp;gt;
(#) =

(/() ~ &amp;lt;/&amp;gt; (*)}
2^ ^ 2

J as

+ 2

and the expression on the right-hand side is &amp;lt; e.

The following theorem has thus been established :

If [f(x)}
z be summable (whether it be bounded or unbounded) in the interval,

or cell, (a, b), a continuous function &amp;lt;f&amp;gt; (x) can be so determined that

is less than a prescribed positive number e.

From this theorem a result can be deduced which has been otherwise

obtained, for the case of a linear interval, by A. C. Dixon*.

If {f(&}}
2 be summable, in an open cell, or interval, (a, /3), and (a, b) be a cell,

or an interval, contained in (a, j3), then

lim f {/(* + *) -/(ON* = 0.

z~0 . a

In the case of a cell of two dimensions, x represents a pair (x (l)
, x} of

numbers, and the limit is taken as x (l)

,
# (2)

converge independently of one another

to zero.

We assume x to be such that t + x is in (a, /3), for all values of t in (a, b).

If
&amp;lt;j&amp;gt;(t)

be a continuous function such that

cb rb

we have
{ f(t + x) -f(t)}

2 dt &amp;lt; 3 \.{f(t + x)-$(t +x)}
2 dt

J a J a

,

^

&amp;gt; . C,.
* Proc. Camb. Phil. Soc., vol. xv, p&amp;lt;210.
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The first and third integrals on the right-hand side are each &amp;lt; . The

function
(j) (t) being uniformly continuous in a closed interval (a ,

b ) which

contains (a, b), and is in (a, /3), we see that if
j

x
j
,
or in the two-dimensional case,

|

# (1) and
|

x
|
,
be sufficiently small, the second integral is &amp;lt; e. It follows that

if \x be sufficiently small. Since e is arbitrary, the theorem has been

established.

From this result, the following theorem* may be deduced:

If {f(x}}- be summable in an open interval, or cell, (a, /3), and (a, b) be

contained in (a, /3),

is a continuous function of x, for all points x in (a, b).

In the two-dimensional case,f(t + x} denotes f(t
{l] + x (l)

, t (Z}

Let F (x) denote

f

b

J a

then, employing Schwarz s inequality, we have

{F(xl)-F(x2}}^ f*{/(0}&amp;lt;& f {/(*+*i)
J a J a

the second integral on the right-hand side is less than

if (!, /3j) is an interval or cell contained in (a, /3), and x denotes x1 x2 .

This integral converges to zero, with xl #2 ;
hence F (X) F (x2) is

arbitrarily small, for all sufficiently small values of
|
^ x2 , and therefore

F(x) is a continuous function.

APPROXIMATE REPRESENTATION OF AN Z-INTEGRAL AS A RIEMANN SUM.

434. Let f(x) be summable in the interval, or cell, (a, 6), and let fN (x)

denote the function that has the same values as f(x) at all points at which

| f(x) |

^ N, and which has the ;value N, or N, at all other points of (a, 6).

Let the measure of the set E, of points at which
| f(x) \

&amp;gt; N, have the value e.

By the theorem of 430, a continuous function (x) can be so determined that

f
b

1 I /N (x}
~

&amp;lt;/&amp;gt;
(#) dx &amp;lt; e2 . In a certain set of points L, such that m (L) &amp;lt; e, we

J a

may have
[ fN (x)

&amp;lt;f&amp;gt;
(a) = e

;
in the complementary set C (L) we have

* For the case of a linear interval, this theorem has been proved in a different manner by A. C.

Dixon, loc. cit.



586 The Lebesgue integral [CH. vn

I /N (#) 4&amp;gt; (x) &amp;lt; - The function &amp;lt; (x} may be taken to be such that

j

&amp;lt; (x) |

^ N; for if it have values numerically &amp;gt; N, these may be replaced by
N or N, without affecting the conditions that

&amp;lt;(#)
is to satisfy.

r=m
A net can be fitted on to the interval, or cell, (a, b), such that 2

&amp;lt;/&amp;gt;
( r) w ($r)

rl
f
6

differs from I &amp;lt; (a;) cfoc by less than e; where B
l&amp;gt;

8
2&amp;gt;

... Sm denote the m meshes
J a

of the net, and the points { r} are chosen in any manner so that r is a point

of 8r . If there are meshes of the net such that all their points belong either

to L or to E, the total measure of such meshes cannot exceed 2e.

In all the other meshes there are points that belong neither to L nor to E.

In these latter, the points %r can be so chosen that they do not belong to L,

or to E. In a mesh Sr ,
all the points of which belong to L or to E, we can

choose
,.
so that

j /( r) differs from the lower boundary of
| /(#) |

in 8r , by
less than e. Let this be done for all such meshes

; then, denoting the set of

all such meshes by A, where m (A) ^ 2e, we see that

\f(x)dx.

The sum on the left-hand side is here taken for all the meshes of the set A.

We. have also
|

2 &amp;lt;(r) m(8r) j

&amp;lt; 2t/e ;
where U is the upper boundary of

| &amp;lt;f&amp;gt;
(x) in (a, 6).

In the other meshes of the net we have

where I is the measure of the interval, or cell, (a, b).

rb rb r

Also f(x) dx differs from /
&amp;lt; (x) dx by less than e

2 + I
| f(x) \

dx
;

J a J a J (E)
Cb r=m r

hence f(x) dx differs from 2
&amp;lt;j&amp;gt;

(%r) m (8r) by less than e + e
2 + /

| f(x) \
dx.

Ja r=l J (E)
r=m r=m

Now 2
&amp;lt;/&amp;gt; (gr) m (&r) differs from 2

/(&amp;gt;)
m (8r) by less than

r=l r=l

2 Ue +
| f(x) dx.

tW
~x&amp;gt;

,
we have e/x/0,and then I

| f(x) \

dx and / \f(x) dx converge
J (A) / (E)

to zero. Also 2 t/e (^ 2^Ve) converges to zero
; (see 388).

/b
r =m

f(x) dx differs from the Riemann sum 2 f(%r) in (8r)
% r=\

by an amount which can be made arbitrarily small by choosing N sufficiently

large.

We have thus proved the following theorem, of which Lebesgue
* has given

another proof:
* See Annales de Toulouse, (3), vol. i, p. 33.
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Iff(x) be any function that is summable in the interval, or cell, (a, b\ a
rb

net can be fitted on to (a, b) such that I f(x) dx differs arbitrarily little from
J a

r=in

the Riemann sum 2
/&quot;(ft)

fn (8r), provided the points r be chosen properly in
r=l

the meshes Br of the net.

The chief interest of this theorem arises from the fact that, if we have a

finite set of functions fw (x\ / (2)

(x), ... f (s]

(x), all summable in the interval,

or cell, (a, b), it is possible to determine a net, and a definite set of points

ft&amp;gt; ft. ftn, in the meshes B1} S2 ,
... Sm , respectively, so that, for each of the s

functions, the difference of the integral and the corresponding Riemann sum
is less than an arbitrarily chosen number, the points being the same for all

the s functions.

To shew that this is the case, only a slight modification in the foregoing

proof is required. We have to deal with s sets El} E.2 ,
... Es , corresponding to

a fixed value of N; the number e can be taken to be the greatest of the

numbers m (E^, m (E2 ), ...m (Es ). The meshes of the net which are such that

every point of one of them belongs to one at least of the 2s sets m(E1 ),

m (Et), . . . m(Es ), m (L^, m (L2 ), ... m (Ls) have a total measure ^ 2s e; and these

meshes must be considered separately from the others, as in the case s = 1
;

they form a set A, such that m (A)g 2se. In one of these meshes 8r ,
we take

P=S p=S
gr so that 2 |/

(i&amp;gt;)

(ft.) I

differs from the lower boundary of 2 f (p)
(x)\ in

P=I P=I

8,., by less than e; we then have, for the set of meshes A,

(ft) m (8r)
1

&amp;lt; e m (A) +T [ | /^ (x) \

dx
p=l J (A)

for each of the values p=l,2,...s, of p. The preceding proof may then be

applied to each of the functions/ (1)

(x), ...f
(8)

(x), without essential change.

We have now obtained the following theorem :

Iff (1]

(x),f
{2)

(x), ... f {8}

(x) be functions that are summable in the interval

or cell, (a, b), then a net can be fitted on to (a, b), and a set of points ft, ft, ... fm
can be determined in the m meshes of the net, so that, for each of the s functions,

b r=m

f(x) dx differs from 2 /(ft) m (8r) by less than an arbitrarily chosen number.
r=l

435. By means of this theorem, various algebraical inequalities can be

extended so as to obtain corresponding inequalities which involve Z-integrals
The simplest case we shall consider is that of the well-known inequality

(a x 6j + ci2 b2 + . . . + am 6TO)
2 ^ (a^ + a2

2 + . . . + arn
2
) (bf +b2

2 + ... + bm2
).

If we write

i=/ (1

(ft)MSi)ft a2 =/ (1)
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Employing the theorem, we have at once the Schwarzian inequality (see

396),
ri&amp;gt;

}
2

[
b

[
b

^J a ) J a J a

since the expressions on the two sides are given to any required degree of

approximation by the corresponding expressions in the preceding inequality,

provided x , f2) ... gr are so chosen that the theorem of 434 is applicable to

the three functions
{ / (1)

(#)1
2
, ( / (8) ()l

a
t f(l} () f (2)

(x).t.*/ \ // I J \ /) J \ /J \ /

The following more general theorems* may be obtained in a similar

manner :

J

J [- a J

where p and q are any positive numbers such that l/p +l/q = l; and

I f

b

fw &amp;lt;*) +/ &amp;lt;2&amp;gt;

(*&amp;gt;

*
dx v

ip

^ r
f

b

i /w to \

p dJlp

+ r r
( J a ) L- a J l.J a

where p &amp;gt; I.

These are derived from the known inequalities

r r=m I l/p r r=m
~\\/

f
,

S ? | Or I* 2 6r
L r=l J L r=l J

[r=w

~~|
l/p r r=m

r=l J L r=l

where ja and &amp;lt;?

are positive numbers such that l/p + l/q
= l.

In the case of the first inequality we take a,-=/
(1)

(f&amp;gt;) {m(Sr)}
l/v

,
and

f r=m

11

This method has been applied f by Lebesgue to obtain a proof of the second

mean value theorem ( 423).

436. Another method has been indicated I by F. Riesz of expressing the

Z-integrals of functions approximately by finite sums, in such a manner that

the above extensions of known inequalities to the case of integrals can be

carried out.

It will be sufficient to consider the case of the summable functions / (1)

(x),

/ (2)

(#), as the. extension to the case of any finite number of such functions will

then be obvious.

* See F. Eiesz, Math. Annalen, vol. LXIX, p. 456.

t Annales de Toulouse, (3), Vol. i, p. 36.

loc. cit.
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rb

It has been seen, in 385 388, that the integrals I f (l}

{x) dx,

b
Ja

y (2)

(x} dx differ respectively from two finite suras
a

! m (e-i} + a.2 m (e2) + ... + ap m (ep ),

a
t
m fa ) + azm (e2 ) + . . . + ap m ( ep ),

by less than an arbitrarily chosen positive number, provided the increasing
set of numbers a1} a2 ,

... ap is properly chosen, and er ,
er are the sets of points

for which a r ^f (l]

(x) &amp;lt; ar+1 ;
ar ^f (2)

(x) &amp;lt; ar+1 , respectively.

If we denote by Erg the set D(er ,es ), we have er = 2 Ers , es = 2 Ers ;

s=l r=l

all the sets Ert can be arranged in order as a single sequence {Fq },
and the

two finite sums then take the forms

m(F2)+...+A k m(Fk),

where F
q

is the set Ent and A
q
= ar ,

B
q
=as . In the set F

q , we have

ar /w O) &amp;lt; ar+, ,
a s ^

/&amp;lt;

2
&amp;gt;

(x) &amp;lt; ag+1 .

It is clear that A l B1 m(Fl ) + A 2 B2 m (F2) + . . . + A k Bk m (Fk )
is an approxima-

[b
tion to f (l]

(x}f
(

*(x)dx.

LEBESGUE INTEGRALS OVER AN UNBOUNDED FIELD.

437. The definition, in 385 388, of the Z-integral of a summable
function f(x) over a measurable set E, is applicable when E is unbounded,

provided it have a finite measure, in accordance with the definition, given in

134, of the measure of such a set. We proceed to consider the case in

which E is a set such that the portion of it in each finite cell, or interval,

is measurable, but in which E has not a finite measure. Let f(x) be a

function, defined over the set E, and everywhere ^ ;
and let it be assumed

that/(#) is summable in every finite cell, or interval, A.

If f(x) dx converges to a definite number, as the distances of all the
. (A)

boundaries of A increase indefinitely, in any manner, that number is said to

define the .L-integral I f(x) dx, off(x), over the unbounded set E.
J

(/&amp;lt;, )

If the set E be in p dimensions, I f(x) dx is the measure of the
J (A)

(p + l)-dimensional set of points (#
(1)

,
# (2)

,
... x (p)

, y}, where a (r] ^ x (r) ^ b (r
\ for

r = 1, 2, 3, ... p, and 0^y^f(x (l

\ x (

-\ ... aW) ;
the cell A being (a

(1)
,
a (2)

, ... a (
*&amp;gt;

;

b (1
\ b (2}

, . . . b (P }

).
At points x, not in E, we take/() = 0.
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It is clear that, when a sequence of cells A is taken, each one of which is

contained in the next, and such that, as we progress in the sequence, all the

numbers 6 (l)
,
6 (2)

, ... b ( P } become indefinitely great, and are positive, whereas

the numbers a (1)
,
a (2)

,
... a (p} become indefinitely great, and are negative, the

values of f(%) form a monotone sequence. Assuming that this sequence

has a finite upper limit, that limit, f(x) dx, is the measure of the (p + 1)-
(E)

dimensional unbounded set for which

oo &amp;lt; x r
&amp;lt; oo

, (r
=

1, 2, 3, ... p), = y = j (x) ;

it being assumed that f(x) = at all points that are not in E.

If f(x) is not ^ 0, at all points of E, it may be expressed as the difference

/+
(x) f~ (x) of two functions /+ (x), f~ (x), each of which is ^

;
where

y-(#) = 0, at any point x at which f(x) is positive.

r r

In case the two integrals /+
(x) dx, \ f~ (x) dx both exist, in ac-

J (E) J (E)

cordance with the above definition, the Z-integral I f(x) dx is defined to be
J (E)

the value of I /+ (x) dx f~ (x) dx ; and f(x) is said to have an
J (E) J (E)

absolutely convergent i-integral over the unbounded set E. The existence

of the absolutely convergent integral entails the existence of the integral

\f(x}\dx.

It may however happen that, although / /+ (x) dx, I f~ (x) dx become
J (A) J (A)

indefinitely great as the cell, or interval, A becomes indefinitely great,

I if
+

(x) ~f~(x}\ dx converges to a finite limit. In that case, the limit is
J (A)

said to define the non-absolutely convergent Z-integral of f(x) over the un

bounded set E. When
j f(x) dx exists as a non-absolutely convergent

integral, I \f(x) dx does not exist, because {/
+

(x) +f~(x}} dx does

not converge.

438. In the case of integration over a linear integral I f(x) dx is the
J a

, b

limit, as b ~ oo
,
of I f(x) dx

;
it being assumed that f(x) is summable in

J a
TOO ,-ao

(a, b), for all values of b
(&amp;gt; a). If I

| f(x) \

dx exists, the integral I f(x) dx
J a J a

J (E)

is said to be an absolutely convergent Z-integral over the unbounded interval
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f Too

(a, oo
). If

| f(x) |

dx is not finite, / f(x) dx is said to be a non-absolutely
J a J a

convergent i-integral over the unbounded interval (a, x ).

fee fO

If both I f(x) dx and I f(%) dx exist, their sum defines the value of
JO J -co

/-co

I f(x) dx, which is absolutely or non-absolutely convergent over (00,00),
J oo

f
00

according as I !/(*) dx is finite or not.
J -co

The following theorem provides a criterion for the existence of an Z-integral
over an unbounded interval which is frequently of use :

If f(x) and f(x) &amp;lt;f&amp;gt; (x) be both summable in every interval (a,x), and if
f 30

f(x) dx exists, and
(f) (x) be monotone and bounded in (X, oo ), for some

. a
/-co

value ofX (^ a), then I f(x) &amp;lt;f)
(x) dx exists.

J a

A value
,
of x, can be so determined that I f(x) dx &amp;lt; e, for all positive

/I

values of h, where e is an assigned positive number ;
and this value of can

be chosen to be = X. We have then, by the second mean value theorem,

f /(a?) &amp;lt; (as) &-.f () f f(x) dx+(f&amp;gt;(+ h) (

*

f(x)dx,
J * t J +8h

where 6 has some value in the interval (0, 1). If
[ &amp;lt;f&amp;gt;(x)

\

&amp;lt; K, for every value

of x in the interval (X, oo
), we have

I f
f+A

f
i ( nt*\ ft\ ( SY* i /i o 1 ^** V isc *

I l^// *P \~^ / W ^ ^fCc
^

J*

y&quot;

00

and since e is arbitrary, the integral / f(x) (f&amp;gt; (x) dx exists.

A similar criterion for the existence of an absolutely convergent integral
is the following :

If* f(x) and f(x) &amp;lt;&amp;gt; (x) be both summable in every interval (a, x), and if
Too

I f(x) ax e-rists as an absolutely convergent L-integral, and \ &amp;lt;f&amp;gt; (ai) \

be bounded
J a

f
00

in (X, oo
), for some value ofX (= a), then the integral I f(x) &amp;lt;f&amp;gt;

(x) dx exists,
J a

as an absolutely convergent L-integraL

/oo
f(x) dx is absolutely convergent, a number (= X) can be so

%

rt+h
determined that I |/(#) |

dx &amp;lt; e, for all positive values of h; where e is any

assigned positive number.

* See Riemann s Werke, 1st ed., p. 229; also Pringsheim, Math. Annalen, vol. xxxvn, p. 591.
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We have then

f(x) &amp;lt;}&amp;gt; (a) dx
r+h

\f(x) 4 (*) \

dx &amp;lt; K
I

| f(x) dx

where K is the upper boundary of
j &amp;lt;/&amp;gt;

(x) in ( oc
).

Since e is arbitrary, the

condition for the existence of I
| f(x) &amp;lt;f&amp;gt; (x) dx is satisfied.

J a

439. An important class of integrals over an unbounded interval, of which

the convergence is not necessarily absolute, is that of the integrals
,- oo / oo

&amp;lt;/&amp;gt; (x~) sin xdx, (f&amp;gt;(x)cosxdx,
i

.

where
&amp;lt;j&amp;gt;

(x) is monotone, from and after some fixed value of x, and converges
to zero, as x is indefinitely increased.

pX* f rXq

We have I
&amp;lt;j&amp;gt; (x) sin xdx =

&amp;lt;f&amp;gt; (x^ I sin xdx + &amp;lt; (x2} sin xdx, where a^

is so large that
$&amp;gt;(x)

is monotone for x^xl ,
and is some number in the

interval (xl ,
x2).

From this we have

(j&amp;gt; (x) sin xdx

Since
&amp;lt;j&amp;gt;

(x) converges to zero, xl may be so chosen that
| $ (x^ \

and
| &amp;lt;f&amp;gt;

(x2 )
\

are both arbitrarily small
;
hence the condition is satisfied for the existence of

I $ (x) sin xdx, as an Z-integral which is not necessarily absolutely convergent.
Jo

The case of the second integral may be treated in the same manner.

CHANGE OF THE INDEPENDENT VARIABLE IN A LEBESGUE INTEGRAL.

rb

440. The transformation to a new variable, of the integral f(x)dx,of
J a

a function f(x) that is summable in the linear interval (a, b) will now be con

sidered. The following theorem * will be established :

Iff(x) be summable in the linear interval (a, 6), and if &amp;lt;f&amp;gt;
() be a monotone

r

function of which is an indefinite integral a + I % () dg, where the interval
J a

(a, yS), of ,
is made to correspond to the interval (a, b), of x, by means of the

f
x

[*
relation x =

&amp;lt;(),
then I f(x)dx=l ^(I9x(l)^&amp;gt; where F (%) denotes the

J a Jo.

function f {$(%)}.

We may assume, without loss of generality, that
&amp;lt;f&amp;gt; (|) is non-diminishing

* See Lebesgue, Annales de Toulouse, (3), vol. i, p. 44.



438-440] Change of independent variable in Lebesgue integral 593

in (a, ft). It has been shewn, in 407, that the necessary and sufficient con
dition that the monotone function $ () should be an indefinite integral is that,
to any set of points of measure zero on the ^-segment, there should correspond
a set of points of measure zero on the ^-segment.

The above theorem is equivalent* to the statement that, when the con
dition here referred to is satisfied, then the equality

holds for every summable function f(x).

Let An
te) denote a set of non-overlapping intervals in (a, b), and An &amp;lt;*&amp;gt; the

corresponding set of intervals in (a, /3) ;
we have then

m(A 7
&amp;lt;*&amp;gt;)=(

* ()&amp;lt;*

J (ATO ))

If E (x] be the inner limiting set of a sequence of sets of intervals, each of

which sets contains the next, there corresponds to E (x} a set E^\ the inner

limiting set of the corresponding sequence of intervals in the ^-segment. We
have then

m (E^) = lira m (
An

(

*&amp;gt;)

= lim f y () d =
f % () d

*-*&amp;gt; n~*J(An (t)) ((*))

If m (E (x)
)
= 0, it follows that % () = 0, at all points of

#&amp;gt;, with the possible

exception of those which belong to a component of measure zero.

The set of points on the ^-segment that corresponds to a set of points of

measure zero on the ^-segment has not necessarily the measure zero, and is

conceivably not a measurable set
;
but in any case that component of the set

at which ^ (|) is not zero is of measure zero.

A set of points on the ^-segment which is measurable (B) corresponds to

a set on the ^-segment that is also measurable (B). Any measurable set E (x]
,

on the ^-segment, contains a set E}x
\ which is measurable (B), and such that

E (x} - E^ has measure zero. If E (x
\ E correspond to

J0&amp;lt;, Ej*\ on the -

segment, E^ contains the measurable set E^, and at all points of the set
(* E^, with the exception of a component of measure zero, the condition

X () = is satisfied. Thus E^ is the sum of a measurable set, and of a set

of points in which % () = 0.

If E (x} is the set of points at which f(x) &amp;gt; A, E& is the set of points at

which F(f-) &amp;gt; A. If F
l (f) is a function defined only at those points of the

interval (o,/3) in which ^(f)^^, and is equal to F (%) at the points for which
it is defined, the set of points at which j^ (f) &amp;gt; A is measurable. It follows

that -^ i ()%() is a measurable function, defined over that set of points at

which %()=^0; and thus ^()%() is measurable over (a, ft).

* See Hahn, Monatshefte der Math. u. Physik, vol. xxm, p. 167.

H. 38
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Let us first consider the case in which f(x) is continuous in (a, 6) ;
then

F () is continuous in (a, ft). Let a net (a, xlt #2 ,
... #_;,, b) be fitted on to

(a, 6); and let (a, 1} f2 ,
...

%n-i&amp;gt; ft) be corresponding points of (a, /3). If
E/V&amp;gt;

Lr are the upper and lower boundaries of f(x) in
(av_i&amp;gt;

#r), or of .F() in

(r-i, &), we have

Therefore

Z7r (a?,.
- av-0

&amp;gt;

r=l -a =!

If the net be one of a system of nets fitted on to (a, b), the two sums con-

rb

verge to I f(x) dx, when the nets of the system are taken successively. It
J a

then follows that

Since b and ft may be replaced by x and
,
the theorem has been established

for the case of a continuous function f(x).

Next, let/(#) be any summable function, bounded in (a, b). A continuous
rb

function ff (x) can be so determined that I (/(#) /e (#) |

dx &amp;lt; e
2
,
and so that

J a

the upper boundary of |/6 ()j does not exceed that of f(x)\ (see 430).

Denoting by Ff (g) the function that is equivalent to/e (#), we have

I
/ (JJ,)

where U is the upper boundary of \f(x} \

in (a, 6), and Hl is that set of points

at which % () ^ 0, and which is a component of the set that corresponds to

the set H on the ^-segment, in which f(x) fe (x) &amp;gt; e. The measure of H
cannot exceed e

;
and if we assign to e successively the values in a diminishing

sequence that converges to zero, the set H^ which corresponds to a value er

in the sequence contains the set H(er+l\ The inner limiting set of the sequence

{H^} has the measure zero, and therefore the inner limiting set of the corre

sponding sequence {H^*^} has the measure zero, as it contains no points at

which x () = 0.

It follows that m (H^) ~ 0, as e ~
;
and thus we have

&quot;

V. (^)^
It has now been shewn that

where f(x) is any bounded summable function.
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Lastly, let f(x) be unbounded and summable
;
since it can be expressed

as the difference of two non-negative summable functions, it will be sufficient

to consider the case in which f(x) ^ 0, in (a, 6). Let fN (x) =f(x), at points
where f(x)^N, and let fN (x}

= N, at points where f(x) &amp;gt;N; the positive

number N being arbitrary. We have then

where -fV(f) is equivalent to fN (x}. Since the integral on the right-hand
side is non-diminishing as N is increased, and since it has the finite limit

6

f(x)dx, as N~ oo
,
it follows from the theorem of 399 that

I F(%}y(t;)d1~= I

J a J (

We may replace b by any point x, in the interval (a, b), and /3 by the point in

(a, /3) that corresponds to x.

If E be any measurable set in (a, b), and Er be the measurable component
of that set in (a, /9) which corresponds to E, and in which ^ (f) ^ 0, we may
replace f(x) by a function which has the same value asf(x) in E, and is zero

in C(E); we have then

In accordance with the theorem of 405, since x = a+ I x()c?, we have
J a

dx
-7

= X ()&amp;gt;
f r almost all values of in (a, /3). Hence the above theorem may

be written in the form

(XiT

it being assumed that -^ is integrable (L), in (a, /3).a

441. The extension of the theorem of 373 to the case in which the

functiony(#, T/) is any summable function will here be considered.

It will be assumed, as in 372, that a (1, 1) correspondence between the

points of a perfect connex domain H, in the plane of (x, y), and the corre

sponding domain H,
1

in the plane of (, ?/), is defined by x =/i (, 77), y =f, (, rf},

where the partial differential coefficients ofyi andfz are continuous in H
l , and

the Jacobian -~-^-~ = J does not vanish in H. It was shewn, in S 372, that,
o (, n) _

to a closed set h, in H, of content zero, there corresponds a closed set h, in H,
of content zero.

382
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If S denote a closed cell in H, and 8 the corresponding closed domain in

H, by taking f(x, y)
=

\, in H, we have, in accordance with the result ob

tained in 373,

, 17)
=

() &amp;gt;

(!)

where A; is some number between the upper and lower limits of J
\

in 8.

If 6? be any connex perfect domain of which the frontier has its plane

content zero, being contained in H, and if 0, in the plane of (, 77), corre

spond to G, we see that, J
\ being continuous and never vanishing, it has a

lower limit 1/X, in 0, where X &amp;gt;
;
therefore m (8) &amp;lt; \m (8), for every cell 8,

contained in G.

If A be a set of non-overlapping cells, contained in G, and A be the set of

domains in G that corresponds to A, we have m (A) &amp;lt; \m (A).

Let E be any measurable set of points in G, then E is contained in a set

E1} of measure m(E), which is the inner limiting set of a sequence (A
(n)

j,
of

sets of non-overlapping cells. Let {A
(w)

}
be the corresponding sequence of

non-overlapping domains in G. The set El
E =

F, which has measure zero,

is contained in a set F1} also of measure zero, which is the inner limiting set

of a sequence |A
/(n)

}
of sets of cells. Let J\ be the set, in G, which corresponds

to PS, then m (FJ = lim m (A
(n)

)
^ A, lira m (A

(n)
) ;

hence m (f\) = 0. The set
?l~30 W~00

E is contained in Elt and contains E1
F1 ,

and hence the set E, corresponding

to E, is contained in Elt and contains E
1
F1 . Since m(Fl)

= 0, and E
l

is

measurable, it follows that E is measurable, and

m(E) = m (E,) \m (E,) ^ \m (E).

It has thus been shewn that the set E, in G, that corresponds to a measurable

set E, in G, is measurable, and that its measure does not exceed \m (E).

If f(x, y) be a measurable function, defined over the set G, the function

F(^, 77)
which has the same value at a point (f, 77), of G, as f(x, y} has at the

point (x, y} that corresponds to (, rj) is measurable in G.

First, let f(a&, y) be bounded in G
}
then a continuous function

&amp;lt;/&amp;gt;

e (X y)

can be so determined (see 430) that

f(x, y}
-

&amp;lt; e (x, y) |

d (x, y) &amp;lt; e
2

.

In a set L, of points of measure &amp;gt; m (G) e, we have \f(x, y} &amp;lt;/&amp;gt;

c (x, y)\e.
Moreover &amp;lt; e (x, y) can be so defined that its numerical value never exceeds

the upper boundary of \f(x, y) in G.
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From the theorem established in 373, we have

where Fe (%, rj)
=

&amp;lt;/&amp;gt;&amp;lt;,(#&amp;gt; y), at corresponding points.

To estimate the value of

we divide the set G into the two parts L and C (L), where, in L, the condition

I F(%J r}) Fe(Z&amp;gt; *?)! = e is satisfied. The absolute value of the difference is

then seen to be

(G)
J
C(L)

where U is the upper boundary of
j f(x, y} \

in G.

Since m {C (L)} ^ \m [G(L)} &amp;lt; \e, we see that this expression is arbitrarily

small, if e be taken small enough.

It has thus been shewn that

lim I Fe (, 77) j

J
|

d (%, ?;)
=

e -&amp;lt;). ()

and therefore we have

Next, let/(#, y) be unbounded. Since it can be expressed as the difference

of two summable functions, each of which is non-negative, it will be sufficient

to assume that f(x, y} = 0. Let N be an arbitrarily chosen positive number
and let fN (x, y) =f(x, y\ at all points where f(x, y) ^ JV, and elsewhere let

/N (x &amp;gt; y)
= N- T̂Q have then, sincefN (x, y) is bounded,

f fN (x,y)d(x,y}=\
J (G) J

where FN (, ?;) has the same value as fN (x, y\ at the point (x, y) which

corresponds to (, 77).

Since

lim
I fir (x &amp;gt; y) d ( y)

=
f /(, y) d (x, y\

~&amp;lt;*&amp;gt; . (G J (G)N

it follows that lim I FN (%,r))\J\d (f, 77) exists, and is equal to
N~&amp;lt;x,J

( )

J
/(*. y) d (x, y).
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Since FN (%, ri)\J is monotone as N is increased,. it follows, by applying the

theorem of 399, that

( F(&r,)\J\d(Z,ii)=f f (x, y) d (x, y).
J

flj)
J (G)

The transformation obtained in 373 has now been extended to the case in

which f(x, y) is any function that is summable in G.

The extension, given in 374, to the case in which, in a closed set of points

of content zero, the Jacobian either vanishes or is indefinite, is applicable when

f(x, y) is a summable function. Moreover the case in which one of the domains

G, ~G is unbounded, or in which both are unbounded, can be considered, as

in 375.

442. A more general treatment of the transformation of a double, or of a

multiple, integral has been given by W. H. Young, in which it is not assumed

that the Jacobian is necessarily of one sign, or that the correspondence of the

points (x, y), ( 17)
is necessarily a (1, 1) correspondence. He has established

the following theorem :

Let x = x(%, 77), y = y(%, -n) be functions of (, 77) possessing the property

of having all their partial derivatives with respect to (, 77) bounded for all

values of (, 77) in the fundamental rectangle (a,, &; or2 , &); and let A be the

area of the curve in the (x, y)-plane which is the image of the perimeter of this

fundamental rectangle. Then

where , -? , represent any of the partial derivatives of x and y with

9f 877 8f 877

respect to and 77.

More generally, the same is true, if the partial derivatives are not bounded,

provided only the following conditions are satisfied:

(1) x (, 77)
is an integral with respect to f, and an integral with respect tor);

(2) y (%, 77)
is an integral with respect to ,

and an integral with respect to 77;

(3)
^ and f- are, except for a set of values ofy, of measure zero, less than

drj or)

summable functions of 77 alone, say 7^(77) and M(rj);

(4) the same condition as (3) is satisfied, with % and 77 interchanged, or

more generally, when
[||

/* (77) d ( 77),

f||
JT&amp;lt;9)&&*) exist as absolutely

convergent integrals.

For the proof of this theorem reference may be made to a memoir* by

W. H. Young.
* See Proc. Land. Math. Soc. (2), vol. xvin, p. 339,

&quot; On a formula for an area.&quot;
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For the transformation of the integral f(x, y), he has given the following
theorem :

Let x = x(%, 77), y = y(%, 77), where the functions are continuous with respect
t ( ?)&amp;gt;

in a fundamental cell. Let it be assumed that any cell in the (, 77)-

space has for its image in the (a, y}-space, a portion of that space whose

boundary divides it into two distinct portions, an exterior and an interior. Fur
ther let it be assumed that the area of a portion of the (x, y)-space is given by
Ctf \ co Z/^

|
OTF \

d
(%&amp;gt; ^) an absolutely convergent integral, which may be positive, negative,

or zero. Then \f(x, y) d (x, y}, taken over the portion of the (x, y)-space which

corresponds to a cell in the (%, w)-space, is equal to

taken over the cell.

For the proof of this theorem reference* may be made to a memoir by
W. H. Young.

HARNACK S DEFINITION OF AN INTEGRAL.

443. A definition of the integral of a function f(x), unbounded in the

linear integral for which it is defined, was givenf by Harnack, which in its

original form depended upon the employment of Riemann s integrals in sub-

intervals of (a, b) in which such integrals exist. The definition given by
Harnack can however, without essential change of form, be extended to the

case in which Lebesgue integrals take the place of Riemann integrals.

The set of points of infinite discontinuity of a function f(x} defined for

the finite interval (a, 6) form a closed set G.

It will be assumed that this closed set G is of content zero. Let G be

enclosed within the intervals Blt 82 ,...Sn ,
of a finite set A, such that each

interval of A contains at least one point of G. The complement C (A) consists

of a finite set of intervals, free at their ends, and in their interiors, from points
of G.

Let it be assumed that f(x) is integrable (L) in each of the intervals of

C(A), and thus that I f(x)dx exists as an Z-integral. The integral of
J G (A)

f(x), in (a, 6), when it exists, is defined as follows :

*
Proc. Royal Soc.,\ol. xcvi, p. 82.

t Math. Annalen, vol. xxiv, p. 220. See also Jordan, Cours d Analyse, vol. n, p. 50, where
a similar definition is given, except that the condition that the set of points of infinite dis

continuity should have content zero is omitted.
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Let it be assumed that a number I exists such that, corresponding to each

arbitrarily chosen positive number e, a positive number V can be determined so that

I f(x) dx
JC()

J &amp;lt;e

for every finite set A of intervals which satisfy the conditions given above, and

which is such that m (A) &amp;lt; e . The number I is then taken to define the value of

rb

f(x] dx.

It is convenient to define a function/A (x} which is zero in all points of the

intervals A, and is equal in value to f(x}, at all interior points of C (A).

We have then, in accordance with the above definition,

rb rb

I f(x)dx= Km I f(x)dx,

the convergence being uniform with respect to all sets A.

The necessary and sufficient condition for the existence of the integral
rb

I f(x} dx, as a finite number, is that, e being assigned, e can be so deter

mined that
rb

/A (x~) dx
I
/A (x) dx &amp;lt;2e

for every pair of finite sets A, A of intervals, such that each interval of either

set encloses within it at least one point of G, provided m (A) &amp;lt;

&quot;

e ,
m (A ) &amp;lt; e ;

and that this condition is satisfied whatever value e may have.

It is easily seen that the above definition is equivalent to that of Cauchy
( 352), in case the set G consists of a finite number of points.

It will be shewn that the above definition is more general than that of

Lebesgue, in that it defines integrals which do not necessarily exist in

accordance with Lebesgue s definition. It is clearly less general than

Leb esue s definition in that it applies only to the case in which the set of

points of infinite discontinuity of the integrand is of content zero.

As m (A) converges to zero, the number n, of intervals of A, will increase

indefinitely. If any sequence A1} A 2 , A3 ,
... corresponding to a sequence

1, 2 ,
e3 , ..., of values of e, which converges to zero, be taken, a sequence

A
ni ,

A
n2 ,

A
M3 , ...

may be chosen out of the given sequence in such a way that A
nr contains

A
nr+1 ,

for all values of r. For let (7(Ani)
consist of, say, r

ni intervals (a, /3)

each contained in some interval (a, /3) contiguous to G. The number r? 2 can

be so chosen that it is the smallest integer (&amp;gt;Wj)
such that m(Anz ) is less

than the least of all the 2r
x numbers a a, /3 (3. Clearly then (a, /3) is
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within an interval complementary to the set A
n2

. The numbers ns ,
n4 ,

...

may then be chosen successively by the same procedure. The sequence
A

nj ,
A

W2 ,
... is therefore such that each set contains the next.

rb rb

When both I f(x) dx and I f(x) \

dx exist, in accordance with the above
J a J a

rb

definition, / f(x) dx is said to be absolutely convergent. Those integrals
J a

which exist in accordance with the above definition, and are not absolutely

convergent, will be considered in Chapter vnr.

444. It will be shewn that :

If I f(x)dx exists, and is absolutely convergent, the integral also exists as
J a

an L-integral, and conversely, that, if it exists as an L-integral, it also exists as

an absolutely convergent integral in accordance with the above definition.

First, let f(x) ^ 0, in the interval (a, b). Taking the sequence A1} A2 ,
A3 ,

...

so that each set contains the next, we see that the values of

for r = 1, 2, 3, ...
,
form a monotone non-diminishing sequence of numbers, and

thus they either increase indefinitely, or they converge to a limit A. Assume
that the latter is the case.

Let A/, A/, A3 ,
... be any other sequence of finite sets of intervals which

satisfy the conditions in the definition, but not necessarily such that A/
contains A s+1 ,

for all values of s. We have

rb r

f&amp;gt;(x}dx-\
J a J a

where P is the upper boundary of /(#) in the intervals of C (A/) ;
for the

above difference is less than the integral of f(x) over those intervals that are

in Ar and also in C (A/). If e be arbitrarily chosen, and s be fixed, for all

sufficiently large values of r we have, on the assumption of the existence of
rb

the limit A, of /Ar (X) dx,
J a

rb

/vO)^
J a

rb

and therefore I A (x) dx ^ A + e
;

J a

this holds for each value of s. Similarly, we see that, for a fixed value of r,

and for all sufficiently large values of s,

rb rb

/X (a?)^&amp;gt;
J a J
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and by choosing the fixed value of r so great that

rb

] f^WdaoA-fc,
rb

we have
f&amp;gt;(x}dx&amp;gt;A- e,

J a

for all sufficiently large values of s. As

rb

I /A () dx
J a

lies in the interval (A - e, A + e) for all sufficiently large values of s, and
since e is arbitrary, it follows that

converges to A. Moreover, since

f /A r
(x}dx-

a

where P is the upper boundary off(x) in C(Ar); and also since

where {A V} is any other sequence of intervals, enclosing 6r
;
from these in

equalities, we see that, if m (A/), m (A V) are both less than |e/P ,
the

integrals
rb rb

I /A. 0) ^,
I

/A&quot;,
O)^

. o . a

are both &amp;gt; A e, and they have been shewn to be ^ A + e
;

it follows that the

integrals differ from one another by less than 2e. Hence the condition for the

rb
existence of the integral I f(x) dx is satisfied, on the assumption that the

J a

integrals off^ (x) converge to a finite number as r~ oo .

Thus it has been shewn that:

Vy (*) be never negative, it is necessary and sufficient for the existence of
rb

the integral f(x} dx in accordance with Harnack s definition that, if
J a

AI, A 2 , ... be a sequence offinite sets of intervals each containing the next, such

that each interval of each set contains within it a point of G, and such that
rb

m (Ar)
~ 0, then I fA^ (x) dx should be less than a fixed finite number, for all

J a

the sets A,.
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rb

Let it now be assumed that / f(x) dx exists as an Z-integral ;
we have

J a

then rb rb r

f(x}dx=\ f(x)dx- \ f(x)dx;
J a J a J (A)

and since ( 392) I f(x) dx converges to zero, uniformly as m (A) ~ 0, we
J (A)

rb rb

see that /A (x) dx converges to f(x) dx
;
and thus the integral also

. J a

exists in accordance with Harnack s definition. It appears moreover that in

this case of a non-negative function the condition that each interval of A
should contain a point of G is unnecessary.

It has thus been proved that, if f(x) be non-negative, and have an L-

integral, it has also an integral in accordance with Harnack s definition, and

the two have the same value.

Next, let/(X) have both positive and negative values, in (a, b), and assume

that it is summable in the interval.

Iff(x) =f+
(x}f~(x),f

+
(x} and/~(#) are summable, and therefore they

have not only Z-integrals but also Harnack integrals. It is clear that

rb rb rb

/A (*) dx = /A+O) dx - /A-(a;) dx.
J a J a J a

Now, as ra(A) converges to zero, the two integrals on the right-hand

side converge to
rb rb

f+(x)dx, f~(x}dx,
J a J a

as has been shewn above, although A is such that an interval of it does not

necessarily contain a point both of G and of G2 ,
the sets of points of infinite

discontinuity of/
+() and of/~(#).

rb

It follows that I f(x} dx exists in accordance with Harnack s definition,
J a

and is equal to the Z-integral.

rb

It follows immediately that |/(#) I

dx exists as a Harnack integral, and
J a

is equal to the sum of the integrals off+
(x) and f~(x).

Conversely, let us assume that

rb rb

I f(x}dx and / \f(x)\dx
J a J a

exist as Harnack integrals.

The points of infinite discontinuity of the two functions f(x), \f(x) \

are

the same, hence the Harnack integrals of the two functions are the limits of

X-integrals taken over sets of intervals that are the same for the two
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functions. It follows that \f(x) +f(x\ \f(x) \ f(x) have Harnack integrals,
the sum and difference of those of \f(x) \

and f(x) ;
or the two functions

/+(#)&amp;gt; /&quot;(#)
have Harnack integrals.

It is then sufficient to shew that the existence of the Harnack integral of

a non-negative function involves the existence of the Z-integral of the same

function.

Let it therefore be assumed that f(x) ^ 0, and that the Harnack integral

of/(#) over (a, b) exists. The points of infinite discontinuity of f(x) can be

enclosed in a finite set A, of intervals, where m (A) is so small that

is less than the Harnack integral

/O) dx

by less than an arbitrarily chosen positive number . Let N loe a positive
number not less than the upper boundary of f(x) in C(A), and let fy(x) be

the function corresponding to f(x) employed in de la Vallee Poussin s defini

tion ( 387). Let another set of intervals A
,
all interior to intervals of A,

enclose all the points of infinite discontinuity of f(x). The integral of f(x)
over C (A ) lies between the integral over C (A) and Harnack s integral, and

therefore differs from the last by less than

c

It follows that f(x) dx &amp;lt; t.

./(A-A r

and therefore I fN (x) dx &amp;lt; .

From this we deduce that

(A)

and since this holds for an arbitrarily small value of m (A ),
N being fixed,

we have r

J&amp;lt;4T

It now follows that

rft r

f m f /y\ ft IP I ( 0^1 ft T ** f*IV I Jj I (JUJj I \ &amp;lt;*J I Ui&amp;lt;lf = L .ja \ / i _,
... j \ /

a J O (A)

and since f is arbitrarily small, N being sufficiently increased, it follows that

b

f /*(*)
J a

dx

has a definite limit, as N~ oo
,
and that this limit is Harnack s integral

l

b

f(x)dx.
J a
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It has thus been shewn that the existence of Harnack s integral implies
that of the integral as defined by de la Vallee Poussin, the integrals having
the same value. By 387, it follows that the Z-integral exists, and is the same

as the Harnack integral.

Accordingly, an absolutely convergent integral which exists according to

either Lebesgue s definition, or that of Harnack, exists also according to the

other definition, and has the same value for the two definitions. It has more
over been shewn that the condition that each interval of A must contain at

least one point of G, the set of points of infinite discontinuity of the function,

is unnecessary when the integral is absolutely convergent.

THE LEBESGUE-ST1ELTJES INTEGRAL.

445. Let f(x) be a measurable function, defined for the linear interval

(a, b), and let &amp;lt; (x) be a bounded monotone non-diminishing function defined

in the same interval. Denoting (f&amp;gt;(x) by ,
we consider, as in 252, the

functional image E (

,
on the ^-segment, of a set of points E (x) on the #-seg-

ment, such that to a point x, at which
&amp;lt;f&amp;gt; (x) is discontinuous, there corre

sponds the whole interval
(&amp;lt; (x 0),

&amp;lt;f&amp;gt; (x + 0)) of points on the ^-segment.
It was remarked in 252 that, if E (x) is measurable on the ^-segment, it is

not necessarily the case that E ( is measurable, but that, if E (x) is measurable

(B), then E^ is measurable (B).

Let F() be the function defined, at every point of the ^-segment, by the

condition F()=f(x), where x is the point that corresponds to
;
if x is a

point of discontinuity of
&amp;lt;f&amp;gt; (x), the interval

(&amp;lt;/&amp;gt; (x 0),
&amp;lt;/&amp;gt;

(x + 0)) is an interval

of invariability of F(%), in which F (%)
=

&amp;lt;]) (x ).

rp

Whenever the L-integral I F(t;)dt; exists, where =
&amp;lt;(a), /3 =

(f&amp;gt;(b) &amp;gt;

its
J a

value may be said to define that of the Lebesgue-Stieltjes integral, or LS-integral
rb

f(x} d&amp;lt;f&amp;gt; (x), of the measurable function f(x\ with respect to the monotone
J a

function $ (x).

f
b

f
b

In case I F(%) d% exists as an ^-integral, the integral I f (x) d&amp;lt;f&amp;gt; (&) mayla J a

be an #S-integral (see 378). It has been shewn, in 377, that the necessary
and sufficient condition that the integral may be an .B$-integral is that the

variation of
&amp;lt;/&amp;gt;

(x) over the set of points of discontinuity off(x) should be zero.

If the function f(x} is measurable (B), the function F() is measurable (B)

on the ^-segment, and Lebesgue s definition is applicable to define

In case
&amp;lt;f&amp;gt; (x) is of bounded variation, and is therefore expressible as the

difference of two monotone non-diminishing functions ^ (x), &amp;lt; 2 (x), the LS-
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integral of f(x) with respect to &amp;lt; (x) may be defined to be the excess of the

Z$-integral of/(#) with respect to
&amp;lt;i(#)

over its Z$-mtegral with respect to

$2 (x), whenever these latter integrals exist.

Referring to the definition, in 252, of the variation of the monotone

function
$&amp;gt;(x)

over a set of points E in the ^-segment, and denoting by
en that set of points at which cn ^f (x} &amp;lt; cn+l ,

we see that the i$-integral
rb

f(x)d$(x) is defined as the limit* of 1 cn I7 (e l)

(/&amp;gt;(#);
the set of numbers

J a

{cn } being such that cn+l cn is less than a fixed number e, for all positive and

negative values of n, and the limit being taken as e ~
;

it being assumed

that the variation V^
&amp;lt;f)(x)

exists for all the sets en ,
so that F(^) is measur

able in (a, /3).

The definition of an Z$-integral, over the ^-segment, as an Z-integral over

the ^-segment, may be employed to extend the properties of Z-integrals to

the case of .//^-integrals.

We have, for example, the extension of the property of Z-integrals, that,

if f/n(^)} is a sequence of summable functions that converges to /(#), and

such that \fn (%) is bounded for all values of n and x, then

rb rb

I f (#) dx = lim fn (x) dx.
J a n~ oo J a

The corresponding property of the Z$-integral is that

f (ac) d(f&amp;gt; (x)
= lim I fn (x}d&amp;lt;j&amp;gt;(x),

M~OO J a

where the bounded functions {fn (so}}
are such that their j$-integrals with

respect to
&amp;lt;f&amp;gt;

(x} exist.

446. It has been pointed out by Hildebrandt (loc. cit.) that the definition

of an integral due to W. H. Young, referred to in 389, may be so extended

as to give rise to a definition of integration of a summable function with

respect to a monotone function, m^ore general than the definition given above.

Let the interval (a, b) be divided into a finite, or enumerably infinite, set

of parts e1} e2 ,
... en ,

... over each of which the function
(f&amp;gt; (x} is measurable,

and such that, over each of the sets en ,
the function f(x} has finite upper

and lower boundaries Un ,
Ln . Consider the sums

then the lower boundary of S1 , for all such modes of division of (a, b) into

7b

the sum of sets, is defined to be the upper integral f(x}d&amp;lt;j)(x},
of f(x)

J a

* See Hildebrandt,
&quot; On integrals related to, and extensions of, Lebesgue integrals,&quot; Bull. Amer.

Math. Soc. (2), vol. xxiv, p. 191.
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with respect to
&amp;lt;/&amp;gt;

(x), over the interval (a, b). Similarly, the lower integral
rt

I /() d&amp;lt;f&amp;gt; (x) is defined to be the upper boundary of S2 , for all such modes of
J a

division of the interval (a, b). When the upper and lower integrals have the
rb

same value, that value may be said to define the integral / / (x} d(j) (x),
J a

off (x) with respect to
&amp;lt;f&amp;gt;

(x). In accordance with this definition any sum-
mable function f(x) will have* an integral with respect to

&amp;lt;(#);
the division

of (a, 6) into parts being restricted to be a division into sets that are all

measurable (J3). The definition of 445 is such that all functions that are

measurable (B) have integrals, finite, or infinite, with respect to the mono
tone function $ (x).

Lebesgue has given f two modes by which a Stieltjes integral can be

reduced to an i-integral. A transformation of an Z-integral into a Stieltjes

integral has been givenj by Van Vleck. If e(y) denotes the measure of the

set of points for which L f(x} &amp;lt; y, where L is the lower boundary of f(x) in
rb ru

(a,b), the i-integral f(x) dx is equal to the Stieltjes integral y de (y), where
J a J L

U is the upper boundary of f(x) in (a, b). This includes the case in which

one, or both, of the numbers U, L are infinite. It has been shewn by Bliss

that an i-integral is reducible to an .R-integral.

rU ru
For, I yde(y)=U(b-a)-\ e(y}dy; and the last integral is an R-

J L J L

integral, since e (y) is a monotone function of y.

tx

447. From the theorem of 440, we see that, if &amp;lt;E&amp;gt; (x)
= $ (x) dx, where

J a

/xf (x}
&amp;lt;f) (x) dx is

i

ft
equal to I F(Z)dJ;, provided F(%) is summable in the interval (a, /3) that

r*

corresponds to (a, b),when the transformation = a -I- / (f)(x)dx is employed, and
J a

F()=f(x). It then follows from the definition in 445 that

f*
J a

This may be extended to the case in which &amp;lt;I&amp;gt; (x) is the indefinite integral of

* See Hildebrandt, loc.cit., p. 191.

t Coinptes Rendus, Paris, vol. CL, p. 86.

J Trans. Amer. Math. Soc., vol. xvm, p. 326.

Bull. Amer. Math. Soc., vol. xxiv, p. 1.
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any summable function &amp;lt; (x). For &amp;lt; (x) may be expressed as fa (x) fa (x),

where fa(x), fa(&) are non-negative summable functions; and thus

rx rx

&amp;lt;!&amp;gt;(#)

=
fa (a) dx I fa x (dx)

J a J a
m

=
&amp;lt;J&amp;gt;a O)-&amp;lt;I&amp;gt;2 0).

In accordance with the definition in 445, we now have

(

X

f(x) &amp;lt;A (*) dx = (*/() cM^ (a?)
- f/() eZ3&amp;gt;2 (a?),

J a / a ^ a

or

where &amp;lt;& (a?) denotes the indefinite integral of the summable function &amp;lt; (x).

Let /(a;) be monotone and bounded in the interval (a, b), then

is an JS^f-integral, since the variation of (x) over the set of points of discon

tinuity of f(x) is zero, because
&amp;lt;&(x)

is an indefinite integral.

We then have (see 376)

and thus the theorem for integration by parts may be written in the form

f / 0) &amp;lt; (x) dx = \f(x) &amp;lt;D (a?)l

&quot;

- I

b

0&amp;gt; (x) df(x).
J a [_ J J a

Moreover, since /(#) is monotone,

f
&amp;lt;!&amp;gt; (x) df(*)-4&amp;gt; (/*) {/(&) -/(a)},

J a

where p is some point in the interval (a, b).

Therefore /*/() (a?) da? =/(6) &amp;lt;I&amp;gt; (6)
-

3&amp;gt; (fi) {/(b) -/()}
J a

= /(a) fV () te +/(6) f 4&amp;gt; (as)
dx.

J &amp;gt;

A proof of the second mean value theorem* has thus been obtained by

employing the method of integration by parts, as applied to the .R$-integral.

The more general form of the theorem, and Bonnet s form, can be deduced, as

in 422.

* See W. H. Young, Proc. Land. Math. Soc. (2), vol. xvi, p. 280.
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448. If
/(&amp;lt;, x), 00 1

, &amp;lt;t&amp;lt;

2

&amp;gt;)

are both functions of bounded variation,

in accordance with the definition of 254, it can be shewn that the following
formula* for integration by parts holds good. The integrals exist in accord

ance with the definition given in 381.

(a&amp;lt;w,a)

-]6 2)

J /&amp;lt;&quot;.&quot;&amp;gt;

&amp;lt;**&amp;lt;.&quot;)J..

6(2) r
,

-i /,
(

. (a*
1

, a (2!)

r
where

I a &amp;lt;2)

((I, 6(2))

+

[

denotes
/(&&amp;lt;,

0&amp;lt;

2

&amp;gt;)&amp;lt;ty(&w, x}-f(a^, x^)d&amp;lt;f&amp;gt; (a
1

*,

0|-rl I J? / ~~n\ __/0\\ I / /iV ln\ \ I

^

/( (1)

J(a (1
&amp;gt;,&amp;lt;

denotes

,
a 2

) -/(a
1

,
6 (2

&amp;gt;)
&amp;lt;^&amp;gt; (a

1

,

From this formula, the second mean value theorem for functions of two
variables (see 425) can be deduced.

The method has been developed by W. H. Young for the case of functions

of any number of variables.

BELLINGER S INTEGRALS.

449. In connection with the theory of the reduction of a quadratic form

involving an infinite number of variables to a canonical quadratic form, certain

limits were introduced by Hellingerf, for the representation of which he used
the notation of integration. A limit, of this species, may accordingly be

spoken of as a Hellinger integral. It was shewn by Hahn that every Hellinger
integral can be expressed as an Z-integral.

^et 9 (./) be a continuous non-decreasing monotone function, defined for

the linear interval (a, /8); and let f(y) be a summable function, defined for

the same interval, and such that it is constant in any interval, contained in

(a, ft\ in which g (y} is constant.

Let a net be fitted on to the interval (a, $); and denote its meshes by
(^/o, #), (ylt 2/o),

... (ym-i, 2/m), where y =
a, ym = $.

*
See W. H. Young, Proc. Lond. Math. Soc. (2), vol. xvi, p. 281.

t See the dissertation &quot;Die orthogonal invarianten quadratischen Formen von unendlich
vielen Veranderlichen,&quot; Gottingen, 1907; also a memoir in Crelle s Journal, vol. cxxxvi.

H - 39
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r =m
| -ffy

\ _ -ffy _ \\z

If the sum 2 l&amp;gt;/ y
,

y ^r
Aas a finite upper boundary, when all pos-

-=i 9 (yr)
~
9 \yr-i)

rp \d f(y\\
2

sible nets are taken into account, that upper boundary is denoted by / / , ( ,

Jo. dg(y)
and is called a Hellinger integral. In the above sum, any term in which the

denominator, and consequently the numerator, vanishes, is omitted.

Let the new variable x be defined for the interval (a, b), where a = g (a),

& = 9 (/?)&amp;gt; by the definition x = g (y).

The sum employed in the definition of the Hellinger integral becomes
r-m \F (xr} Fix _ }}

2

2 J

, where xr corresponds to yr ,
and F(x], or F{g(y)}, is

r = 1 &r %r 1

identical with f(y).

If fi (y}, f2 (y) are two summable functions, defined in (a, /3), and each is

constant in any interval in which g (y) is constant, then if the sum

-/ (y^-i)} {/. (yr)-/. (y^)j

has a definite limit, the same for all systems of nets fitted on to (a, /3), this

limit is denoted by I
^
^ -^L ,

and is also called a Hellinger integral.

The sum here employed is equivalent to

where ^ {^r (y)} =/x (y ),
and 2̂ {^ (y)} =/2 (y).

450. The following theorem will be established:

If &amp;lt;f&amp;gt; (x) denote a function, bounded, or unbounded, in (a, b), such that

is summable in the interval, then

j, S2 , ... 8m are the intervals of a net fitted on to (a, b), converges to

rb

I [&amp;lt;t&amp;gt; (^)l
2

dx,for any system of nets. If {&amp;lt;/&amp;gt; (x)}
2
is not summable, the above sum

J a

diverges, for a system of nets.

In case
&amp;lt;/&amp;gt;(

is integrable (R), the truth of the theorem is obvious; for

I
&amp;lt;/&amp;gt;

(x) dx is equal to 8r multiplied by a number lying between the upper and

lower boundaries of
&amp;lt;/&amp;gt; (x) in 8r ;

and thus the expression reduces to the Riemann
rb

sum employed in the definition of
{&amp;lt;f)(x)}-dx. Thus the theorem holds, in

J a

particular, for a continuous function
&amp;lt;/&amp;gt; (x).
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Next, let
(f&amp;gt;(x)

be any function that is non-negative, summable, and bounded,

in(tt,6). Acontinuous function/(#),also non-negative, can be so determined that

rb

I
{&amp;lt; (x)}

2

{f (x)\
2 dx &amp;lt; e,

J a

rb

and consequently that
{&amp;lt; (x) f(x}}

2 dx &amp;lt; e, (see 433); where e is an arbi-
J a

trarily prescribed positive number.

r = m Iff )2The sum S 5-11 $ (x) dx } may be expressed by S1 + S2 + S3 , where
r = 1 Or ( J (jr) j

r =m 1 (

&quot;

)
2 =]_(/

r-l Sr (. (8r ) j -l V U(*iO

r-w 1 / r

and S3
= 2 S ~- I

{&amp;lt;/&amp;gt;
() f(x) } dx\ f(x)dx.

r = l 6 r J(sr) J (Sr)

By using the Schwarzian inequality ( 396), we have

and hence we find that
$j&amp;lt; e. Also, since f(x) is continuous, we have, for all

nets of sufficiently large order, in any system of nets,

We also have

S3

r 6 2 TT r^

| $&amp;gt;)-/(*) |
&amp;lt;fe&amp;lt;^-

{^(x)-f(x
J a u u/ J a

and thus
j

$3 &amp;lt;2e //(& a); where f7 denotes the upper boundary of
&amp;lt;t&amp;gt;(x)\

since the function /(#) may be so chosen that its upper boundary does not

exceed that of
cf&amp;gt;

(x).

Since e is arbitrary, $j and S3 are arbitrarily small; and S2 differs from
rb

I {(f)(x)}
2 dx by less than 2e. It now follows that

. a

r = wi I f r

F i I &amp;lt;/&amp;gt;
(* ) (

r-l r (J (S r )

rb

converges to I

[&amp;lt;j&amp;gt;(x)Ydx,
as the summation is taken successively over the

/ a

nets of any system of nets.

Next, let
&amp;lt;t&amp;gt;(x}

be unbounded, but everywhere ^0; and let
&amp;lt;f)xs (x) have

the same value as
&amp;lt;/&amp;gt;(#),

at a point where &amp;lt; (x) Ns , and have the value N8 &amp;gt;

at a point where (x) &amp;gt; Ns .

r =m 1 f /&quot; )
2

Denoting by ams the number 2 F 1 I ^v* (^O^ f 5
as s has the values

r = l Or (J(i r) J

in an increasing sequence such that N8
~ oo

,
and m increases indefinitely as

we proceed through the nets of a given system, the numbers a^ form a mono-

392
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tone double sequence. For a sub-division of any net increases the value of a^,
\
v\ I

ijj j2 nr\ 2
79

as is easily seen from the inequality ^ T- = ^77 + nr- . If either of the
n?l T ft?2 &quot; 1 &quot;*2

repeated limits lim lim ams ,
lim lim omg exists, then also the other exists,

and the two have the same value (see 388).

rb rb

Now lim ams = I {^y, (x)}
2
dx, and lim lini a^, = I

[&amp;lt;f)(x)}

2
dx;

m~oo J a s~oc m~ J a

f

hence lim lim ams = I
{&amp;lt; (a;)}

2
dx,

and thus the limit, as we proceed through a system of nets, of

r =m Iff
I

2
f
b

r-1 V U (*r) I

Lastly, let
&amp;lt;(#)

be any summable function whose square is summable, and

which may have both positive and negative values. It may be expressed as

the difference of two summable functions fa (x), fa (x), each of which is ^ 0,

for all values of x.

1 P f I
2

f
b

Since S -s- I I {fa (#) + fa (#)}
2 dx converges to [fa

Or U(Sr) J *

rb rb

that is to [fa (x)}
2 dx+ I [fa(x)}

2
dx; and also

j a J a

1 ( f )
2

f
6

^
F&quot; \\ fa() dx\ converges to {fa (x)}

2
dx,

Or (J(fir) J Ja

1 f f 1
2

f
b

and S j- \ J ^()dfl?&amp;gt; converges to I [fa (x)}
z
dx,

r (J (&r) ) J a

it follows that 2 *- I
^&amp;gt;i (x) dx fa (x) dx converges to zero.

Or J (fir) J (Sr)

It now appears that

-If/ f
6

f

2
F&quot; T i^iW ~

^2 ()} converges to [fa (x) fa (x)l
2 dx ;

Or (Jsr Ja

and thus the theorem is established generally for every function
&amp;lt;f&amp;gt;

(x) whose

square is summable.

The following theorem which includes the theorem established above may
now be stated:

If fa (#)&amp;gt; fa(x) be any functions whose squares are summable in the interval

(a, b), the sum

r=mIff [
6

2 -
&amp;lt;f&amp;gt;i (x) dx

&amp;lt;f&amp;gt;

2 (#) dx converges to fa (x) fa (x) dx,
r-lV . (6 r) J (r)

as ^/ie summation is taken successively over the nets of any system of nets fitted

on to (a, b).
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To prove this theorem, we observe that ^ (x),
&amp;lt;f&amp;gt;

2 (a) may be replaced by
&amp;lt;t&amp;gt;i

+ O) -
&amp;lt;/&amp;gt;r O), &amp;lt;/&amp;gt;

2
+
(#)

-
&amp;lt; 2

~
0), respectively, where the four functions in

these expressions are all non-negative. As the theorem holds for each of the

integrals
rb rb

&amp;lt;j&amp;gt;i

+ O) &amp;lt; 2
+ O) doe, fa* (x) &amp;lt; 2

-
(as) dx,

la J a

rb rb

fa- (x)
&amp;lt;f&amp;gt;

2
+
(x) dx, $- (x) fa- (x) dx,

la J a

it clearly holds also for

rb

that is for fa (x) (f&amp;gt;
2 (x) dx.

J a

451. Let x = g (y}, a = g (a), b = y (ft), where g (y) is a continuous, non-

diminishing function of y, in the interval (a, /9); also let/(j/)
= F [g (y)}, where

The sum employed in the theorem of 450 then becomes

where the net
(t/ , yj, (yl} y2), ... (ym_lf ym) corresponds to the net

0o, #1), (^i, a), ... (m-i, !)

It will now be shewn that :

The necessary and sufficient condition* that] ~T~~- should exist is that,
J dg(y)

if x = 9(y\ the function F(x)=f(y) should be the indefinite integral of a

function &amp;lt;f&amp;gt;(x)

whose square is summable in the interval (a, b), of x.

[P[df(y)~\
2

f
b

Moreover -%-*/%
= W (*)}** ; the Hellinger integral being thus ex-

J a Off \y) J a

pressed as an L-integral.

To establish the sufficiency of the condition, let it be assumed that

p-
F(x)=\ $ (x) dx, where

{&amp;lt;f&amp;gt; (x)}
2
is summable.

J a

f.r
r

We have then F(xr) -F(xr_,)
=

&amp;lt;f&amp;gt;(x) dx, and thence we see that
J ,r,l

{F (xr)
- F(xr_,)Y ^ (xr

- ^V-
*r-l

* This theorem was given by Hahn, see Monatshefte fur Math. u. Physik, vol. xxm, p. 172.

Another proof was given by Hobson, Proc. Land. Math. Soc. (2), vol. xvm, p. 258.
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r-m {W(r \ F(r V, 2 f 6
j j_i r v l

r \*r/ * \ Jjr\)\ -
\

&amp;lt; , / \-|o jand therefore z ^. I .49 (* )] eta;,

for any net fitted on to (a, b\ It follows that the limit of / ,

y
(

J
exists.

-a dg(y)

Next, let the existence of the Hellinger integral be assumed. It is evident,

from the definition, that I
- ,,{ exists, for any value of y in the interval

J dg(y}

(a, /8), and that it is a monotone increasing function of y, say ty (y).

We have then, in any interval of y, contained in (a, ff),
^
^ Ai|r (y);

and thus

j

J1

(a;,.)
- ^(aw) |

^ [(av
- aw) {% (av)

- X (*,_:)]], where

From this, we have

- =m r m
2

i
F(av) - F(xr_l) \

2 [(av
- ^,_0 {X (xr)

- X (W*

and thus the function ^(a;)is of bounded variation in (a, 6); from which it

follows that F (x) exists for almost all the values of x. In order to shew

that F (x) is the indefinite integral of F (x), it is sufficient to shew that the

variation of F(x) over any set of points of measure zero vanishes (see 407).

Such a set can be enclosed in the intervals (S) of a non- overlapping set of

which the measure is arbitrarily small. The variation of F(x} over this set

of intervals is, as above, ^ [28 {% (&)
~ X (*)} ] where 23 is arbitrarily small;

hence the. variation is zero. Denoting F (x), at every point at which it exists,

by (f) (x), we may suppose (f&amp;gt; (x) to have the value zero at all points at which

F (x) does not exist. The function $ (x) being summable in (a, b), the
rb

theorem of 450 is applicable, and it follows that!
|&amp;lt;/&amp;gt;(V)}

2 eta exists, and is the

r=m _ _
limit of the sum 2 - ^-^-^^

,
for any system of nets fitted on to (a, b).

fr nc
r= \ *T ^r1

Thus we have

and accordingly the theorem has been established.

f* d ^
It is sufficient for the existence of the Hellinger integral )

Jl

^ 7
J
?

that the functions F1 (x), F2 (x) should be the indefinite integrals of two

functions
&amp;lt;f&amp;gt;i(x), &amp;lt;f&amp;gt;

2 (x) whose squares are summable in (a, b); where F1 (x),

Ft (x) are the functions which are equivalent to /i (y), /2 (y), and x = g (y).

In accordance with the second theorem of 449, wre then see that

/;
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452. The theorems of 450 can be generalized so as to relate to a function

&amp;lt;f&amp;gt; (x), such that
{&amp;lt;/&amp;gt;(X)]

1+A is summable in the interval (a, b), where X is a positive
number. The proofs of the theorems in the extended form are essentially
similar to those of the original theorems. Thus we obtain * the theorems :

If (f) (#) be a function that is non-negative in the interval (a, b), and such

that
{&amp;lt;/&amp;gt; (#)}

1+A is summable in (a, b), where X denotes some positive number,
then the sum

r=m 1 C f 1 1+A

2 Fxl &amp;lt;j&amp;gt;(x)dx\

r=l 8r
A

(J(&r) )

rb

converges to
{(f) (x)}

l+x
dx, as the sum is taken successively over the nets of any

J a

system of nets fitted on to (a, b). In case X is a positive integer, &amp;lt;f&amp;gt;(x) may be

any summable function, not necessarily of one sign in (a, b).

Bellinger s definition may be extended to apply to the integral

defined as the limit, when it exists, of the sum

In this case:

/ft

r^f /
?
,\~II+A

V v
f

y
-L should exist is that

t [dg(y)y
the function F(x) (=f(y)) should be the indefinite integral of a function &amp;lt;(#)

such that [$(#)]
1+A is summable in (a, b). Moreover

W(y}Y+l

Other generalizations of the Bellinger integral have been made by Radonf
and by E. H. Moore

J.

* See Hobson, loc. cit., p. 263. See also F. Kiesz, Math. Annalen, vol. LXIX, p. 462.

t See the memoir &quot;Absolut additive Meugenfunktionen,&quot; Wiener Sitzungsber. vol. c

p. 1351.

I See Hildebrandt, Bull. Amer. Math. Soc. (2), vol. xxiv, p. 198.



CHAPTER VIII

NON-ABSOLUTELY CONVERGENT INTEGRALS

453. THE definition of an integral by Harnack, given in 443, has been

shewn ( 444) to be equivalent to that of Lebesgue, in the case of absolutely

convergent integrals, that is, when the absolute value of the function has an

integral in accordance with Harnack s definition. We proceed to consider

the integral of a function f(x) over a linear interval, in accordance with

Harnack s definition, when that integral is non-absolutely convergent, that is,

when \f(x) is not integrable over (a, 6) in accordance with Harnack s defi

nition. A point of (a, b} which is such that f(x} is not summable in any
interval which contains the point within it, or at an end-point, may be called

a point of non-summability, or a Harnack point, for the function /(#) It is

clear that the points of non-summability of f(x) form a closed set H, for

if P be a limiting point of H, any interval that contains P contains points of

the set, and consequently f(x) is not summable in the interval. The points
of H are points of infinite discontinuity of f(x\ but H is not necessarily

identical with the set G, employed in 443, of all the points of infinite dis

continuity off(x). In any interval interior to a contiguous interval ofH the

function f(x) is summable, though it is not necessarily bounded. The defi

nition of 443 will be modified, by employing the set H instead of G
;
so

that the Z-integrals employed in the definition are not necessarily .//-integrals

of a bounded function, those points of infinite discontinuity of f(x) which

are not points of non-summability being interior to the contiguous intervals

of H. Thus the definition takes the following form :

If there be a non-dense closed set H, of content zero, ofpoints of non-summa

bility off(x) in (a, b), and H be enclosed within intervals of a finite set A, such

that each interval of A contains at least one point of H, then if the L-integral

/f(x} dx exists, and is such that, corresponding to an arbitrarily chosen
C (A)

number e, a number ,, which converges with e to zero, exists such that

I f(x)dx-\ f(x}dx
JaiA.) JntA^

&amp;lt;7 (A )

for all such pairs of sets of intervals A, A , provided m (A) &amp;lt; e ,
w (A ) &amp;lt; ,, then

the limit of f(x)dx, as ra(A)~0, defines a number ivhich is denoted by
Jew

rb

f(x) dx, and is called the Harnack-Lebesgue, or HL-integral, off(x), in (a, b).
. a

The fiX-integrals of functions contain as a sub-class the Harnack-Riemann,



453] Harnack-Lebesgue Integrals 617

or ZTR-integrals, in which the integral of the function over any interval

interior to a contiguous interval ofH is an ^-integral.

It will appear that the condition that each interval of A must contain a

point ofH is an indispensable condition. It has been shewn ( 444) that, in

the case of absolutely convergent integrals, the corresponding condition re

lating to G is unnecessary. When this condition is a necessary one, the

integral has been termed* by E. H. Moore a narrow integral. In the contrary
case the integral is called a broad integral ;

and it will appear that a broad

integral is necessarily absolutely convergent, so that the set H does not exist.

It will now be shewn that, if f(x) have an #Z-integral in (a, b), it has

an ZTL-integral in any interval (a ,
b ) contained in (a, b).

Taking two sets of intervals A, A , as in the definition given above, we
have, for every value of e,

rb r

f(x}dx-\J a J a

provided m (A) &amp;lt; m (A ) &amp;lt;
;
where f(x) =f(x\ in the intervals C (A), and

/A (x)
=

0, in A; with a corresponding definition for/A , (x). Assuming that this

condition is satisfied for every value of e, it will be shewn that

rb rv

/A O) dx - fa (x) dx
&amp;gt; a J a

provided A, A satisfy the more stringent conditions in (A) &amp;lt;
,
m (A ) &amp;lt; .

Let it be assumed that, if possible, A and A can be determined so as to satisfy
these last conditions, and so that

(x) dx I /A &amp;lt;

(x} dx ^ e.

It will then be shewn that finite sets of intervals A, A can be determined
which satisfy the condition that each interval of either set contains at least

one point of G, and such that
_ -

f
I rb ri&amp;gt;

m (A) &amp;lt; e, m (A )&amp;lt; e ,
| yA (x} dx I f~^ (x}dx ^ e;
a J a

and since this is contrary to the hypothesis made above, the impossibility
of the assumption will have been demonstrated.

To define A, A we take each interval of A, in (a , b ), as an interval of A
,

and each interval of A
,
in (a ,

b
), as an interval of A . Further, we take for

the parts of A, A in (a, a ) and (6 , b), the set of those intervals which are
common to the parts of A and A that lie in (a, a) and (b , b). In case a is

contained in intervals (a, J3),_(a , /3 ) of A, and of A
, respectively, we take

( , $), (a, ft) as intervals of A and A respectively, where a &amp;gt; a. A similar

specification will refer to b .

Trans. Amer. Math. Soc., vol. n, p. 296.
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It is now clear that/A (x) =/A (x), and/A (a?) =/A &amp;lt;

(x), when x is in (a!, b );

and that, in (a, a
)
or in (b , b), we have/A (a;) =/A (a;).

It follows that

6 r& ,-b

j~&(x)ax I J& (x)dx=l /A i

B

and hence that
rb rb

f ( \ /-7 1 f I \
I /A \x) ax I /A (X)
J a J a

Moreover it is clear, from the mode of construction of A, A ,
that

m(A)&amp;lt; andm(A )&amp;lt;.

The impossibility in question has therefore been demonstrated.

Since, for every pair of numbers a, b
,
such that a^a &amp;lt;b ^b, corresponding

to an arbitrarily chosen e, the number , can be so chosen that

i f
6

f
6

I /A 0*0 dx
I
/A (a;) dx &amp;lt; e

J a .a

for every pair of sets A, A that enclose the set H narrowly, and such that

eV

m (A) &amp;lt; |, m (A ) &amp;lt; , it follows that I f(x) dx exists.
J a

Moreover, since %e is independent of a and b
,
we have established the

following theorem :

rb rb

If I f(x) dx exists as an HL-integral, then \ f(x}dx also exists, where
J a J a

a ^ a &amp;lt;b ~b ; and the convergence of this integral is uniform ivith respect to

a and b .

The last part of the theorem expresses the fact that

rv rb

f(x) dx I yA (x) dx\&amp;lt; e,

J a J a

provided in (A) &amp;lt; ,
for every value of of and b

,
the number depending on e.

454. It will be shewn that :

For the HL-integra2, the theorem

rb re rb

f(x)dx=\ f(x)dx+ f(x}dx
J a &amp;gt; a J c

is valid.

This follows from the corresponding theorem for the Z-integral of /A (a;).

For it appears that, employing the last theorem, the expressions on the two

sides of the equation differ from one another by less than 2e
;
and since e is

arbitrary, their equality is established.

Since the existence of the #X-integral of f(x) in any sub-interval (a , b ),

of (a, 6), has been shewn to be a necessary consequence of the existence of

the #Z-integral over (a, 6), it is clear that the integral of f(x) taken over

any finite set of non-overlapping intervals, contained in (a, b), also exists;



453-455] Harnack-Lebesgue Integrals 619

being the sum of the integrals taken over the separate intervals. However,

if a non-finite set of non-overlapping intervals be taken in (a, b), it is not in

general true that the sum of the integrals taken over these intervals con

verges to a definite number, unless the integral off(x) is absolutely convergent,

which case has been treated in connection with the Z-integrals. It will in

fact be shewn, by means of an example, that the property in question, that

f(x) is integrable over a non-finite set of intervals in (a, b), does not apper
tain to non-absolutely convergent integrals, and must be regarded as peculiar

to absolutely convergent integrals. This does not however seem to be a

sufficient reason for refraining from applying the term &quot;

integral
&quot;

to non-

absolutely convergent integrals, as defined above.

455. The following property of an indefinite /TL-integral will be

established :

ex

The HL-integral I f(x)dx is a continuous function of the upper limit x.
J a

Denoting the indefinite integral by F(x), we have, in accordance with the

addition theorem proved in 454,
rx+h

f(x}dx.

Employing the function /A (x), which vanishes at all points of the intervals

of the set A enclosing the set of points H, we have

rx+h rx+h

f(x) dx-\ /A (x) dx &amp;lt; e,
J X J X

provided m (A) &amp;lt; ,
for every point x, and for all values of h, such that x + h

rx

is in (a, b). The integral f^(x)dx being a continuous function of x, the
J a

rx+h
numerical value of f (a) dx in the interval (0, hj), of h, is less than e, if

. X
rx+h

A! be properly chosen. Hence the numerical value of I /(& ) dx is less
J X

than 2e, if h is in the interval (0, Aj). Since e is arbitrary, this shews that F(x)
is a continuous function of x, on the right, in the interval (a, b). Since

tm
F (x} F (x h)

= I f(%) dx, it can be shewn, in a similar manner, that
J x-h

F(x] is continuous at x, on the left.

rx

In an interval of the set C(A), J f(x}dx differs by a constant from an
J a

rx

i-integral, and therefore f(x)dx possesses, almost everywhere in the
. a

interval, a differential coefficient equal to f(x). Since the measure of C (A)

converges to b a, when A belongs to a sequence {An },
such that ra(An )
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converges to zero, we have the following theorem, which is the extension to

the HL-integral, of the property of the ^/-integral proved in 405.

The indefinite HL-integral f(x)dx has, almost everywhere in (a, 6), a
. a

differential coefficient of which the value isf(x).

THE .ETL-INTEGRAL OVER A FINITE SET OF INTERVALS.

456. An extension of the theorem that the integral of f(x) over any
interval contained in (a, 6) necessarily exists, if the .HX-integral over (a, 6)

exists, will now be made.

Let D denote a finite set of intervals, each one of which is contained in

an interval complementary to the set H, and no two of which are contained

in any one such interval.

Using the notation of 453, as regards A(1)
,
A (2)

,
such that ra(A

(1)

)&amp;lt;
i8e ,

m (A
(2)

) &amp;lt; $St ,
it will be shewn that

I /A* 1
(
x

)
dx

\ /A&amp;lt;2) (x) dx &amp;lt; e.

J(D) J(I&amp;gt;r

For, assuming that the expression on the left-hand side is ^ e, we can

define A(3)
,
Au

&amp;gt; as follows :

The parts of A(3)
,
A(4) that are interior to C(D), which is a finite set of

intervals, we take to consist, in each case, of those intervals that are common
to parts of A(1) and A(2) interior to C(D). If intervals (a, /3), (a , /9 ),

of A(1) and

A(2)
, contain an end-point av ,

of an interval of D, we take (a , /3), (a, (3 ),
when

a &amp;gt; a, or (a, /3), (a , /3), if a &amp;lt; a, as intervals of A(3) and A (4&amp;gt;

respectively. No
interval of A(1) or A (2) is interior to an interval of D.

We have now m(A(3)

)
&amp;lt; 8

e&amp;gt; m(A(4)

)&amp;lt;
8e ;

and

/A0) (as) =/A ( (as), /A(4) (x) =/A(2) (x),

where a; is in D; also, in C(D), we ha,vef(3)(x)=f&w(x); it then follows that

rb rb I

I /A (3) (x) dx - I /4 (4&amp;gt; (at) dosl^e,
J a J a

which is inconsistent with the conditions that m(A(3)

)&amp;lt; |Se , ??i(A
(4)

)&amp;lt; ^&e .

Hence
j

I /Ad) (x) dx ./A(2) (x) dx
\J(D) JW

It follows that I f(x)dx I /A (x)dx &amp;lt; e, provided m(A) &amp;lt; ^Se . It
i
J (D) J (D)

has thus been established that :

IfD denote a finite set of intervals, each of which is in one of the comple

mentary intervals of H, and no two of which are in one and the same such

&amp;lt; e.
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complementary interval, then if e is prescribed, there exists a number

that

621

6 ,
such

f(x) da;- fA (x) da
(D)

&amp;lt;

for every such set D, and every set A enclosing G narrowly, such that

This is a particular case of a somewhat more general theorem given by
E. H. Moore, which allows more latitude as regards the set of intervals D.

Since the function f (x) is summable, we see that, in accordance with

the property of summable functions established in 392,

I /A 0) dx &amp;lt; e,
J (D)

provided m (D) is less than some number Bt which converges to zero with e.

Also, provided D satisfies the condition of the above theorem, we have

It now follows that

f(x) dx -

\
r

|

/(*) &*
J (D)

(x) dx &amp;lt; e.

&amp;lt;2e.

We have now the theorem that :

If D be a set of intervals, finite in number, each of which is in an interval

complementary to the set H, of points of non-summability, and no two of which

are in the same such interval, then

f(x) dx &amp;lt;

for all such sets D, provided m(D) &amp;lt; S
&quot;;

where e is arbitrary, and / depends

upon e, and converges to zero as e does so.

THE CONDITIONS FOR THE EXISTENCE OF AN ZTZ-INTEGRAL.

457. The following theorem, due to E. H. Moore *, contains the necessary
and sufficient conditions for the existence of the /fi-integral of a function

f(x), defined in the linear interval (a, b), in which H is the set of points of

non-summability of /(#). The content of H is assumed to be zero :

The complementary intervals of H being denoted by (av ,
bv ), the necessary

rb

and sufficient conditions for the existence of I f(x) dx are,
J a

rbv

(1) that all the integrals \ f(x)dx shall exist, each such integral being
J (t t

,

* Trans. Amer. Math. Soc., vol. n, p. 324.
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bv e

defined as the limit of f(x) dx, when, e, e converge independently to the
&+

formY zero, and,

(2) /ia
&&amp;gt;!
+ a&amp;gt;2 + . + sAa^ converge to a definite number, as v is

f*
indefinitely increased ; where &&amp;gt; denotes the fluctuation of

|
/ (a;) dx in the

av

interval (, &amp;gt;).

v

Moreover, when the conditions (1) and (2) are satisfied, the sum 2

is convergent, and its limit, as v ~ x
,
is I f(x) dx.

J a

rb
To shew that the conditions are necessary, we assume that I f(x) da-

A
exists; it then follows from the theorem of 453, that I f(x)dx exists. If

Cx

,

&quot;

be the points of (a,,, b v) at which I f(x) dx attains its maximum and

minimum values we have &&amp;gt;= I f(x)dx.
$v

00

The number ft may be chosen so large that 2 (& a v} &amp;lt;

8^&quot;. For some

values of v we may have &amp;gt;
&quot;,

and for others &amp;lt;

&quot;

; one, or both, of

these two sets of values of v will be an infinite set. If is not convergent,

a number
/u/(&amp;gt;fi + l) can be found such that 2 &&amp;gt; &amp;gt; 2e. One at least of

the two sets of those values of v between ft -f- 1 and ft for which &amp;gt;

&quot;,

and for which &amp;lt; f &quot;,
must be such that the sum of the corresponding

values of w v is &amp;gt; e, and the sum of the corresponding intervals
;

&quot;

is

&amp;lt; S6 &quot;. We have thus a finite set of intervals D, whose sum is &amp;lt; Se &quot;,
all con

tained in complementary intervals of G, no two of which are in the same such

interval, and such that f(x} dx &amp;gt; e, which is contrary to the last
(D)

theorem of 456.

It follows that 2o^ must converge.

Further, let (, /3 V) be interior to (a v ,
b v } and such that

V
-

a, = ( 1
-

j} (b,
- a v\

\ n /

We may choose m so that 2 (b v ) &amp;gt; b a -
77, where 77 is positive, and

arbitrarily chosen. Then
v=m

/ 1\ 1
2 (@v

-
) &amp;gt; (b

- a - 77) fl -
y-

J
&amp;gt; b - a - 77

-
j (b

-
a).

If we take A to be the set of intervals complementary to (, /?), for
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v = 1, 2, 3, . . . m, we have m (A) &amp;lt; ?? + r (b
-

a) &amp;lt; S6 if 77 and k are properly

chosen. It then follows that

Cb . ...
f(x)dx 2 I f(x)dx &amp;lt; .

Also & may be so chosen that 2
| f(x} dx differs fromV (

&quot;/ (^) dx by*=! &quot;

r-l/o,
less than e

;
we have then

v = m rv

f(x}dx- 2 f(x}dx &amp;lt;2e.

oo **&amp;gt;
..^

It now follows that 2 f (x) dx converges to the value of f(x}dx.*=! J a

To prove that the conditions (1) and (2) are sufficient; let i/ be such that

ov &amp;lt; e
;
then if (, /S,,) denote any interval contained in (a v&amp;gt; b,,), we have

V I

f(x}dx &amp;lt;^e.

Let the finite set A enclose H narrowly ; the complementary set C (A) is

a finite set of intervals interior to a finite set of the intervals C (H) comple
mentary to H. Assume that these intervals C(H) are arranged in descending
order of magnitude. Those of them that are of length &amp;gt; m (A) must each
contain an interval of C (A), and others may also contain intervals of C (A).
Let the first s of the intervals (a v , b,) be each of length &amp;gt;m(A). The

convergence of 2
|

&quot;/(*)
dx follows from that of

2o&amp;gt;,. We have then
v 1 . a v

rb,.

V=S
^ 2

f
1

&quot; r$v

f(x)dx-\ f (at) doc
J av J av

+ 2 [***,, I ^
f(x)dx +2 f(x}dxJ

&quot;v f&amp;gt;*U a

where n
f

(&amp;gt; s) has a finite set of values, and (, ) are the intervals of (7(A).

We may suppose s to be so chosen that 1
&&amp;gt;&amp;lt;, and thus that

V= S

f
n

J On

2
n &amp;gt; s

oo

and also so that 2 f(x} dx
&amp;lt; e. The number s having been so chosen,

we may suppose A so chosen that m (A) is less than each of the first s inter
vals of C (H). Also m (A) may be so chosen, still smaller if necessary, so that

2* f /(*)&amp;lt;& -/*/()&amp;lt;&
^=1 J av J au

&amp;lt; e.
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/&

oo rbv

/A (x) dx 2 / f(x) dx
a v=\J a.,

&amp;lt; 3e, provided m (A) is less

than some number depending on e
;
and since this holds for every value of e,

b

as/b

oo
f&quot;v

fs (x) dx must converge to the value of 21 f(x) dx,
a v=lJ av

rb

ra(A)~0; and thus the existence of I f(x)dx has been established.
J a

rb

It has been here established that, if / f(x) dx exists as an #Z-integral,
/ a

it is necessary that 2 f(x)dx should converge, where (av ,
bv) denotes a

J a v

contiguous interval of the set H of points of non-sum mability of/(#), it being

f
6

&quot;

[ft
assumed that m (H) = 0, and I /(*) dx being determined as lim I f(x) dx,

J av a-~a v J a-

where (a, /3) is interior to (av , &), but it is also necessary to assume that, w v de-
rx

noting the fluctuation of f(x) dx in (a v , &), the series of positive terms
2&&amp;gt;,,

J a v

should be convergent.

rb

458. A more general definition of I f(x) dx has been suggested by
J a

Lebesgue*, as a development of a definition given by Jordan. This is obtained

by substituting for the condition that 2wn should converge, the less stringent
rbn

condition that 2 I f(x) dx should be convergent. It is clear that an HL-
J an

integral is also an integral in accordance with this definition of Lebesgue, but

the converse is not necessarily the case. It can be seen that the substitution

of Lebesgue s definition for that of Harnack involves the introduction of a

limitation in the selection of the sets of intervals A that include the points

!

This limitation must be such that, in the proof of sufficiency in E. H. Moore s

f**

theorem, the convergence of 2, I f(x) dx

i b v

can be inferred from that of

f(x\dx

In case the sum of the integrals over the intervals (av ,
bv) were not absolutely

convergent, the sum of the integrals themselves, if convergent, would have a

sum which would depend upon the order in which the intervals are taken, and

thus would not afford a suitable definition of the integral over (a, 6).

* See his &quot;Remarques sur les theories de la mesure et de 1 integration,&quot; Annales de I ecole

normale, (3), vol. xxxv, p. 204.
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459. A method will now be given of constructing a function f(x} which
is continuous at every point of the interval (a, b), except at the point b, at
which the function has an infinite discontinuity of such a character that

f
b

1 f(x) dx converges non-absolutely.
J a

Let a sequence of intervals (a,, &,), (a2 ,
68 ), ... (an , &), ... be defined in the

interval (a, b), such that no two of them overlap, and that b is the limiting
point of each of the sequences (a1} a2 ,

... an , ...), (blt b.2 , ... bn , ...). Let
i + 2 + . . . + wn + . . . denote a non-absolutely convergent arithmetic series; that

is, the series is to be convergent, but not the series
|
MJ

|

+
j

u2
\

+ . . . + UB
|

+ . . . .

In (an , bn), let /(a;) be defined so as to be continuous, and everywhere of the
same sign, and let f(x) be zero at an and &. Further, let f(x) be so chosen,

f&m (on , 6n ), that f(x)dx=un . At all points of (a, 6), external to all the
* a n

intervals (an ,
bn), let/(#) = 0.

The function /(a?), so defined in (a, b), is continuous, except at the point 6.

In (an , bn), the function
| f(x) \

has a maximum value greater than
un \/(bn an), and therefore f(x) has indefinitely great positive and negative
values in every neighbourhood of the point 6.

For, if there existed a positive number k, such that
j

un \/(bn
- an )&amp;lt;k,

for all

values of n, we should have 2 un &amp;lt; k 2 (br
- ar), and thus the series

r=\ r = \
QO

2 un would be convergent, which is not the case.
r=\

We have now
r x r=n

f(x)dx = 2 Mn + flwn+i,
J a r=l

if x lies in the interval (bn ,
bn+1 ),

where ^ 6 ^ 1.

/b
fx

f(x) dx is defined as lim f(x) dx ;
and its value is

a a~b J a
r=

therefore lim 2 wn , which, by hypothesis, has a definite value.
M~OO r=l

rb
It is further clear that I

| f(x} \

dx is not finite, since the series
J a

!
^i + M2 + . . . + un

\
+ . . . is not convergent.

This result may be employed to illustrate the fact that the non-absolutely

convergent integral is not necessarily the limit of the sum of the integrals
taken through a set of intervals which, in the limit, converges to the whole
interval of integration; and thus that such an integral is not a broad integral.

Let the integral of f(x) be taken over the intervals (a,bm ), (aPi ,bp ),

(aPi,bp2) ... (aPr ,
bPr ), where ^,^2, pr are increasing integers, all greater than

H. 40
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m, and such that u
Pl ,upt , ... uPr are all of the same sign. It is clear that m

I bm rb

may be so chosen that I f(x) dx is arbitrarily near in value to I f(x) dx ;

a J a

then, for such a value of m, the integers plt p.2&amp;gt;

... pr may be so chosen that

U
PI + u

pt + + upr i as large as we please, since the series Swn does not con

verge absolutely. As m is increased indefinitely, the set of intervals (a, bm),

(aPl ,
b
Pl ),

... (aPr ,
bPr) converges to the whole interval (a, b), the complementary

part of (a, b) diminishing indefinitely, and yet the sum of the integrals oif(x)
taken over the intervals of the set does not converge.

460. The construction here given of an ///^-integral, with a single point

of infinite discontinuity, may be employed to illustrate the fact that, in the

definition of such an integral given in 453, the condition is indispensable that

the set A of intervals must be such that there is at least one point of infinite

discontinuity in each interval of A. This fact differentiates the non-absolutely

convergent HX-integial from an absolutely convergent integral, in which/rbf(x)dx converges to f(x) dx, for every set of intervals A,when m (A)*vO.
C (A)

It is not in fact true that, in defining the ////-integral, the set of points

a 1 ,a2 , ... an , ... b^b.^, ... bn ,
... b, which is of content zero, may be excluded by

enclosing these points in a set of intervals of arbitrarily small sum.

For we may include all the 2m points a1; a 2 ,
... am ,

b1} b.2 ,
... bm which occur

in (a, bm) in a finite set of intervals, so that when these are excluded from

the interval (a, bm ),
the integral I f(x) dx is altered by an arbitrarily small

- a

amount. Again, we may shorten each of the intervals (aPl , bPl ), (ap2 ,
bp2 ), ...

(aPr ,
bPr) at each end, so that the sum of the integrals of/(#) taken over these

intervals is diminished by an arbitrarily small amount. All the points a^ ,
a 2 ,

. . .

61} 62 ,
are now included in intervals of a finite set, such that the integral

of f(x) over the complementary intervals is arbitrarily great. These com

plementary intervals consist of those intervals which have been obtained by

shortening the intervals (aPl ,bPl), (aPi ,
b
Pz ), ... (aPr ,

bPr ),
and of the parts of

(a, bm ) which remain when the points a1( 6X ,
a2 ,

b.2 , ... am ,bm have been included

in a suitable set of intervals.

rb

Let
&amp;lt;/&amp;gt;

(x} be a function for which I (x) dx exists as an /^//-integral,
J a

with the points c^ , 2 ,
... an , ... b1} b2 ,

... bn ,
... b, as the set of poin ts of infinite

discontinuity, in the neighbourhoods of which &amp;lt; (x) is not summable. Also the

rb

integral I /(#) dx exists, as constructed above, with its single point of infinite
J a

[
b

discontinuity at b. It appears however that I {/(x) + (x)}dx does not exist
J a

as an ////-integral. The set H, of points of infinite discontinuity of the function

f(x) + &amp;lt; (x), consists of the points alt blt a2 ,
b.2 ,

. .. an ,
bn , ..., and of the point b.
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We may now define a set A, of intervals enclosing the points of H, to consist
of the finite set defined above for the case of the integral off(x). For a sequence

of such sets A,
J

f(x) dx increases indefinitely, as m (A) ~ 0, whereas

J
(*) &amp;lt;fo has a finite limit

; thus / {/(#) + &amp;lt;

(a?)} eta increases indefinitely
/

as m (A) ~ 0, and therefore I {f(x} + &amp;lt; (x)} dx does not exist.
J t

461. The following property* of an jyZ-integral will now be established:

If
\

&amp;lt;f&amp;gt;(x)dx
is an HL-integral, and f(x) be any bounded monotone

f
b

function,
j

f(x] &amp;lt;j&amp;gt; (x) dx exists as an HL-integral. More generallyf (x) may
be any function of bounded variation in (a, b).

Let A, A be two sets of intervals enclosing narrowly the points H of non-

summability of
&amp;lt;f&amp;gt; (x), so that

Cx rx

&amp;lt; A (x) dx - A , (x) dx
J a J a

&amp;lt;
,

where m (A) &amp;lt; , m (A ) &amp;lt;
,
for all points x in (a, 6). Let

F(x) = &amp;lt;j&amp;gt;(x)-&amp;lt;t&amp;gt;u(x);

we may then apply the second mean value theorem to the functions F(x]
f(x). Thus

| f(x)F(x)dx=f(a} l

S

F(x)+f(bJ a J a

where | is some point in (a, b). We have therefore

J a
/(*) &amp;lt;f&amp;gt;* (x) dx -

lj(x) fa&amp;gt; (x) dx &amp;lt; 2e

Denoting the expression on the right-hand side by e
, we see that, e

being arbitrary, and depending only on e, the condition is satisfied for the
[
b

existence of /() $ (#) ^. When f(x) is any function of bounded variationJ (I

it is the difference of two monotone functions/ (x\f2 (x); and thus the two

#Z-integrals [ /, (x) (x) dx, I

*

fa (x) (x) dx exist. Since the set of points* J a

of non-summability is the same for the two integrands, it follows that

f
b

f b

l/i (*)-/(*)} (*)&amp;lt;**,
or

f(x)&amp;lt;f&amp;gt;(x)dx,J a J a

exists as an
^TZ-integral.

* See Hobson, Proc. Loud. Math. Soc. (2), vol. VH, p. 22.

402
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THE SECOND MEAN VALUE THEOREM FOR AN ZTL-INTEGRAL.

462. The second mean value theorem

rb fx [b

f(x) $(x)dx = A &amp;lt;f) (x) dx + B I
&amp;lt;/&amp;gt; (x) dx,

J a J a J x

as given in 422, holds good, when
&amp;lt;/&amp;gt;

(x) has an HL-integral in (a, b).

rb /*XA rb

For I f(x) &amp;lt;f&amp;gt;& (x) dx =A I
&amp;lt;f&amp;gt;& (x) dx + B \ &amp;lt; A (x) dx,

J a J a J x&

where %A is some point in (a, b), dependent on A.

Now I &amp;lt;iA (x)dx (j&amp;gt; (x) dx, fa (x) dx &amp;lt;b (x) dx,
/ J ft J V

are both numerically less than an arbitrarily chosen positive number e, pro
vided m (A) is sufficiently small; this follows from the uniform convergence of

&amp;lt;/&amp;gt; (x) dx.\

rb rb

Also I f(x) &amp;lt;/&amp;gt;

A (%) dx differs from /
/(#)&amp;lt;/&amp;gt; (x) dx by less than e, if m (A)

J a
&quot;

J a

be sufficiently small, Hence we have

rb TXA rb

I f (x) $ (x) dx = A \
tf&amp;gt;(x)da} + Bi (f&amp;gt;(x)dx + r},

J a J a J XA

where
1
77 1

is arbitrarily small. From the continuity of

TXA /&quot;*

I &amp;lt; (x) dx, I
(f&amp;gt; (x} dx,

J a J x

we see by reasoning similar to that in 423, that

rb rx rb

I f(x) &amp;lt;j) (x} dx = A I
&amp;lt;f)

(x) dx + B \
(f&amp;gt; (x) dx.

J a J a . x

Bonnet s form of the mean value theorem may be deduced as in 423.

INTEGRATION BY PARTS FOR THE HARNACK-LEBESGUE INTEGRAL.

463. The formula for integration by parts, given in 420, may be extended*

f
x

to apply to the case in which one of the integrals, I U (x) dx, is an fiX-integral.
J a

Cx

Let un (x)
=

I Un (x) dx, where Un (x)
= U(x) at every point not belonging

J a

to a finite set of intervals A, enclosing the points H, of non-summability of

U (x) ;
and Un (x)

=
0, in A.

* W. H. Young, Proc. Lond. Math. Soc., ser. 2, vol. ix, p. 432.
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Since un (x) is an Z-integral, we have

r -,&
f
6 dun Cb dv

[ &quot;&quot; B]
&quot;

=
J/-sr

da:

As n~ oo
,
so that m (A) ~ 0, we have [

Also
f
6 dv , [

b dv , f
b

u -^- dx \
un ~r dx &amp;lt; e I

j a dx J a dx J a

dv

dx
dx,

because, for sufficiently large values of n, we have \u(x) un (x) \

&amp;lt; e, whatever

value x may have, in accordance with the theorem of 453. It follows that

,. [
b dv

7
f

7 dv .

hm I un -j- dx = u
-j- dx,

n~&amp;lt;x&amp;gt;Ja
dX } a CLX

rh d u
and hence, utilizing the above equation, we see that lim I v -^ dx exists

~oo J a &&

and is equal to \uv\
b

I u ^-- dx.J a
Ja dx

Thus the equation

j V(x)\ \* U(x}dx\dx=\ U(x}dx\ V(x) dx - fV(a;) { f V (x} dx\ dx
J a (J a J J a J a J a (J )

holds good, when one of the two indefinite integrals

\

X

U(x)dx, \

X

V(x)dx,
. a J a

exists only as an //7/-integral, the other being an Z-integral.

THE DENJOY INTEGRAL.

464. In the definition of the TiTL-integral, even if it be modified in the

manner proposed by Lebesgue ( 458), it is assumed that the set H, of points

of non-summability of the function, has content zero. A definition has been

introduced* by Denjoy, which is applicable when the set H is not so restricted,

but is capable of being any non-dense closed set. The process of passing
from a given functionf (x), defined in the linear interval (a, b), to a function

F (x}, which has a relation to f(x) similar to that of the indefinite Z-integral

of a summable function to the function itself, has been termed by Denjoy
totalization of f(x); it will however be here spoken of as integration (D), and

the function F (x) will be spoken of as the indefinite D-integral of f(x),

whenever it exists. Thus, in any interval (, /3), of (a, 6), the D-integral of

r/s

/(a?) will be denoted by I f(x}dx, or by F(l3)-F(a), or also by V(a, /3).
J a.

*
Comptes Rendus, Paris, vol. CLIV, p. 859 and p. 1075. See also Lusin, ibid,, vol. CLV, p. 474. See

also a thesis by Nalli, Esposizione e confronto critico delle diverse definizioni di una funzione

limitata o no, Palermo, 1914.
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The definition of the Denjoy Integral, or D-integral, in the most general

case, can only be given by indicating the steps of a gradual process by which,

commencing with the employment of Z-integrals, a function is obtained which

satisfies certain postulations which are of the nature of definitions. These

may be stated as follows:

Having given a measurable function f(x), defined for the interval (a, b);

(1) In any interval (a, ft), contained in (a, b), in which f (x) is integrable
f/s

(L), V(a, ft) is taken to be the L-integral \ f(x)dx.

(2) For a finite set of intervals (a1} 2), (ctj, 3),
... (an_ls an), each one of

which abuts on the next, and for which V(al} a2 ), V(a2, BS), V (an_-l , an) have
r = n~\

been defined, V(a1} an) is defined as 2 V(ar ,
ar+i)-

r=l

(3) // (a, ft) be any interval in (a, b), and V(af, ft ) have been defined for

every interval (a , ft ) interior to (a, ft), then V(a, ft) is taken to be the limit of

V(oc, ft ),
when a ~a, ft **

ft, independently of one another, it being assumed

that this limit exists.

(4) Let Pbea perfect set ofpoints in an interval (a, ft) contained in (a, b), and

assume that f(x) is sumrnable over the set P, and suppose moreover that V(a , ft )

has been definedfor every interval (a , ft ), of (a, ft), which contains no point of
G as an interior point. Let (an , ftn),

where n = 1, 2, 3, ..., denote the intervals

of (a, ft) that are contiguous to P, and let Wn (a, ft) denote the upper limit of

|F(a , ft )\,for all intervals (a, ft ) contained in (an , {3n ).
Let it be assumed that

00

the series 2 W (an , ftn) is convergent. Then V(a, ft) is defined by
n-l

V(a, ft)= I F(an , ftn) + f f(x)dx.
M-l J (P)

It is clear that W (an , ftn) is the fluctuation of V(an , x) in the interval

(n, ftn)-

It will be shewn that the _D-integral off(x), in (a, b), exists, or in accord

ance with the expression employed by Denjoy, that f(x) is totalizable in (a, b),

providedf (x) satisfies the following conditions:

I. For every perfect set P, in (a, b), the set of those points of P which are

points of non-summability off(x), with respect to P, is non-dense in P.

In particular, if P consists of all the points of (a, b), the set H, of points of

non-summability off(x), with respect to the interval (a, b), is a non-dense set.

II. If (a, ft) be any interval in (a, b), and V(a!, ft ) have been calculated

for every interval (a, ft ), interior to (a, ft), then V
(a. , ft ) tends to a definite

limit, as a, ft converge independently to a, ft respectively.
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When this condition is satisfied F(a, ft) has been defined, in (3) above,

to be the value of this limit; thus

r/s /-/a-

I f(x)dx = lim I f(x)dx.
J a. a ~o, /S ~/3 J a!

III. For every perfect set P, if V(an , ftn) have been calculated for every

interval (an , ftn), contiguous to P, the set of points ofP which are not points of
00

convergence of 2 W (&, , ftn) is non-dense in P.
n = l

oo

The series 2 W((*n,ftn) is said to be convergent in an interval (a , ft )

n = l

if the series consisting of those terms for which (an , ftn) is interior to (a, ft )

is convergent. The series is said to be convergent at a point p ifp is interior

to some interval (a , ft ) in which the series is convergent.

If every point of a perfect set P is such as to be a point of convergence of

2 W(an ,ftn), then the series 2 W(an ,ftn), taken for all the intervals con-
n=\ n=l

tiguous to P, is convergent.

For, let a system of nets be fitted on to the interval (a, b), in which P
is contained; then if 2 W(an , ftn) is divergent, there must be at least one

n=l

mesh dl ,
of the net Dlt in which 2 W is divergent. Of the nets of D.2 ,

that
n=l

are contained in dlt there must be one at least in which 2 W is divergent;nl
let d2 be that net, er that of lowest rank if there is more than one. Proceeding

in this manner, we obtain a sequence of meshes d1} d^, ..., defining a point Q,

in all of them, such that, in each of these meshes, the series 2 W is divergent.
w=i

This point Q is one of divergence of the series, and it must clearly belong to

.the set P, which by hypothesis contains no such point. Therefore the series

2 W(an, ftn), taken for all the intervals contiguous to P, is convergent.
n = \

It is clear that those points of a perfect set P which are points of divergence

of^W(an , ftn) form a closed set. For in any neighbourhood of a limiting point

of the set there are points of the set
;
from which the result follows.

465. It will be shewn that, when the conditions given in 464 are satisfied,

the D-integral of f(x) can be calculated by means of an enumerable set of

.L-integrals, of passages to the limit, and of summations in a certain order.

Every point of (a, b) which does not belong to H, the set of points of non-

summability off(x) with respect to the interval (a, b), is interior to a contiguous

interval of H. Since f(x) has an Z-integral in any interval (a , ft ), interior to

(a, ft), one of the intervals contiguous to H, V(a,ft) can be determined as

lim V(a, ft ),
in accordance with the condition II, of 464. Thus the
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Z)-integral is determined for each interval contiguous to H. Now H is the

sum of a perfect set Pl ,
the nucleus of H

,
and an enumerable set Ml ;

we pro

ceed to calculate V(a. /3) in the intervals (a, /3) that are contiguous to P: .

The part of Ml in such an interval (a, @) is reducible, and therefore has a

derivative of order 7, some number of the first, or of the second, class, which

contains no points, whereas the derivatives of lower order than 7 all exist. If

an interval (a , /3 ),
in (a, /3), contains no point of M1} the D-integral in ( , /3 )

is ani-integral; and by condition II the integral can be calculated for ( , /3 ),

when a.
, ft are points of 1/j ,

whereas no interior points belong to M
l . If ( , /3 )

contains a finite set of points of Ml} the D-integral, for ( /3 ),
can then be

calculated by means of the definition (2) of 464. Next, let (i,/3i) be an

interval contiguous to the first derivative MI, of M
l ;

then in an interval

(/ : A ) interior to (ctj, /3j), there is only a finite set of points of M^, hence, as

before, the D-integral in (i,/3i) can be calculated. The integrals in all the

intervals contiguous to J// having thus been determined, by proceeding as

before, the integrals in all the intervals contiguous to M-i may be determined.

Generally, let 7 be a finite number, or a transfinite number of the first species.

As before, if the .D-integral has been calculated for every interval contiguous
to M^~l

\ it can be calculated for every interval contiguous to M^. If 7 be

a transfinite number of the second species, let us suppose that the D-integral

is known for every interval contiguous to M^, for all values of 7 &amp;lt; 7. In

any interval (a/, /&/) which is interior to an interval (ay ,/3y ) contiguous to

M^\ from and after some value of 7 ,
all the sets M^&quot;

1 have no points in

(dy, /3y); hence the D-integral can be calculated in
(&amp;lt;x/, /3Y ),

and consequently,

by employing the definition (3), it can be determined in (ay ,/3y). It has thus

been shewn that the D-integral can be calculated for every interval (a, ft),

contiguous to M^, where 7 is any number of the first, or of the second, class.

Since M^^O, for some number 7, it follows that the D-integral can be

calculated for any interval contiguous to P1} by means of an enumerable

set of additions, and of passages to the limit, in which the i-integrals over

intervals in which f(x) is summable, are employed.

Let us suppose this process to have been carried out for each interval con

tiguous to Pj, the nucleus of H. In case f(x) is summable relative to P1} and

if every point of P1 is a point at which the series 2 W(an , fin) is convergent,

we have
rb r cc rj3n

/() dx = f(x) dx + 21 /O) dx.
J a ^ (-Pi) M = l *

&quot;n

When Pj does not satisfy these conditions we proceed to analyse the set Pl .

It should be observed that the D-integral is determined over any interval

(a, /3) such that plt the part of Pl contained within it, satisfies the conditions

that f(x) is summable over plt and that each point of p1 is a point at which

the series 2W (a n&amp;gt; /8n) is convergent.
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In accordance with the conditions I and III, assumed to be satisfied, the

set H2 ,
of points of P1

which are either points of non-summability off(x) with

respect to P1} or are points of non-convergence of ^W(an , /3n ), is non-dense

in Pj ;
moreover the set H2 is closed. Let H2

= P2 + M2 , where P2 is a perfect

set, the nucleus of Hz ,
and M2 is an enumerable set. It will be shewn that

the Z)-integral can be calculated, first, in every interval having no interior

points that belong to H 2 ,
and secondly, for every interval contiguous to P2 .

Consider an interval 8, which contains within it, and at its ends, no point
of HZ. We need only consider the case when 8 contains, within it, points of

Plt The interval 8 can be decomposed into a portion ply of P1; and a set of

intervals, all contiguous to plt except possibly two of them which are semi-

contiguous to p1 . The function f(x) is summable in p1} and it has therefore

an Z-integral over p^ The series consisting of those terms of STF(aw , /3n)

that refer to intervals contained in 8 is convergent. The Z)-integral over 8 is

therefore the sum of the D-integrals in the intervals contiguous and semi-

contiguous to pl , together with the Z-integral over the set p1} in accordance

with definition (4). By passing to the limit, the D-integral is obtained over

any interval which has no point ofH2 in its interior, but of which one extremity,
or both extremities, belong to H2 . By means of an enumerable set of passages
to the limit, the D-integral is thus determined over any interval in which H.2
is reducible, as in the former case. Thus the D-integral is determined for any
interval contiguous to P2 .

From P2 ,
we proceed, as before, to define H3 ,

which is composed of a

perfect set P3 , the nucleus of H3 , and an enumerable set Ms . This set H3

consists of the points of non-summability of f(x) with respect to P2 ,
and of

points of divergence of S W.

In general, we obtain a set Hy
= Py +My ,

where 7 is a number of the first,

or of the second, class, and where it is assumed that Hy
&amp;gt; and Py

&amp;gt; are known
for all numbers 7 ,

less than 7. In case 7 is of the first species, we suppose
the D-integral of/(&) to have been already determined in every interval con

tiguous to P[y-i\\ the process of determining the D-integral over every interval

contiguous to Py is the same as in the special case 7=2, which has been

considered above. If 7 is a number of the second species, Py is the set of points
common to all the sets Py, where 7 has every value

&amp;lt;y.
If none of the sets

Py is devoid of points, the set Hy certainly exists, but Py does not exist in

case Hy is enumerable. The set Pv ,
when it exists, is non-dense in each of the

sets Py.

It will be shewn that the .D-integral can be determined over every interval

contiguous to Py ,
it being assumed that the corresponding determination has

been made for all the sets Py ,
where 7 &amp;lt; 7.

First, let y be a number of the first species; and let 8 be an interval which

contains, as interior point, or as an end-point, no point ofHy . If p^-^ be the
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portion of P[y_a ]
in 8, f(x) is summable in p[y-i\, and those of the _D-integrals

which are taken over intervals contiguous to P(y -l ]
form an absolutely convergent

series. We calculate the Z-integral of f(x) over p [y
_

1} , and add to it the sum
of the D-integrals over the intervals that are contiguous or semi-contiguous
to p[y-i]} the result is the D-integral over 8. This D-integral is now determined
over every interval which contains within it, or at its ends, no point of Hy .

By an enumerable set of passages to the limit the D-integrals are now de

termined in every interval in which Hy is reducible, that is, in every interval

of which no interior point belongs to Py .

Next, let 7 be a number of the second species, and let S have the same

meaning as before. The sets Py (7 &amp;lt; 7) have no points in 8, and therefore the

D-rntegral can be calculated over 8. By a passage to the limit, the D-integral
can be determined over any interval which has points of Hy only at one, or

both, of the end-points. Hence, by an enumerable set of additions and passages
to the limit, the D-integral is calculated over every interval contiguous
to P

y

All the integrals are obtained by an enumerable set of operations of the

types laid down at the beginning of the discussion. Since Py is non-dense in

all the sets Py, where 7 &amp;lt;y,
there exists a number 7, for which Py does not

exist (see 82). Hence, by an enumerable set of operations, the D-integral
f /(#) over the interval (a, b) can be calculated, since, in the interval (a, b),

there are no points of P
y

.

It is clear that the D-integral over (a, x) can be determined in the same

manner, where x is any point in (a, b).

466. In the construction of the D-integral, given in 465, the conditions

I and III have been employed only in relation to the particular perfect sets

PI, P2 , ..., whereas the function f(x}, when integrable (D) in (a, 6), has been

required to be such that these conditions are satisfied in relation to every

perfect set P. It will however be shewn that the D-integral constructed

by the method indicated in 465 actually satisfies the conditions I and III, of

464, in relation to any perfect set P.

In the first place it may be observed that, if f(x) be summable in a sub-

interval, and Q be any closed set in that sub-interval, there are no points of

Q which are points of non-summability with respect to Q, and also no points
r

at which the series, of which the terms are the fluctuations of I f(x) dx in
J a

the intervals contiguous to Q, is not convergent. If P be any perfect set in

(a, b), let K be the set of those points of P such that, at any one of them,

either f(x) is not summable with respect to P, or is not a point of convergence
of 2WM ,

taken for the intervals contiguous to P. Unless K is non-dense in

P, there is some interval in which K and P coincide. Let P (1) be such a
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portion of P
;
then P (1

&amp;gt; must be contained in H. For, otherwise, a part of

P (1) would be contained in an interval interior to an interval contiguous to

H; and this is not possible, since f(x) is summable in such an interval.

Since the perfect set P is contained in H, it must be contained in Plt

Similarly, if a portion of P* 1 were contained in an interval contiguous to H2 ,

since P(1) is contained in Pj, that portion of P(1) would be a part of Pj over

which f(x) is summable, and such that every point would be one of con

vergence of 2 W over the intervals contiguous to the part ;
and this is not

possible. Hence P^ is contained in H2 , and therefore in P2 . Proceeding in

this manner, it can be shewn that P J is contained in all the sets P3 ,
P4) ... Pa .

But Pa , for some value of a, contains no points, and therefore the set P (1)

cannot exist. It has thus been shewn that K is non-dense in P. Therefore

the conditions I and III are satisfied for any perfect set P.

In the construction given in 465, the conditions in (3) and II have only been

employed when the limiting interval (a, /9) is a contiguous interval of one of the

sets H, Hl ,H.2 ,
... Hy . But, as the condition is to be applicable to any interval

(a, /3), it is necessary to shew that the function V, constructed by the process

given in 465, actually satisfies this condition for every interval (a, /3), before

the existence of the ^-integral can be regarded as completely established.

f X

The condition amounts to a postulation that the integral I f(x)dx, or F (x),
- ,

shall be continuous in the whole interval (a, b). For the continuity of F (x)

follows from the definition (3), and the corresponding assumption II. If

xl} x2 , ... xn , ... be a sequence of points interior to (a, x}, and converging to x,

Km V(a, xn) = V (a, x}; and thus F (x) is continuous on the left. Similarly,M~30

by considering V (x, b), it may be shewn to be continuous on the right, and
therefore V(a, x\ which, by definition (1), is V (a, b)

- V (x, b), is continuous

on the right. Thus the D-integral, V (a, x), when it exists, must be con
tinuous in the interval (a, b).

To prove that the function constructed in 465 satisfies this condition,
we observe, in the first place, that V (a, x) is certainly continuous at any
point that does not belong to H. For such a point is interior to an interval

in which / (x) is summable; hence V (a, x+ A)
- V (a, x} is the ^-integral

rx+h
I f(x) dx, which converges to zero, as h ~ 0. Next, let G be a perfect set
J X

of points, contained in an interval (a, /3), and such that f(x) is summable
over G, and also such that every point of G is a point of convergence of the

series S W, when the summation is taken for the intervals, contained in (a, ft),

which are contiguous to G. We have then,

=
\fU (
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r r
~\
x+h

where (an , #B) is contiguous to G. As h 0, f(x)dx converges to

U(G) _U

zero, on account of a known property of the Z-integral. In case x and x + h

[-/3

n ~\X+h
2 f(x)dx also converges to zero, as h does so.

o-n -I*

But if x + A is not a point of G, it is within some interval (am , /3m) contiguous
rpm

I

fx+h
to G, and we have to consider a part /(#) dx. We have II f(x}dx^Wm ,

- X+h I

J
&amp;lt;&amp;gt;L,n

and therefore, in virtue of the hypothesis made above, this part makes no

r
[I3

n ~\r+h
difference in the convergence of 2

/(#)&amp;lt;&?
to zero, when convergence

L J an _U
takes place on account of the assumption that a; is a point of convergence of

2 W. It has thus been shewn that V(a, x + h)
- V (a, x) converges to zero,

as h converges to zero through any sequence of values; therefore V(a, x) is

continuous in
(or, /3).

If G be identified successively with the perfect sets in the intervals con

tiguous to Pj, P2 , ..., the perfect sets employed in 465, in the construction

of V (a, x), we see that it is sufficient for the continuity of that integral

that the condition lira Wn = should be satisfied for all the perfect sets

W~30

contained in the intervals contiguous to Plf P2 ,
.... The continuity of

[
x

f(x)dx in the whole interval (a, b) is thus established.
J a

THE FUNDAMENTAL THEOREM OF THE INTEGRAL CALCULUS FOR THE

DENJOY INTEGRAL.

467. With a view to proving the fundamental theorem that the indefinite

Denjoy integral has a finite differential coefficient, equal to the integrand,

almost everywhere in the interval of integration, a property of certain types

of sets of intervals will be investigated.

It has been shewn, in 71, that a set A of open intervals all contained

in the given interval (a, 6), can be replaced by a non-overlapping set of open

intervals A, the two sets A, A containing the same open set of points.

The set of open intervals A is said to be a* restricted set of intervals, if

no interval of A can be removed without altering the equivalent set A.

This is the same as the condition that each interval of A contains a point

that is not in any of the other intervals of A.

It is easily seen that, if three open intervals S1; S2 ,
S3 are such that a point

P belongs to all of them, one at least of the intervals is such that every

point of it belongs to one of the other two. Accordingly, that interval may

be removed without affecting the equivalent set of points.
*

* See Denjoy, Journal de Math. (7), vol. i, p. 223, where the theory here given is developed.
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It follows at once that, if A be a finite set of intervals, and is a restricted

set, any point P is contained in at most two of the intervals of A. For such a

set of intervals, the sum Sm (S), of the measures of all the intervals, cannot

exceed 2w(A), or twice the measure of the equivalent set of open intervals.

A set of open intervals A is said to be complete, if it satisfies the condition

that, when (a1} &), (o2 , /32), ... (on , fin), ... is any sequence of intervals all

belonging to A, and such that al} 2 ,
... n ,

... converges to a point ou ,
and

& yS2 , ...
,

... converges to a point /3W ,
then (aw , ) is an interval of A.

In case (aw , /9U ) is not necessarily an interval of A, but is contained in such
an interval (a, /3), the set is said to be semi-complete.

If the set A is complete (or semi-complete), a part A1? of A, exists which
is equivalent to the same non-overlapping set A, as A, and such that it is a
restricted set. For, considering the closed set C (A), the complement of A,
let (a, /3) be one of its contiguous intervals. Any point P, of the open
interval (a, /3), is interior to an interval B, of A.

If there exist intervals (a, a
), ( , ) belonging to A, the closed interval

( , /3 ) can be covered by a finite set of intervals of A, in accordance with the

Heine-Borel theorem. This finite set, together with (a, a
) and (# , /9), forms

a part of A which covers the open interval (a, ), and this set can then be
reduced to a restricted set, by suppressing, if necessary, some of the intervals.

If no such intervals as (a, a ), (/3 , 0) exist, we choose a set of points
(... P-n , ...P-i, P , PI, ... Pn , ...), contained in (a, 0), such that a is the limit

ing point of the sequence (. . . P_n ,
. . . P_1} P ), and that is the limiting point

of the sequence (P , P1} ... Pn , ...); any point Pm+1 being taken to be on the

right of Pm , whether ra be positive or negative.

If the points ... P_n , ... P_lt P are contained respectively in intervals

... 8_n ,
... B- l} B

, of A, the measure of S_n must converge to zero, as n~x
,

for otherwise their right-hand end-points would have a limiting point a&quot;(&amp;gt; a)
and (a, a&quot;)

would be an interval of A, if the set A is restricted, or would be
contained in an interval of A, in case the set is semi-restricted; and this is

contrary to the hypothesis that no interval of A has its left-hand end-point
at a. A similar statement holds good as regards /3.

Every point of the closed interval PmPm+ , ,where m is positive or negative,
is a point of a finite set A,n , of intervals of A. Let 2 denote the enumerable
set of intervals obtained by adding the sets Aw ,

for all values of m. It will

be shewn that, if (A, B} is any interval, such that A &amp;gt; a, B &amp;lt; 0, the interval

(A, B) has points in common with only a finite part of the set S. Let 2 (A, B)
denote the set of those intervals of 2 which contain at least one point of

(A,B). Let the intervals of 2 be denoted by 2 2
2&amp;gt;

... S ..., then, if 2 (A,B)
is not a finite set, it contains intervals S with indices which increase indefi

nitely. There must then be in 2 (A, B) intervals of Aw ,
for values of m tlTat
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increase indefinitely, and are all positive, or else are all negative. In the

former case their right-hand end-points will converge to (3, and in the latter

case their left-hand end-points will converge to a. But it has been shewn

that the measure of such an interval, in either case, converges to zero, and

thus an infinite set of such intervals cannot all contain points of (A,B). It

has thus been shewn that the set 2 (A,B} is a finite component of the set 2.

The case in which one of the intervals (a, a ), (/3 , /3) exists, but not the

other, can be reduced to the preceding cases.

The set &quot;2,
can be reduced to a restricted set 2, by suppressing some of the

intervals, without altering the set of interior points. To prove this, let i be

the smallest value of i such that 2
4l
contains a point that does not belong to

2 t +*;, for k = 1, 2, 3, .... If P! is any point within (a, /3), it is interior to only a

finite number of the intervals 2 t ;
let jVj be the greatest index such that Pl

is interior to 2^; we see then that i^N^. The interval 2
tl having thus

been determined, we proceed to determine t2 as the smallest index ( &amp;gt; tj) such

that it contains a point that does not belong either to 2,2+fc , for k = 1
, 2, 3, . . .

,

or to 2
tl

. If we take a point P 2&amp;gt;

not in 2
tl ,

there is a greatest number Nz

such that Pz is a point of 2^a ;
thus i2 Ny . In general if 2

tl , 2,2 ,
... 2

lp
have

been determined ~2np+1
is determined by the condition that ip^ is the smallest

integer (&amp;gt;
ip) such that 2t

p+1
contains a point that does not belong to 2

lpfl+jfc
,

for k = 1, 2, 3, . . .
,
and that does not belong to any of the intervals 2

tl , 2ta ,
. . . 2

lp
.

If Pp+1 is a point that does not belong to any of the intervals 2
tl ,

S
l2 ,

... 2
tp

;

and if Np+l is the greatest of the indices ip+1 ,
ip+2 ,

... such that t^ ^ contains

PP+I, we have then ip+1 Np+l . The set of intervals |2lp]
is a restricted set,

and it can be shewn to cover the whole of the open interval (a, /3). For, let

Q be any point of that interval, then there exists a finite set 2
Yl ,

2
y2 ,

... SYw ,

of intervals of 2, all of which contain Q. If none of the indices ylt 72 ,...7wl_i

belong to the set
{iq },

it will be shewn that ym must belong to that set, and

thus that 2Vm is one of the intervals of the restricted set 2. The interval 2Vm
contains a point that does not belong to any of the intervals 2

tl ,
2

t2 ,
. . . 2 t ,

nor

to2 t +fc,for h= 1, 2, 3,. . .
;
and therefore, for a properly chosen value of p, it must

have the least index for which these conditions are satisfied, and thus 7OT=tp+i.

If we consider all the intervals (a, ft} contiguous to C (A), we obtain a

restricted set of intervals that has the same interior points as the given set A.

Moreover, a restricted set of intervals which covers the open interval (a, b),

has only a finite component such that each interval of that component con

tains a point of a given interval (A, B), interior to (a, b). It has been shewn

that the measure of (A, B) is not less than half the sum of the lengths of

the intervals of this finite set. By considering a sequence of intervals (A, B)

converging to (a, b), we see that the sum of the lengths of the intervals of

a restricted set which covers the open interval (a, b) cannot exceed twice the

length b a.
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468. The properties of a restricted set of intervals, covering an open
segment, will now be applied to prove the following theorem:

Let P be a perfect set, contained in the linear interval (a, b), and the intervals

MI, u2 ,...u n&amp;gt;
... be contiguous to P, and let Xn(x) be defined in each interval un ,

or (an ,
bn), and such that Xn (an ) = 0. Let wn (un) denote the upper boundary of

| Xn(x) (an ,
bn), and let it be assumed that the series 2 w (un ) is convergent.

n = \

Let the function F(x}=^ Xn (&) + %m 0) consist of those terms for which bn ^ x,

and, in case x is interior to one of the intervals, (am , bm ), of the term Xm (x\for
the portion (am , x) of the interval; then F(x)is such that it has a differential
coefficient equal to zero, at almost all points of P.

Let the intervals ply p2 ,
. . . pN+l he complementary to the set of N intervals

Let ft denote any segment of which the ends are points of P, and let a- (ft)
denote the sum of %(&) , for all those intervals (an ,

bn ) that are in ft.

Let A, ^be two positive numbers, and let S(N, A) be an interval, such
that its end-points belong to P, and that it is contained in one of the intervals

Pi,ps ,.../&amp;gt;.v+i,and is also such that a {8(N,A)\ is not less than A 1 m {8(N,A)}.

Let A (TV, A) be the set of all such intervals S(N, A); it will be shewn
that this set of intervals is a complete set. If (ap , ftp) be an interval of a

sequence, all the intervals of which belong to A (N, A), and such that ctp , ftp

converge to a, ft respectively, as
p~&amp;lt;x&amp;gt; ;

it will be seen that (a, ft) is an interval
of the set A (N,A). In the first place, since op , ftp are points of P, for every
value of p, it follows that a, ft are points of P. Moreover, from and after some
fixed value of p, all the intervals (ctp , ftp ) must be in one and the same interval

pm ;
hence (a, ft) is also in that interval. The smallest index n, of an interval

contained in (a, ap ), or in (ft, ftp ), must increase indefinitely, as p does so, thus
a- (ctp , a), a (ft, ftp ) converge to zero, as p ~ oo

; hence

~oo pp

It has thus been shewn that (, ft) satisfies all the necessary conditions that
it may belong to A (N, A ). The set A (iV, A) being a complete set of intervals,
it follows that it can be replaced by a restricted set of intervals A(jV, 4),
containing the same interior points. The points interior to at least one
interval of A (N, A), that is, to at least one interval of &(N,A), form a non-

overlapping set t(N,A) of open intervals. Every point of one such interval i

is interior to at least one, and to not more than two, intervals of A(JV
r
, A).

Thus the end-points of the intervals of A (N,A), that are interior to i, divide
it into segments alternately in one, and in two, of the intervals of A(Ar

, A)-
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let Ai(t) denote the first, and A2 (t) the second, set of these segments. We
have then

m (i)
= m (Aj (t)} + m [A2 (t)},

and also
&amp;lt;r(i)

= a- (A^t)} + &amp;lt;r |A2 (t)}.

Every interval 8 (N, A ) having pojnts in common with t, and consequently

contained in t, is decomposed into one interval of Aj (t) and two of A2 (t}; hence

we have

Now a- {A (t)} ^ ^-xm (A (t)} ^ ud- m (i),

and o-(A 1 ( i)]+2o-{A2 (0}&amp;lt;2cr(0;

therefore m(t) &amp;lt; 2Jo-(t). This inequality holds for each interval covered by
A (N, A), and these intervals t are interior to the segments p1} p2 ,

... px+i.

The intervals un ,
interior to an interval t, all have indices greater than N,

00

hence, denoting by t\ the sum 2 %n (bn) \

, the total measure of all the

intervals t, covered by the intervals A (N, A], is &amp;lt; 2^1^- This measure

diminishes indefinitely as N is increased indefinitely.

Let each interval un be increased at each end by adding on a segment of

length Awn \
and denote the interval so increased by un (A).

If we exclude from (a, b) all the segments u1} w 2 ,
... u^, and the segments

A(iV, A), and also the segments u N+P (A), where p = 1, 2, 3, ..., the measure

of these excluded segments is less than

N 00

2un + 2Aty + 2 Un(A),
1 .Y+l

00 00

or than 2wn + 4J.slV ,
where s^= 2 wn .

The measure of P being 6 a 2 ztn ,
the measure of the points excluded

i

is at most b a m (P) + 4&amp;lt;AsN- If N is so large that 4tAs^&amp;lt;m(P), the

interval (a, b) contains points that are not excluded. These points form a

set E(N,A) of which the measure is at least m(P) 4&amp;gt;Asy;
and this set is

contained in P, since it does not contain any points of un ,
for any value of n,

Moreover E (N, A) is contained in E (N + 1, A), as is seen by observing that

every interval of A (N + 1, A) is an interval ofA (N, A). If E (A) denote the

outer limiting set of the sequence of sets {A (.A
7

, A)}, as N is increased indefi

nitely, we see that E (A) is contained in P, and has the same measure as P,

since 4.45^- ~ 0, asN~ oo .

Let be any point of E(A); it then belongs to E (N, A) for a certain

value of N, and for all greater values; it is moreover a point of P which is a

limiting point of P, on both sides. The point f is interior to a segment p L

belonging to the finite set p 1} p 2 , ---px+i ,
a sequence of values of x converging

to may be taken to be interior to p t .
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If all the points x, of the sequence, are points of P, we have

\F(x)-F(%)

and

(&,) |

=
&amp;lt;r (ft a), if

&amp;lt;r (*,), if a &amp;lt; ft

Since is in the set ^ (N, A), we see that a- (ft a), or o- (x, f) is &amp;lt; 4~ |*-*i

hence I

*&amp;lt;*)-^6
&amp;lt;1

-f A
If ar be a point of p. that does not belong to P, and is thus interior to u

for some value of m, greater than N + l, we have * - &amp;gt;4;
M&amp;gt;

since * is
not m the closed interval u m (A).

If
*&amp;gt;ft we

If a;
&amp;lt; ft we have

and therefore

It is now seen that, for any point x, in c
-j- ; hence none

of the four derivatives of F(x\ at ft can exceed 3/A. &quot;if we assign to A the
les m an increasing sequence that diverges, we see that each of the

*VV
^ (

f
} 1S ^tamed in the Preceding set; for E(N,A ) is contained in

t^/a*
it 4 X4. Each of the sets #(4) has the measure m (P) and

therefore the set E of points common to all the sets E(A) has the measure

li ,t
a
*T

nt
^

f ^ the f Ur derivatives of **() are all less than 3/4r all the values of 4 m the sequence. Therefore F(& has a differential
coefficient, equal to zero, at every point of E, that is, at almost every point

&amp;gt;t t . Ine theorem has thus been established.

469. From the theorem of 468, the following theorem can be deduced
ci u on.cc \

If Pbe a perfect set, and {(an ,
bn )} be the set of contiguous intervals, then ifthe function V(a,x) be summable over P, and if % W (a b ) be c t

the function V(a, x) has a finite differential coefficient, at allnosl all points of P.
The term W (a, ft) denotes, as in 464, the upper limit of |F( #)l for

all intervals (a , /3 ) contained in (a, ). In this case

Jfr(*)-/ f(tB)dx, Xn(bn)=S
bn

f(x)dx.J
&quot;n J an

H.
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Moreover we have

w (an ,
bn) ^ W(an ,

bn) ^ 2w (an ,
bn);

and hence, if 2 Wn (an , fin) is convergent, so also is S wn (an ,/3n), and the
n = 1 n = 1

converse also holds good.

We have

V (a, x} m I

&quot;

/ da? + 2 FB ( n , n ) + F (am , x},
J a a

where the summation is taken for all the intervals (an , /3n) interior to (a,x),

and the term V(am ,x) exists if x is interior to (am ,
8m\ and the function

/ (x) is equal to f(x) at every point of P, but is elsewhere zero. Since f(x)
is summablo in (a, b), it has, almost everywhere, a differential coefficient, equal

to /(#); and by the theorem of 468, the function 2 FM (a,,, /3n } + V(am , x)
n

has a differential coefficient equal to zero, at almost all points of P. It follows

that the function V(a, x) has a differential coefficient, equal tof(x), at almost

all points of P.

470. The theorem of 469 may now be employed to establish the follow

ing property of the D-integral :

The indefinite D-integral F (x), of a function f (x), in the interval (a, b),

has almost everywhere in the interval a differential coefficient, equal to f(x}.

This is the extension to the Z)-integral, of the property of the Z-integral,

given in 405.

With the notation of 465, it is clear that, in any interval contiguous to

H, F (x) has almost everywhere a differential coefficient, equal jbo f(x). For

f(x) has an Z-integral in every interval ( , ),
interior to an interval (a, /3),

contiguous to H; and therefore ( 405) F(x) has a differential coefficient,

equal to f(x), almost everywhere in (a , /3 ),
and therefore almost everywhere

in (a, ft). It can now be shewn that F(x) has this property in any interval

contiguous to P1 . For it holds in any interval contiguous to Jf/, and there

fore also in any interval contiguous to Mj&quot;. Generally, it can be shewn that

F (x) has the property in every interval contiguous to any derivative M^,
of M^, and thence it is shewn that F (x) has the property in any interval con

tiguous to P!.

It will next be shewn that, in any interval contiguous to P2 ,
the function

F (x) has almost everywhere a differential coefficient equal to f(x). For, con

sider an interval 8, which contains no points of H2) but contains a portion plt

of Pj. The property holds in each interval contained in 8, contiguous to^,
and by the theorem of 469, it holds for the set p^, and consequently it

holds for B. It can now be shewn, as in the case of P1} that the theorem

holds for every interval contiguous to P2 . Proceeding in this manner, as in
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465, we see by induction, that, in virtue of the theorem of 469, the theorem
holds for any interval contiguous to P

y , where 7 is a number of the first,
or of the second, class. Since, for some value 7, of y, the set P- is non-

y

existent, it follows that the function F(x) has a differential coefficient, equal
to/(V), almost everywhere in (a, b).

471. The importance of the D-integral in the general theory of integra
tion depends largely upon the property of the integral expressed in the

following theorem :

// F(x) have, at each point of the interval (a, b), a finite differential coeffi
cient f(x), thefunction f(x} is integrable (D\ in the interval (a, b), and

This theorem expresses the fact that the operations of differentiation and
integration are completely reversible in the case of any function which has,
everywhere in the interval in which it is denned, a finite differential coefficient;
whether that differential coefficient is bounded or unbounded in the interval.
The property (B), in the statement in 343, of the fundamental theorem of
the differential calculus, is covered, in a wide class of cases, by the above
theorem. It will be observed that the corresponding theorem for the Z-integral
is subject to the condition that F(x} must be of bounded variation, as other
wise /(a?) will not be summable (see 405), whereas, in the above theorem,
the function F (x) is subject to no condition beyond that of possessing everywhere a finite differential coefficient.

In order to prove the theorem, it is necessary to shew that the function
f(x} satisfies, in relation to F (x), the conditions I, II, and III, of 464.

(I) To shew that the set of points of
non-summability of f(x}, with

respect to any perfect set P, contained in (a, b), is non-dense in P, we observe
(see 401) that /(a) is the limit of a sequence {^B (*)} of continuous functions
For, if +n (x) denote {F (x + hn)- F (x)}/hn , where \hn ]

is a sequence of
numbers which converges to zero, and is independent of x, these functions
-/rn (x) are all continuous functions of x.

The function ^n (x) may be expressed by x (x, y\ a function of the two
variables *, y, where y= l/n. The function x (x, y} is in the first instance
defined only for values of y, of the form l/n, but it may be extended to the
case in which y has all values in the interval &amp;lt; y ^ 1, by such a rule as that,

when y is in the interval
n + 1 n

1

11 + 1

412



644 Non-absolutely convergent integrals [CH. vm

The function ^ (x, y), so defined for the plane set of points a ^ x g 6,

&amp;lt; y ^ 1, is continuous with respect to y, for each value of x. In accordance

with the theorem of 323, there must be, in every interval on the line y = 0,

points at which %(#, y) is continuous with respect to (x, y), and therefore

with respect to x. Therefore /(#), which is lim %(x, y}, is point-wise dis-

y ~o

continuous
;
and this is also the case if only those values of x are considered

which belong to a perfect set P. It follows that the points of infinite dis

continuity of f(x), with respect to P, form a set that is non-dense in P.

This set contains the set of points of non-summability of f(x) with respect

to P. Therefore f(x) satisfies the condition I, of 464.

(II) If (a, ft) is an interval in which f(x) is summable, we have, in

f/s

accordance with the theorem of 4P6, F(ft) F(a) = I f(x)dx. Let it be
J a.

now assumed that (a, ft) is an interval such that the relation

has been shewn to hold, at some stage of the process of construction of the

D-integral of f(x}, for all intervals ( , ft ) interior to (a, ft). If of ~ a, ft ~
ft,

F(a) converges to F(a), and F(ft ) converges to F(ft), on account of the

r/3

continuity of the function F(x). It follows that, f(x)dx, defined as
J a

r/s

lim I f(x}dx, is equal to F(ft) F(a). Therefore the condition II, of
a ~a, /3 ~/3 - a

464, is satisfied.

(Ill) Let it be assumed that, in each interval (a, ft) contiguous to a perfect

set P, the .D-integral of f(x) has been shewn to exist, and to be equal to

F (ft) F (a). The following theorem will be proved:

If the continuous function F (x) have, in the perfect set P, a finite dif

ferential coefficient at every point, then the set of those points ofP which are

points of divergence of the series 2TTn , where Wn is the fluctuation ofF (x) in

the interval (an , ftn ) contiguous to P, is non-dense in P.

In case the set of points of divergence of the series %Wn is not non-

dense in P, there must be an interval containing a portion of P, in which

the set is everywhere dense in that portion of P. Let it therefore be assumed

that the set of points of divergence of 2,Wn is everywhere dense in P. It

will then be proved that there exist points of P atrwhich one of the derivatives

of F (x) is infinite
;
and this is inconsistent with the assumption that F (x)

has a finite differential coefficient at every point of P. The theorem will

then have been established. -

In every interval containing a point of P, the series SWn is divergent
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it then follows that in this interval there is an infinite number of values of

n for which Wn/({3n &amp;lt;*n ) exceeds a fixed positive number k
;
for if

Wn 55 k (3n
- O,

00

for all values of n with the exception of a finite number, the sum 2TFn ,
for

m

some fixed value of m, would be ^ &2 (@n an ),
and thus the series would be

convergent.

It
, i) be the points of

(a,,., /3n) at which F (x) has its upper and lower

limits, we have

F({)-F(i,) = {F(&-F (O} + [FM - F
(rj)}

and since both the terms on the right-hand side are = 0, one of them is

greater than \ {F(%) F
(rj)}.

There exists therefore a point yn ,
in (an , @n),

such that !*L kJ^ is greater than = - -
. It thus appears that

7n an * Pn ~ n

there exists a set of points C1; C2 ,
... cm ,

... all belonging to P, and dense in

P, such that there is a point jm on the right of each point cm ,
for which

J7I
/ \

JTI
/ \

*l
&amp;gt; \. where X is an arbitrarily chosen positive number.

7m - Cm
From the continuity of F(x) at cm , an interval &amp;lt;rm containing cm ,

of length
not exceeding em ,

and not containing the point ym ,
can be so determined

that lies between the two numbers F(%n}-F(cm)\
{

7m Cm

for all points x in crm . The number em is taken to belong to a sequence {em },

of decreasing numbers, which converges to zero. Any point ,
contained in

an infinite number of the intervals a-m , belongs to P. For the length of crm ,

not exceeding em ,
which contains the point cm ,

of P, the point is a limiting

point of P, and therefore belongs to the set. Also ym % does not exceed

ftm &amp;lt;*m + m&amp;gt;
and therefore ym converges to

,
as m increases indefinitely;

it follows that
j

J

:

,
as m ~ oc

,
has its lower limit &amp;gt; A.

;
and thus,

7m~ f

at the point ,
there is a derivative numerically &amp;gt; X.

It has now been shewn that all the points ,
interior to an infinite number

of the intervals cm ,
form a residual set L relative to the perfect set P. At every

such point there is a derivative numerically greater than k.

Let X have successively the values in an increasing sequence {X,,}.
which

diverges, and let [Ln ]
be the corresponding sequence of sets L, residuals with

respect to P. A point that does not belong to any of the sets Ln belongs to

the sets, of the first category relative to P, that are complementary to the

sets Ln ,
and all these complementary sets form an enumerable sequence of

sets, non-dense in P; therefore the points that belong to all -the sets [Ln ]

form a residual set, relatively to P. At a point of this residual set, there is a
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derivative that is numerically greater than \n, whatever value n may have,

and thus there is an infinite derivative. It has now been shewn that the

assumption made is inconsistent with the existence of a finite differential

coefficient at each point of P. Thus it has been shewn that the condition III,

of 464, is satisfied.

It has been shewn that the conditions I, II, III, of 464, are all satisfied

by f (x), and it only remains to be proved that the condition (4) of 464 is

satisfied. We shall prove the following theorem :

IfF (x) have a finite differential coefficient f(x], at every point of a perfect
00

set P, which is summable over P, and the series 2 W(an ,bn } is convergent,
-i

where W (an ,
bn) denotes the fluctuation of F (x} in the interval (an ,

bn) con

tiguous to P, then

-F(a)= f(x)dx + {F(bn)-F(an)} &amp;gt;

. (P) n-l

where (a, b) is the interval in which P is contained.

In the theorem of 468, let

Xn (x}
= F(x)-F(an\

then the function

g (x)
= F(a)+i (F(bn)

- F(an)} + {F (x}
- F (am)}

a

has, at almost all points of P, the differential coefficient zero. The summation

in the second term on the right-hand side is taken for all the intervals (an ,
bn ),

interior to (a, x), and x is taken to be in the interval (am ,
bm),

Let F (x)
= g (x) + h (x), then h(x) has a differential coefficient, equal to

f(x), at almost all points of P.

Thus, iff(x) is summable over P, we have

where f(x) =f(x) at all points of P, and is elsewhere equal to zero.

It now follows that

F(b) - F(a) = ! f(x)dx+^ {F(bn )
- F(an )}.

J (P) H=l

It has thus been shewn that all the conditions necessary for the existence

of the D-integral in (a, 6) are satisfied, and that the integral is equal to

fm

F (6) F (a). It is clear that, in the interval (a, x), the D-integral I / (a?)
dx

J a

exists, and is equal to F (x) F (a}.
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PROPERTIES OF THE DENJOY INTEGRAL.

472. A D-integral that is not also an Z-integral cannot be an absolutely

convergent integral, that is, the integral of the absolute value of the function

cannot exist. For if a and ft are two points of non-summability of the function

f(x), and the X-integral of f(x) exists in every interval ( , ft } interior to

Fff

(a, ft), the limit of |/(#) |

dx, as a ~a, ft ~ ft, is infinite.
J a

Iff w (x),f (x) be two functions, both integrable (D), in the interval (a, b),

then their sum is also integrable (D), in the interval, and

I {/
(1)

(*) +/ (2)

O)} dx = I
/&amp;lt;&quot;

(x) dec+f /&amp;lt;

2

(x)dx.
J a J a J a

Let H (l}
,
H be the sets of points of non-summability of the two functions

fw (#) f {2&amp;gt;

(#)&amp;gt; respectively. The points of non-summability of/ (1)

(x} +/(2)
(x)

form the closed set M(H (l}
,
H (2]

), which may be denoted by H; and this is the

sum of a perfect set P1} and an enumerable set M1 . It has been shewn in

466, that the set of points of non-summability of either of the functions

/(1)

(^) / 2)

(x )&amp;gt;

assumed to be integrable (D), with respect to any perfect set

whatever, contained in (a, b), is non-dense in that set, and that the same is true

as regards the points of non-convergence of the sum of the fluctuations of

their integrals in the intervals contiguous to the perfect set. We may there

fore, in the process of construction of each of the integrals

rb rb

fv(x)dx, \ fw(x)dx,
J a J a

employ the set 5, instead of H, or H. We shall have P1
= J (P1

&amp;lt;

1),P1
&amp;lt;

2

).

and in general Pa = M(Pa
{l

\ Pa
(2)

)-
Moreover if, at any stage of the process, it

has been shewn that the theorem holds for every interval (a, ft ) interior to

the interval (a, ft), we see that, since the integrals of / (1)

(x), / (2)

(x) in ( , ft )

converge to their integrals in (a, ft), as a ~ a, ft -w
ft, the theorem also holds

for the interval
(or, ft). The same theorem therefore holds for the integrals

obtained at each stage of the process of construction of the J9-integral of

/(1)

(x) +/(2)

(#), and therefore for the final integrals taken over the interval (a, 6).

473. In the case in which the set H, of points of non-summability of

the function /(#), has measure zero, the function is necessarily summable over

the nucleus P, of H, because m (P) = 0, and thus
/ f(x) dx = 0. In this case,

_

Jm
the D-integral over (a, b), assumed to exist, is the sum of the Z)-integrals

over the intervals contiguous to P. In order that the Z)-integral may exist, it

is sufficient that the sum of the fluctuations of the integrals over the intervals

contiguous to P should be convergent. When this condition is satisfied, so

that the D-integral of f(x), over (a, 6), exists, it is not necessarily the case
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that f(x) has an #X-integral over (a, b), because the condition for the exist

ence of the latter is, in accordance with E. H. Moore s theorem, given in

457, that the sum of the fluctuations of the integrals off(x) taken over the

intervals contiguous to the set H should be convergent; and this condition

is more stringent than the condition that the sum of the fluctuations over

the intervals contiguous to the nucleus P, of H, should be convergent. This

explains why the sum of two functions, both of which have //Z-integrals,

does not necessarily possess an //^-integral (see 460), although, as has

been shewn above, the sum of two functions, each of which is integrable (D),

is also integrable (D).

474. The following property of a function that is integrable (D) will now

be established:

If f(x) be integrable (D), in the interval (a, b), and $(x) be bounded and

monotone in the interval, then the product f(x)&amp;lt;f&amp;gt;(x)
is integrable (D), in (a, b),

and satisfies the relation

rb r
&quot;]

r&

f(x)$(x)dx = F(x) (*)
-

I F(x}d(f&amp;gt;(x),

Ja L -I&quot;
&quot;

rx

where F (x) denotes the indefinite integral f(x)dx.
J a

It follows from this theorem that the product of/(#) into any function of

bounded variation in (a, b) is integrable (D).

To prove the theorem it is necessary to shew that the function f(x) &amp;lt;/&amp;gt; (x)

satisfies the conditions given in 464, in relation to the function

If, in the interval (a, /3), the function /(a?) is summable, we have ( 447)

(x) &amp;lt;f&amp;gt;(x)dx=l &amp;lt;/&amp;gt;
(x) dF (x),

and therefore f &quot;/ (x) &amp;lt;j&amp;gt;
(x) dx = \f (x)

&amp;lt;j&amp;gt;(x)\

-
j

F (x) d&amp;lt;j&amp;gt; (x) ;

J a. L J a . a

thus the theorem holds in the interval (a, /3).

Next, if the theorem holds in every interval (a , /3 ),
interior to the interval

(a, /8), it will be shewn to hold for (a, ).

We have to shew that, as a -* a, ft ~ 0,

converges to \ F(x) &amp;lt;(V&amp;gt;

|

~
f

Ja J a
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f
a

Since
&amp;lt;f&amp;gt; (x) is monotone, it is clear that I F (x) d(f&amp;gt; (x) is equal to

J a.

F(&quot;)
I d* (x),
J a.

where a&quot; is some number in the interval (a, a
),
and this is equal to

W) ftOO -*()};
therefore

.
lim I F (x) d&amp;lt;f&amp;gt; (x)

= F (a)
{&amp;lt;/&amp;gt; (a + 0)

-
(a)}.

Similarly, we have

lim /V() &amp;lt;ty (x)
= ^(/8)

{&amp;lt; () -
(ft

-
0)} ;

/3 ~j3 J

and therefore lim f jP (a;) cty (a?)
= ( F (x} dd&amp;gt; (x)

a ~a, P ~pJ a J a.

&amp;gt;- 003-0)]

Since

lim

the result follows.

fft

Hence, as f(x} &amp;lt;f) (x) dx is defined to be
J a.

rf
lim

J
f(x)&amp;lt;f&amp;gt;(x)dx,

we see that the theorem holds for the interval (a, /3).

A point in the neighbourhood of which /(#) is summable is also a point
in the neighbourhood of which f(x) (f&amp;gt;(x)

is summable; thus the set H is the

same for the function /(#) (f&amp;gt;(x),
as for f(x).

We have now to shew that the condition III, of 464, is satisfied for the

function f(x} &amp;lt;/&amp;gt; (x).

If ( n , /3n) be an interval contiguous to the perfect set P, in which the

integral off(x) &amp;lt; (x) has already been constructed, we have

I

&quot;

f(x) (x) dx = \F (x} (x) \*
- !

X

F(x) d&amp;lt;j&amp;gt; (x).
)i L J ou J an

If f, r) are the points of the interval at which F(x) attains its upper and
lower boundaries, we have to estimate W (an , /3n ), the fluctuation of

[x
I f(x) (f&amp;gt; (x) dx
J a,,

r i*
in the interval. The fluctuation of F (x) (x) is not greater than

~F(n]
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it being assumed that
&amp;lt;j&amp;gt; (x) is a non-diminishing function. Since

0, F(T))-F( n )&amp;lt;0,

the fluctuation is not greater than {F(^)-F(ij)} &amp;lt;(/3w), or than
&amp;lt;j&amp;gt; (b) W(an , ),

where TT( B ,y9n) is the fluctuation
ofF(&amp;lt;c).

Since I F (x) d&amp;lt;f&amp;gt; (x) lies between F(%)
{&amp;lt;j&amp;gt;

(/3n)
-

&amp;lt;j&amp;gt; (a*)} and

the fluctuation of the integral does not exceed [0 (#B)
-

(OB)} Tf(on ,/9n), or

is less than
{&amp;lt; (&)_&amp;lt;()} If (o, ).

Thus JP(,) is less than a fixed
00

multiple of TF(an , ).
If then 2 17 (on , &,) is convergent, so also is

-l

2 TT (,).
71=1

T
It now follows that a point of the perfect set P, at which 2 W (an , /3n) is

i
oc

convergent, is also a point of convergence of 2 W (an, @n).
For the result

-i

obtained above may be applied to the part of P contained in a neighbour
hood of the point, so chosen that, in it, 2 W(an , /3n ) is convergent.

It has thus been shewn that the set of points of P which are not points of

convergence of 2 W (an, /3n) is non-dense in P, since the corresponding con

dition for 2 W(oLn, ftn} is satisfied. Therefore the condition III, of 464,

holds for the function
/(#)&amp;lt;/&amp;gt; (#).

For the complete establishment of the theorem, there only remains to be

proved that:

Iff(x) be summable in a perfect set P, contained in an interval (a, /3), then

=

the summation being taken for all the intervals (ttn ,/3n) contiguous toP, it being
assumed that the sum is absolutely convergent.

This theorem can then be applied to the perfect set contained in any of

the intervals contiguous to any one of the perfect sets P1} P2 , ..., P^, ...,

employed in 465, the conditions of the theorem being in each case satisfied.

Let f(x) be expressed by the sum of the two functions /i (x), fz (x) ;
where

fi (x)
=f(x )&amp;gt;

m
P&amp;gt; and/a (x)

=f(x) m all interior points of the intervals (an , /3n).

Let Fl (x) =
I /i (x) dx, and Fz (x)

= f */, (a;) dx\ thus F(x) = F, (x)+ Fz (x).
Jo. J a
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r/s ,-

The //-integral I yi (x)
&amp;lt;/&amp;gt;

(x) dx exists, being equal to /i (x) &amp;lt;f&amp;gt; (x) dx;
Jo. J (P)

also
I /2 (x) &amp;lt;/&amp;gt; (x) dx exists as a _D-integral, being equal to 2 I f2 (x)

&amp;lt;j&amp;gt;
(x) dx.

a J an

In each interval (an , /3n),
F-

i (x) is constant, thus

Now .r() $(*)&quot;.- J (a) d&amp;lt;^&amp;gt; (a?)
a

I [^ (ar) (

I L

+ \F,(x}^(x} -
F,(x)d$(x)\;

(L Ja Jo.

the expression in the first bracket on the right-hand side is equal to

r/s r

I yi (x) (^) dx, or to I yx (x) &amp;lt;f) (x) dx.
la J (P)

In order to prove the theorem, it is then sufficient to shew that

00

= 2
a -.a

this is the special case of the original theorem which arises when /(#) = 0,

over the set P.

Consider the first m of the intervals (o,z , @n ); and let

(7i &amp;gt;

g
O&amp;gt; (72. S2) . . .

(7m+i&amp;gt;
Sm+1 ), where yj

=
a, 8m+1 = @,

be the intervals complementary to the intervals (a1} A), ... (am , /Sm ).

We have

r) &amp;lt;/, (a?)
- F2 (x) d&amp;lt;f&amp;gt; (x)

- F2 (x}
&amp;lt;f&amp;gt;

(
-

,(x) d&amp;lt;j&amp;gt; (x)
a Ja n-1 (L J n ^ a

r-m+l f&quot; ~]Sr &amp;gt;--m+l rS r
= 2

jP,(&amp;gt;^()
- 2

F,(x)d&amp;lt;f&amp;gt;(x);
--i L Jyr -I ^yr

and the expression on the right-hand side may be written as

[F2 (,.)
- Fz (yr)} + 2 F2 (7,.) {(/&amp;gt; (S,.)

-
(yr)}

r - ji ) = 1

r-m+l r&r
- 2 F2 (x)d&amp;lt;f&amp;gt;(x),

r-l Jyr

which is equivalent to

r-m+l /-p

r)}+ ^rm (x)d^(x\
Ja

where tym (x) is defined to be F2 (jr)
- F2 (x), in the intervals (yr ,

8r), and to

be zero in the intervals
(otj, &), (a2 , ^2),... (Om, /9m).
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_r-m+l _
The first term is numerically less than

&amp;lt;/&amp;gt;

S
j

Fz (Sr) F2 (jr) , where
&amp;lt;f&amp;gt;

)
= !

r = i+l
is the upper boundary of $ (a;) j

in (a, /9); and 2 \FZ (Sr) F2 (yr) \

does not
r=l

exceed the sum of the fluctuations of F2 (x) in the intervals

contained in the intervals
(&amp;lt;yr ,

Sr ).
It follows, from the convergence of the

series of fluctuations in the intervals contiguous to P, that the first term is

arbitrarily small, if m be sufficiently great; thus the first term is &amp;lt; em ,
where

lim
,.

= 0.
m~x&amp;gt;

If x is not a point of P, we have tym (x)
= 0, for all sufficiently large values

of m; and if x is a point of P, it is in one of the intervals (7,., 8r), where 7,.

converges to x, as m is indefinitely increased, and thus tym (x) converges
to zero. Since tym (x) is bounded, for all values of m and x, we have, by a

theorem established in 445,

re r/s

lim ^m (x) d(f&amp;gt; (x}
= [lim i/rm (a?)] d$ (x}

= 0.
m~xJa Ja l~&amp;gt;

It has now been shewn that the limit, as m^oo
,
of

[~\P
f/
3 -&amp;gt; f f !

(*)$(*)
- F2 (x)d&amp;lt;i&amp;gt;(x)-

2
{
NrB(r)^()

Ja J a -l I L J

is zero. The theorem has therefore been established; and it has been proved
that

which is an extension, to the Z)-integral, of the theorem of 445, for the L-

integral.

475. As in 445, it may be shewn that the second mean value theorem

is applicable to the integral of
f(x)&amp;lt;f) (x), where f(x) is integrable (D), and

&amp;lt; (x) is monotone and bounded.

f*
For F (x) d(f&amp;gt; (x)

= F (fj,) {&amp;lt;}) (b) &amp;lt;f&amp;gt;(a)},
where

/u,
is some number in the

J a

interval (a, b); therefore

(b)
- F(n} {(/&amp;gt; (b)

-
&amp;lt;]&amp;gt; (a}},

if we assume that F (a) =0. This is equivalent to

f/O) $ (*) dx =
&amp;lt;f&amp;gt; (a)

{&quot;/(x)
dx + t (b) !

b

f(x) dx.
J a J a J p-
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The more general form of the theorem, including Bonnet s form, may be

deduced, as in 422. For the application to the representation of a function

that is integrable (D) by trigonometrical or other series, the result here

obtained is of decided importance.

EXTENSIONS OF THE DEFINITION OF THE DENJOY INTEGRAL.

476. A generalization of the definition, given in 464, of the Denjoy
integral has been made by Denjoy* himself, by W. H. Youngf, and by

00

Khintchine^:, independently of each other. Instead of the series 2 W(an , /3n\
n=\

in which the terms are the fluctuations of V(an , x) in the intervals (an , /3n ),
00

the series 2 V(an , @n )
\

is employed. Thus, for the definition (4), in 464,
n = l

the following is substituted:

(4)&quot;
Let P be a perfect set of points in an interval (a, /3\ contained in

(a, b), and let it be assumed that f (x) is summable over the set P, and suppose
that V (a , ) has been defined for every interval (a , /3 ), of (a, fi), which con

tains no points of G as interior points. Let (an , /3n), where n = l, 2, 3, ...,

denote the intervals of (a, /3) that are contiguous to P, and let it be assumed
00

that the series 2
j V(an , /3W)

j

is convergent. Then V (a, /3) is defined bu
n=l

F(a, /3)
= 2 F(a n&amp;gt; /8s)+ f f(x)dx.

n=l J (P)

The definitions (1), (2), and (3), of 464, are unaltered.

Instead of the condition III, of 464, the following is substituted :

III . For every perfect set P, if F(on , /3n) have been calculated for every
interval (, w) contiguous to P, the set of points ofP which are not points of

00

convergence of 2
j
V(an , ) 1

is non-dense in P.
n=l

00

As before, a point of convergence of 2 \V(an , /?) |

is one which has a
w = l

neighbourhood such that the series of those terms for which (an , j3,,) is

interior to the neighbourhood is convergent. Thus the neighbourhood con

tains a part of P, such that the series is convergent, when taken for the

intervals contiguous to that part of P. The conditions I, II, of 464, remain
unaltered.

* Annales de I ecole normale, (3), vol. xxxin, p. 127, and (3), vol. xxxiv, p. 181. These memoirs
are a continuation of researches in the Journal de Math. (7), vol. i, p. 105, and Hull, de la soc.

Math, de France, vol. XLIII.

t Proc. Land. Math. Soc. (2), vol. xvi, p. 175.

Coniptes Rendus, Paris, vol. CLXII, p. 287.
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00

It will be observed that, if the series 2 W(a.n ,/3n) is convergent, so also
n=l

00

is the series V(an , /3)|; but that the converse does not hold. It thus
-i

appears that the D-integral is a special class of the functions F(, x) which

satisfy the wider set of conditions obtained by substituting (4) and III for

(4) and III respectively.

When the function f(x) is such that all the definitions (1), (2), (3), (4)

and I, II, III are realized, the actual construction of V (a, b) is carried out

precisely in the same manner as in the case of the Z)-integral, no essential

change being necessary in the proof of existence of the integral.

477. As has already been pointed out in 466, the conditions (3) and II

contain a postulation that V (a, x) shall be a continuous function of #, and it

was shewn that the D-integral constructed in 464 actually satisfies the

requirement of this postulation. It will however be shewn that when the

new conditions (4) and III are substituted for (4) and III, the postulation

of continuity of V (a, x), or of F (x), is not satisfied unless the function f(x)
satisfies a certain condition.

The set H denotes the aggregate of the points at which f(x} is not sum-

mable, and of the points in the neighbourhood of which 2
j
V(an , /Sn) j

is not

convergent.

The function V (a, x} is clearly continuous at any point which does not

belong to H, since V (a, x + h) V (a, x} is an Z-integral, for sufficiently

small values of j/i|. Next, let G be a perfect set, contained in an interval

(a, /3), and assume that f(x} is summable over G, and that every point of G
is a point of convergence of the series 2

|
V(an , /3n)\, when the summation is

taken for those intervals contained in (a, /3) which are contiguous to G.

We have

V (a, x + h)
- V (a, x) = \ ! f(x) dx + 2 /**/()&T

U(G) J an }an

r ,-

-JJH-/I
where (an ,

bn) is contiguous to G. Ash- 0, we see that I f(x} dx\ ~ 0, on
U(G)&quot; J*

account of the continuity of an .^-integral. In case x and x + h are both
r rbn ~\x+h

points of G, I
2 f(x)dx\ also converges to zero, as h ~

0, in such a
L - n n _U

manner that x + h is always a point of G. But if x + h is not restricted to

be a point of G, it is in the interior of some interval (am , b,n ), contiguous to G,

[rb
n ~\x + h rx+h

2
I

f(%) dx contains the term I f(%) dx, if h be positive,
&quot;n J x * am

r*&amp;gt;m
or I f(%) dx, in case h be negative. It may happen that, as h converges

J x+h
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rx+h rbm
in any manner to zero, I f(x) dx, or I f(x) dx, does not converge to

am J x+h

zero, and in that case V(a, x) would not be continuous at the point x, of G.

We have
rx+h

I

rb

I f(x)dx Wm ,
where Wm is the upper boundary of

I
I f(x}dx

J am \J a

for all intervals (a, V) contained in (am ,
bm). Let it be supposed that,. for an

infinite sequence of values of m, Wm is greater than some positive number k.

However small h may be, there will be one of these intervals (ar ,
br ),

for

which Wr &amp;gt; k, in the interval (x, x + h). Hence, in (ar ,
br ), there will be two

points a-r
= x + h1} and br = x + A2 ,

for which the terms considered differ by
at least k. If we take a sequence of values of h, such that x + h approaches a;

along the sequence {a/}, we obtain a limit which differs by at least k from

the limit obtained when x + h has a sequence of values {&/}. It thus appears
that V (a, x + h) V(a, x) could not, for both sequences of values of h, have

the limit zero. Hence, with the hypothesis made, V (a, x} would be dis

continuous at the point x. In order that V (a, x) may be continuous, it is

therefore necessary and sufficient that lim Wm = 0. This condition must be
m ~ 3

satisfied for all the perfect sets contained in all the intervals contiguous to

each of the sets Pl} P2 ,
... P

y , employed in the construction given in 464.

It thus appears that the postulation contained in (3) and II, which is

equivalent to the postulation that the integral V (a, x) constructed, as in

464, but with (4) and III substituted for (4) and III, is satisfied only if the

upper boundary of F(crn , as), in the interval (an , /3n ), converges to zero, as

n ~ oo
,
for each of the perfect sets contained in any interval contiguous to

P
y ,
where P

y
is any one of the perfect sets employed in the construction of

V(a, b).

f
x

478. An integral F(x) = I f(x)dx, constructed in accordance with the
J a

system of definitions and postulations (1), (2), (3), (4) ,
and I, II, III

, which

include the condition that F (a) is a continuous function, will be termed a

DK F-integral, or Denjoy-Khintcldne-Yoiing integral. It is clear that a

D-integral is also a jMTF-integral, but that the converse is not true.

It is shewn, as in 472, that the sum theorem holds* also for the

DK F-integral :

Iffw (\ / (2) 0) have DRY-integrals in (a, b), then / (1 &amp;gt; O) +/&amp;lt;

2
&amp;lt;

(x) has

also a DKY-integral in the interval, and

t [f
w

(*) + / (2)

(*)} dx = f

b

/&amp;lt; (x) dx + f
/&amp;lt;

2)

(x) dx.
J a J a J a

The proof given in 466 is applicable to shew that the set of those

points of any given perfect set P, each of which is either a point of non-

* This is contrary to a statement of W. H. Young, loc. cit., pp. 208 and 211.
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summability with respect to P, of the function f(x), that is integrable (DKY},
or else a point of non-convergence of ^ F (/3n) F (an) \

taken for the intervals

(&amp;gt; fin), contiguous to P, is non-dense in P.

The theorem that the D-integral F(x} of a function f(x}, that is integrable

(D}, has almost everywhere a differential coefficient, equal to f(x), does not

hold in general for the DKY-integral. The corresponding theorem for the

latter integral has been formulated by Denjoy*, who has introduced for the

purpose the conception of an approximate differential coefficient
;
thus :

A continuous function F (x) possesses, at a point &, an approximate dif

ferential coefficient, finite, and equal to F (x ), if the set of points x for which

F(x)-F(x }

X ~~&quot;

&amp;lt;

has the metric density unity at the point x
,
whatever value the positive number

may have.

The property of the indefinite D/*TF-integral is then formulated as

followsf :

If F (x} be the integral I f(x)dx, of a function f(x) which is integrable
J a

(DKY) in the interval (a, b), F (x) has at almost every point of (a, b), an

approximate differential coefficient, or else an ordinary differential coefficient,

equal to f(x).

The necessary and sufficient conditions have been formulated by Khintchine

(loc. cit.), that the indefinite JMTF-integral F(x) should have almost every

where a differential coefficient, equal to f(x).

THE YOUNG INTEGRAL.

479. The most general definition of a non-absolutely convergent integral

has been given! by W. H. Young. His definition is obtained by relaxing the

conditions from which it is inferred that the Z)^TF-integral is continuous.

Accordingly the Young integral, or F-integral, is not necessarily a continuous

function of its upper limit. When it is in fact continuous, it is then a

DKY- integral. When a is a limit of points of H on its right, and ft is a

limit of points of H on its left, the definition (3), and the assumption II, of

464, are no longer taken to hold for all sets of intervals (, /3n ) such

that an ~ a, (3n ~ /9, but only when an and /3n are restricted, for all values of n,

to be points of H, the set of points of non-summability of the function f(x),

* Annales de Vecole normale, (3), vol. xxxui, p. 170.

t Ibid. (3), vol. xxxiv, p. 184.

Proc. Lond. Math. Soc. (2), vol. xvi, p. 175.
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Thus the postulation II is replaced by the condition

- [Urn]
an ~a,/3n ~

where the square bracket is taken to indicate that the limit does not

necessarily exist unless all the points On, /3n belong to the set H. When a is

not a limiting pornt of a part of H on its right, the points an will be un
restricted, as in the definition of the D-fiT F-integral, and a similar remark
holds as regards /3. When neither a nor /3 are such limiting points, the

bracket may be removed from the limit, as it is then unrestricted.

An effect of the introduction of this restriction, as regards the mode of

approach of the end-points of intervals to their limits, is that

is not necessarily continuous at a point x which belongs to the set H.
However, at such a point, F(x) always belongs to the aggregate of limits of

F(x + h\ or of F(x - h}, as h ~ 0.

In order that F (x} may be continuous in the whole interval (a, b), it is

clearly necessary that the restricted limits and the unrestricted limits should
in every case give the same result. Thus the F-integral, when it is con

tinuous, is necessarily a DK F-integral, but of course not necessarily a

D-integral.

480. It will be shewn that the function F (x} constructed, as in the case

of the DK F-integral, or the .Z)-integral, with the continuity condition

modified in the manner explained above, has the following property :

In any closed interval (a, /3), contained in (a, b), F (x) assumes all values

between its upper and lower boundaries in the interval (a, /3).

Let (7, B) be an interval contained in (a, /3), and such as to contain a

sequence of intervals (7,,, 8n), for which 7n ~7, and 8n ~S, and such that in

each of the closed intervals (y n&amp;gt; n) the condition is satisfied that F(x) takes

any value between its upper and lower boundaries in that interval.

Also let it be assumed that -^(7), F(8) are respectively the limits of

F(yn), F(Sn ). Let k be any number between the upper and the lower boundaries

of F(x) in the closed interval (7, 8). If n be sufficiently great, k is between
the upper and lower boundaries of F(x} in the interval (7^, 8n), and is there

fore the value of F(x) at some point in that interval, and therefore in (7, 8).

Thus the theorem holds for the interval (7, B).

Commencing with the fact that the theorem holds for any interval (7, )

in which f(x} is integrable (L), and following out the various stages of con

struction of F (x) for the interval (or, /3), as in 465, we see, by continually

applying the method of passing to the limit, that the theorem can be estab

lished for the interval (a, /9).

H. 42
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481. The following extension of the theorem of 474 will now be

established :

Iff(x) have a Y-integral F(x\ in (a, b), which is bounded in the interval,

and 00r) be a bounded monotone function defined in the same interval, then

/(#) (a?)
is also integrable (Y) in (a, 6), and

[

b

f(x}6(x}dx=\F(x}^&amp;gt;(x)

]

\ -[ F(x)d&amp;lt;l&amp;gt;(x}.

Ja L J J a

It will, in the first place, be shewn that, itF(x) be bounded in (a, /3), and

such that f&amp;gt;0) &amp;lt;ty 0) exists, in accordance with the definition of 445, for

each of thelntervals (a, ),
of a sequence of intervals contained in (a, /3),

such that an ~ a,
~ ft then

JV&amp;lt;

(20 (0) also exists.

Let f = (a), ^d suppose x (f)
to be the function defined as in 445, for

the interval (g (a), g (ft) of By hypothesis, % () is summable in each

interval (0 ( n ), 0(/3w ))&amp;gt;

of f.
Let ^(^, n) denote the set of pomto of this

interval for which % () &amp;gt; A, where A is an arbitrarily chosen number; then

the set E(A n) is measurable. It then follows that the set E(A), of all

points ^ of the interval (0 (a + 0), (/3
-

0)), at which % (?) &amp;gt; A is measur

able since it is the outer limiting set of the sequence of sets E (A n), as n is

increased indefinitely. It follows that X () is measurable m the interval

(0 (a + 0), (/3
-

0)) ;
and since % (|) is bounded, it is summable in the inter

val Moreover, by a known property of the Z-integral, we have

&amp;lt;f,(
a+0)

Since x () has the value ^(a) in the interval (0 (a), 0( + 0)), and the

value F(/3) in the interval (0(/3-0), 0(/3)),
we have

therefore
&quot;

F(x)d$(x) exists, and has the value

Next, it will be shewn that, if the theorem

J

holds for each of the intervals (an , /U it also holds for the interval (,

provided
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We have

lim F(x)

it follows that

x) = lim F(x)

f /&quot;

Since
J
f(x) (x) dx is defined to be lim f(x)$(x)dx, it being assumed

tl ^ co J
O.Q

that /(*) &amp;lt;j&amp;gt; (x) is integrable (F) in each of the intervals (a n&amp;gt; /3n), it follows

that, if I f(x) ^ (x) dx exists, and is equal to
J an

F(x}$(x}\
n

-l&quot;

n

F(x]

for every value of n, then
f /&amp;lt;&amp;gt;)

&amp;lt;j&amp;gt; (x) dx exists, and is equal to
. a

I? /&quot;/

It must now be shewn that the condition III is satisfied by the integrals
&amp;lt;O)&amp;gt;

when it is assumed to be satisfied for the integrals of/(a).

If (n, &,) be an interval, contiguous to the perfect set P, in which the
integral /O) &amp;lt;(

has already been constructed, we have

If P denote the upper boundary of F(x) in all the intervals ( n , /3n )

contiguous to P, and &amp;lt; is the upper boundary of
&amp;lt; (x) in (a, ft), we have

F(/3n )
- F(an) \

it being assumed that (#) is
non-decreasing.

ao

It follows that, if S
|

F() - ^(an)
|

is convergent, so also is

2 f(*)+(*) dx

It is thence seen that, if the set of points of a perfect set which are points
of divergence of the sum of the absolute values of the integrals off (as) taken
over the intervals contiguous to the perfect set, is non-dense in the perfect
set, the same condition holds as regards the absolute values of the integrals

422
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off(x) (f) (x). For, if P be the part of the perfect set contained in any inter

val (a, ft), such that the sum of the absolute values of the integrals of f(x)
over the intervals contained in (a, ft), contiguous to P, is convergent, it has

been shewn that the sum of the integrals of f(x) &amp;lt;p(x)
is absolutely conver

gent. Thus the condition III is satisfied for the function f(x) &amp;lt;f&amp;gt; (x).

Lastly, it must be shewn that, if f(x) be summable in a perfect set P
contained in an interval (a, ft), then

= 2 \\F(x}$(x)\
ftn

,
= ! (\_ Jan

J ((-P)

the summation being taken for all the intervals (an , ftn) contiguous to P, it

being assumed that the sum on the right-hand side is absolutely convergent.

The proof of the corresponding theorem for the D-integral, given in 474, is

applicable to the present case.

We are now in a position to carry out all the stages of the construction of

the F-integral of f(x) &amp;lt;/&amp;gt;(#), corresponding to the various stages in the con

struction of the F-integral of f(x). It has been shewn that the construction

in the former case can always be carried out when it can be carried out in the

latter case, and that at each stage the relation

f3
r i

3
r

f (x) (f) (x) dx = \ F (x) (f&amp;gt; (x) I F(x) dcf&amp;gt; (x)
J a \_ Ja J a

holds good. The theorem is therefore completely established.

482. It has been shewn that F(x) assumes, in any interval, all the values

between its upper and lower boundaries in that interval. Thus if U, L be the

upper and lower boundaries of F (x) in (a, b), we have

rb

L
{&amp;lt;}&amp;gt; (b)

-
&amp;lt;f&amp;gt; (a)} ^ I F(x) d&amp;lt;f&amp;gt; (x) ^ U{&amp;lt;f&amp;gt;(b)-&amp;lt;f&amp;gt; (a)} ;

J a

it follows that

f

b

F(x) d&amp;lt;f&amp;gt; (x)
= F(x)

{&amp;lt;j&amp;gt;
(b)

-
&amp;lt;j&amp;gt; (a)},

J a

where x is some number such that a x ^ b.

It now follows that

rb rx rb

f(x) &amp;lt;f) (x) dx = &amp;lt;f&amp;gt;
(a)

I
f(x) dx+ &amp;lt;f&amp;gt; (b) I f(x) dx,

J a J a J x

which is the second mean value theorem for the function f(x), which is inte-

grable ( Y). The more general form of the theorem may be deduced, as in 422.

It has been assumed throughout that F(x) is bounded in the interval

(a, b), and it is therefore subject to this condition that the existence of

6

/ (x) (f) (x) dx,

as given by the formula for integration by parts, has been established.
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It may however happen that, in the final stage of the construction of the

F-integral of a function f(x), infinite discontinuities of the function F(x)

appear. Thus there exist F-integrals which possess points of infinite dis

continuity, and are thus unbounded.

It can be seen that the theorem

f {/i fa) +/. (*)} dx = P/i (*) dx + f

b

f2 (x) dx
J a J d J a

does not necessarily hold for F-integrals, unless both the integrals on the

right-hand side are DK F-integrals. If, for example the set H, for /i(#),

consists of the sequence Cj, c2 ,
... cn ,

... converging to zero, and the corre

sponding set for f2 (x) consists of a different sequence c/, c2 ,
. . . cn ,

. . . also

ri ri ri

converging to zero, /, (x) dx is defined as lim / /i (x) dx, and I fz (x) dx is
J w~co J cn ^

defined as lim /2 (X) dx. But I {/i(X)+/2 (X)} dx would be defined as the
w~oo . cn J

limit of I {fl (x) + f2 (x)}dx, where c has values belonging to both the
J c

rl

sequences {cn}, {c,/}. Since it is not necessarily the case that f^x^dx con-
cn

i f r
1

verges to
) ft (x) dx, or that f2 (x) dx converges to I f2 (x) dx, it follows
.0 J cn Jo

that the sum theorem does not necessarily hold for F-integrals which do not

belong to the class of DK F-integrals.

EXAMPLES.

12 1
1 *. Let/ (x)= 2# sin -

}

- - cos -^ ,
for &amp;lt; x a, and / (0)

= 0. We have

(a
for &amp;lt; x &amp;lt; a. I

| $ (x) \

dx increases indefinitely as e ~ 0, and therefore f(x) is not sum-

mable in the interval (0, a). But / /(j;)rf^
= hF2 sin

2 ; and thus I / (x) dx exists as

a ZMntegral, which is also an ZTZ-integral.

2t. Let

in the interval (a, /3), where m ^ 2. The function
^&amp;gt;aj3 (x) is not summable in the neigh-

//3
^&amp;gt;oj3

(-
r) dx exists as a ID-integral, which is also an

////-integral, and it has the value zero. Let II be any non-dense closed set of points in the

interval (a, 6); and let/(#) have the value zero at each point of //, and in each interval

* See Denjoy, Annales de V&cole normale, (3), vol. xxxiv, p. 181.

t Ibid., p. 208.
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rp
(a, ft) contiguous to H, let it have the value $a /3 (x}. The integral I $ (x) dx exists, and

fx
has the value zero, in each of the intervals (a, /3); also the fluctuation of / f(x}dx in

/ a
Cx

(a, ft) is &amp;lt;l(/3-a)
2
. It follows that the sura of the fluctuations of I f(x}dx in all

J &quot;

the intervals is absolutely convergent. It is now easily seen that, if Or be the nucleus of H,

/a f(x] dx exists, and has the value zero, in every interval (an , #) contiguous
&amp;lt;n

to G
; and moreover the sum of the fluctuations of the integrals I / (x} dx, in the inter-

J w
vals (an , j3B), is absolutely convergent. Therefore f(x) has a ZMntegral, which has the

value zero in any interval of which the end-points belong to H.

3*. Let G be a perfect set, of measure zero, in the interval (a, b). In any interval

(&quot;, &.)i contiguous to G, let/(.r)
= 1/03- &amp;lt;O,

for an &amp;lt; a? &amp;lt; i(aB + ), and/(#) = -
I/O,,

- an),

for \ (an+ n)
&amp;lt;#

&amp;lt;/3n ; and let/(.r) have any set of values over G.

We have / f(x) dx=0, for all values of n; also I f(x)dx= \. It thus appears
J an J &amp;lt;*n

that/(^-) is not integrable (D), because every point of G is a point of non-convergence of

the sum of the fluctuations of the integral in the contiguous intervals. At the middle

point of any interval (an , /3n),
we have F(x} = \; hence, at any point of G which is a

limiting point on both sides, we have

F(x) = Q, F(x+V)=k F(x+ 0) = 0, F(z-0) = 0, F(x-Q) = $.

At a point of G which is an end-point of a contiguous interval, F(x] is discontinuous on

the side away from the contiguous interval. The integral F(x} is accordingly a ^-integral,

which is not a Z)A&quot;I
r

-integral.

4t. Let G denote Cantor s perfect set, of measure zero, defined in the interval (0, 1)

(see 83, Ex. 1). In an interval (an , /3,,), contiguous to (7, let f(x) = -77. .
,
form

(&quot;n

~
On)

an &amp;lt; x &amp;lt; (an+ /3B), and f(x) = ,
for i (a,t+/3n) ^ x &amp;lt; f3n ;

where m is such thatm (Pn an)

(i)*****&* Over the set C,f(x] may have arbitrarily assigned values.

ffm
Since I /(*) dx=0, we have F(x) = Q, at all points of C; and in (OH, /3), the maxi-

7 7

r* imum value of I fix] dx is -
.

J an
j 2m

The values of ^(^+ 0), F(x Q\ at a point x, of C, are the limits of the numbers
,

2ill\i

for the contiguous intervals in the neighbourhoods on the right and left of the point ;
and

these limits are both zero, since m increases indefinitely with n ; therefore F (x} is a con

tinuous function. The integral is not a /^-integral ; for, if x be any point of C, there are

contained in any neighbourhood of x, contiguous intervals for which m has all values which

exceed some fixed value
;
and thus 2 Wn diverges at every such point x. To see this, we

observe that an integer r can be so determined that the distance of x from the nearer end-

point of a given neighbourhood d, of x, is &amp;gt; 3~r
;
and thus d will contain two consecutive

divisions, when the whole interval (0, 1) is divided into 3r + 1

equal parts. We may suppose
the intervals (on, /3n)

to be arranged in descending order of their lengths, and such that

* W. H. Young, Proc. Land. Math. Soc. (2), vol. xvi, p. 209.

t See W. H. Young, loc. cit., p. 199.



Examples 663

those which are of equal length are arranged in their order from left to right. The sub-set

of C in any of the 3r + 1
equal parts is similar to C, so that the values of m, for those

contiguous intervals that are interior to d, will contain all integers from and after some

fixed one.

Every point of Q is a point of convergence of the sum of the absolute values of the

integrals of f(x) taken over all the contiguous intervals (an , /3n), since all these integrals

have the value zero. It follows that F(x) is a Z)/f F-integral.

5*. Let/(#) be the function denned in Ex. 4, and, denoting | (an +/3m) by yn ,
let $ (x)

be defined in each interval (yn , /3n) by the same rule as that by which /(.r) was defined in

the interval (0, 1) ;
and let

&amp;lt;fi (#)
=

0, at all points not in an interval (yn , $n). The points
of non-summability of

&amp;lt;f) (x} form the set C, which consists of C, together with a set

similar to C in each of the intervals (yn , /8B).
It is clear that the set C is non-dense in the

set C. The points of non-summability of the function /(#) + $ (x) are the same as those

of
(f) (x) ;

that is they form the set C,

We have I {f(-v) + &amp;lt;f&amp;gt;
(#)} dx=\

n
f(x)dx= ;

and if (ang , ftns)
denote those inter-

J OK J n ^m
vals contiguous to

(f) (x) that are in (an , /3n), we have

fins .

, &amp;gt;. ,

(&*-O 2m. 3&quot;

where r depends on s, as m does on n.

Those points of C that belong to C are points of divergence of the sum of the absolute

values of the integrals of/(#) + (x), taken over the contiguous intervals (an , yn), (a,,8 , j3wg),

because, in any interval 8 which encloses such a point, there is an indefinitely great
number of the intervals (an , y,( ),

and the sum of the series of terms 1/2m, taken for these

intervals, diverges. This is however not the case for those points of C which do not belong
to C, because such a point is interior to an interval (yn , j3n), or is at the end yn of such an

/8
1

{/(#) + rf&amp;gt; (o,
1

)} dx is equal to - 2 (#
-
a^), which

M (P-n)
does not exceed -

. The set C being non-dense in (7, it now follows in accordance with
2m

the theorem of 478, that the integral / {/(#) +$ (x)} dx exists as a Z^F-integral, and

M ri

is equal to I f(x}dx+\ &amp;lt;p (x} dx, which has the value zero.
Jo J o

6t. Let O be a perfect set of content zero, in the interval (a, b\ and let

f(x)= nj(bn -an\ for an &amp;lt;x &amp;lt;(+&),

f(x}=-nl(bn-an\ for \ (an+ 6n )&amp;lt;^&amp;lt;6,( ,

where the intervals (, bn )
are all contiguous to 0. The function /(#) may be defined arbi

trarily in those points of G which are limiting points on both sides. The function F(x} is

zero at all the points of G, and it is continuous in each of the closed intervals (an , &). The
value of F(x] at the point (an+ bn) is \n (an+ bn)j(bn

-
).

Thus at each point of G, F (x)

has an infinite discontinuity ;
at a point x which is a limiting point of G on both sides, we

have F(x+0)=+&amp;lt;x&amp;gt;,F(x+ Q)= 0, F(x-0)= 0, F(x-0)= -co. Thus^(^) is a T-integral,

with a set of points of infinite discontinuity.

* See W. H. Young, loc. cit., pp. 37, 38. The result there given is not in accordance with that

in the text
;

it is there stated that the series of integrals diverges in the neighbourhood of every

point of C, and thus that f(x) + tp (x) has no DA y-integral.

t See W. H. Young, loc. cit., p. 205.
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